
Materialization Trade-offs for Feature Transfer from
Deep CNNs for Multimodal Data Analytics

Supun Nakandala Arun Kumar
University of California, San Diego
{snakanda,arunkk}@eng.ucsd.edu

1 INTRODUCTION & MOTIVATION
Deep convolutional neural networks (CNNs) have revolutionized
computer vision, yielding state-of-the-art accuracy for many im-
age understanding tasks [17]. The main technical reason for their
success is how they extract a hierarchy of relevant parametrized
features from raw images, with the parameters learned automati-
cally during training [13]. Each layer of a deep CNN learns a differ-
ent level of abstraction in terms of what the features capture, e.g.,
low-level edges and patterns in the lowest layers all the way to ab-
stract object shapes in the highest layers. This remarkable ability
of deep CNNs is illustrated in Figure 1.

The success of deep CNNs presents an exciting opportunity to
holistically integrate image data into traditional data analytics ap-
plications in the enterprise, Web, healthcare, and other domains
that have hitherto relied mainly on structured data features but
had auxiliary images that were not exploited. For instance, prod-
uct recommendation systems such as Amazon are powered by ML
algorithms that relied mainly on structured data features such as
price, vendor, purchase history, etc. Such applications are increas-
ingly using deep CNNs to exploit product images by extracting
visually-relevant features to help improve ML accuracy, especially
for products such as clothing and footwear [18].

Since training deep CNNs from scratch is expensive in terms of
both resource costs (e.g., one might need many GPUs [1]) and the
number of labeled examples needed, an increasingly popular para-
digm to handle image data is transfer learning [19]. Essentially, one
uses a pre-trained deep CNN, e.g., ImageNet-trained AlexNet [11,
15] and reads off a certain layer of the features it produces on an
image as the image’s representation [7, 12]. Any downstream ML
model can now operate on these image features along with the
structured features. Thus, such feature transfer helps reduce costs
dramatically for using deep CNNs.

Alas, feature transfer creates a new bottleneck for data scien-
tists in practice: it is impossible to say in general which layer of a
CNN will yield the best accuracy for the downstreamML task [10].
The common guideline is to extract and compare multiple layers
of CNN features [10, 21]. This is amodel selection process that com-
bines CNN features and structured data [16]. Perhaps surprisingly,
the current dominant approach to handling feature transfer at scale
is for data scientists to manually materialize each CNN layer from
scratch as flat files using tools such as TensorFlow [8], load such
data into a scalable data analytics system for downstreamML tasks.
Apart from reducing the productivity of data scientists, such man-
ual management of feature transfer workloads leads to wasted op-
portunities to reuse and optimize computations, which raises run-
times and in turn, costs, especially in the cloud.

In this work, we aim to resolve the above issues for large-scale
feature transfer with deep CNNs for multimodal data analytics. We

Convolutional+Pooling+ReLU Layers Fully Connected Layers Output

Low-level Features Mid-level Features High-level Features

Input

Image features from a specified layer

Structured Features Multimodal Feature Set
Concatenate

(A) CNN Inference

Brand Tags Price Brand Tags Price Image Features

Downstream ML Model(B) CNN Feature Transfer for Multimodal Analytics

Figure 1: (A) Visualization of CNN features (based on [22])
and (B) Multimodal analytics which uses CNN features.

start with a simple but crucial observation: the different layers of a
typical CNN are not independent–extracting a higher layer requires
a superset of the computations needed for a lower layer. Thus, instead
of materializing all layers from scratch, we can reuse previously
created layers, subject to other system constraints such as memory
or storage. This is a novel instance of a classical database systems-
style concern: materialization trade-offs.

One might argue: Why not materialize and cache all layers of
interest in one go and use a layer as needed? While this avoid redun-
dant computations, it increases memory pressure, since CNN fea-
tures are often orders ofmagnitude larger than the input. Such data
blowup lead to non-trivial systems trade-offs for handling mem-
ory usage at scale. In fact, performed naively, it could cause sys-
tem crashes, which would frustrate data scientists and raise costs
by forcing them to manually tweak the system or use needlessly
more expensive machines. Thus, overall, large-scale feature trans-
fer is technically challenging due to two key systems-oriented con-
cerns: efficiency (reducing runtimes) and reliability (avoiding sys-
tem crashes).

To the best of our knowledge, ours is the first work to formalize
and study the materialization trade-offs of the emerging workload
of large-scale feature transfer from deep CNNs for multimodal an-
alytics over image and structured data from a systems standpoint.
We devise a novel optimizer to handle such trade-offs automati-
cally and build a system (namedVista) on top of Spark-TensorFlow
combine to enable data scientists to focus on their ML exploration
instead of being bogged down by systems issues.

2 PROBLEM STATEMENT
As the input we take two tables Tstr (ID,X) and Timg (ID, I), where
ID is the primary key (identifier),X ∈ Rds is the structured feature
vector (with ds features, including label), and I are raw images. We

are also given a CNN f withnl layers, a set of layer indices L ⊂ [nl]
specific to f that are of interest for transfer learning, a downstream
ML algorithmM (e.g., logistic regression), a set of system resources
R (number of cores, system memory, and number of nodes). The
feature transfer workload is to train M for each of the |L| feature
vectors obtained by concatenating X with the respective feature
layers obtained by partial CNN inference. More precisely, we can
state the the workload using the following set of logical queries:
∀ l ∈ L : (1)

T ′img,l (ID, f̂l (I)) ← lth layer CNN features from images (2)

T ′l (ID,X
′
l) ← Tstr ▷◁ T

′
img,l (3)

TrainM on T ′l with X ′l ≡ [X , f̂l (I)] (4)

Step (2) performs partial CNN inference to materialize feature
layer l . Step (3) concatenates structured and image features using a
key-key join. Step (4) trainsM on the new multimodal feature vec-
tor. The current dominant practice is to run the above queries as
such, i.e., materialize all feature layersmanually and independently
as flat files and transfer them. Apart from being cumbersome, such
an approach is inefficient due to redundant partial CNN inference
and/or runs the risk of system crashes due to poor memory man-
agement. Our goal is to resolve these issues. Our approach is to
elevate this workload to a declarative level, obviate manual feature
transfer, automatically reuse partial CNN inference results, and op-
timize the system configuration and execution for better reliability
and efficiency.

3 SYSTEM OVERVIEW
We prototype Vista as a library on top of the Spark-TensorFlow
combine [2, 6]. Figure 2 illustrates our system’s architecture. It
has four main components: (1) a “declarative” API, (2) a roster of
popular named deep CNNs with named feature layers (we cur-
rently support AlexNet [15], VGG16 [20], and ResNet50 [14]), (3)
the Vista optimizer, and (4) connectors to Spark and TensorFlow
(TF). The declarative front-end API is implemented in Python; a
user should specify four inputs. First is the system environment
(memory, number of cores and nodes). Second is the deep CNN
f and the feature layers L (from the roster) to explore for trans-
fer learning. Third are the data tables Tstr and Timg . Fourth is the
downstream ML routine (with all its parameters)–currently ML-
lib’s logistic regression.

Under the covers, Vista uses the above inputs and invokes its
optimizer to obtain a reliable and efficient combination of deci-
sions for the logical execution plan, key system configuration pa-
rameters, and physical execution. After configuring Spark accord-
ingly, Vista runs within the Spark Driver process to orchestrate
the feature transfer task by issuing a series of queries in Spark’s
DataFrame (orDataSet) API [9].Vista uses the TensorFramesAPI [6]
to invoke TF during query execution to execute our user-defined
functions for partial CNN inference and to handle image and fea-
ture tensors using custom TensorList datatype. Vista specifies the
computational graphs to be used by TF based on the user’s in-
puts. Finally, Vista invokes MLlib in the manner determined by
our optimizer and returns all trained downstream models. Overall,
Vista frees users from having to manually handle TF code, large fea-
ture files, RDD joins, or Spark tuning for such feature transfer work-
loads.

TensorFlowHDFS/S3

Spark Worker

Mllib/ML DataFrame/DataSet
API

Spark Driver Program

Pre-trained
ConvNets

Vista

Declarative Interface

Query
Optimizer

Figure 2: High-level architecture of Vista on top of the
Spark-TensorFlow combine.

AlexNet/4L VGG16/3L ResNet50/5L
0

5

10

15

20

R
u
n
 T

im
e
(m

in
)

Foods Dataset

Naive Optimizer

70%
73%

Figure 3: End-to-end reliability and efficiency. “×” indicates
a system crashes due to insufficient resources.

4 INITIAL RESULTS & ONGOINGWORK
We empirically validate if Vista is able to improve efficiency and
reliability of feature transferworkloads by testing it on the Foods [4]
real world dataset. Foods has about 20, 000 examples with 130 nu-
meric structured features such as nutrition facts along with pair-
wise/ternary feature interactions. An image of each food item is
given in JPEG format. The target represents if the food is consid-
ered healthy. As the layers to select features from, we select conv5
to fc8 from AlexNet (|L| = 4); fc6 to fc8 from VGG (|L| = 3), and top
5 layers from ResNet (|L| = 5). As forM , we run MLlib’s logistic re-
gression for 10 iterations. We compare two approaches: Naive and
Vista. Naive is the current dominant practice of running all fea-
ture transfer queries separately, with Spark configured by standard
practices [3, 5]. Vista is the plan picked by the Vista optimizer, in-
cluding for Spark system configuration values such as heap size
and number of cores per executor. Figure 3 shows the results.

We see that Vista improves both efficiency and reliability. With
VGG16,Naive simply crashes. This is due to blowups in JVMNative
Memory during the CNN inference due to large CNN model foot-
prints, which the Naive approach doesn’t account for. However,
Vista finishes in reasonable time, which could reduce both user
frustration and costs. As for the other cases where Naive does not
crash, Vista improves efficiency significantly, reducing runtimes
by 70%–73%. This reduction arises because Vista removes redun-
dancy in iterative CNN inference and chooses appropriate system
parameters.

Currentlywe are looking into howdifferent logical plan re-writes,
physical plan choices and system configuration values will affect
the the runtime of CNN feature transfer workloads with varying
the data scale, number of layers explored and different CNN mod-
els. UltimatelyVista optimizer will evaluate these choices and will
pick the best execution plan for the selected CNN feature transfer
workload. As future work we are planning to explore several other
workloads such as interpretability workloads in CNN feature trans-
fer and optimize them from a systems standpoint.

2

REFERENCES
[1] Benchmarks for popular cnn models. https://github.com/jcjohnson/

cnn-benchmarks. Accessed December 31, 2017.
[2] Deep learning with apache spark and tensorflow. https://databricks.com/blog/

2016/01/25/deep-learning-with-apache-spark-and-tensorflow.html. Accessed
December 31, 2017.

[3] Distribution of executors, cores and memory for a spark application running
in yarn. https://spoddutur.github.io/spark-notes/distribution_of_executors_
cores_and_memory_for_spark_application. Accessed December 31, 2017.

[4] Open food facts dataset. https://world.openfoodfacts.org/. Accessed December
31, 2017.

[5] Spark best practices. http://blog.cloudera.com/blog/2015/03/
how-to-tune-your-apache-spark-jobs-part-2/. Accessed December 31,
2017.

[6] Tensorframes: Tensorflow wrapper for dataframes on apache spark. https:
//github.com/databricks/tensorframes. Accessed December 31, 2017.

[7] Transfer learning with cnns for visual recognition. http://cs231n.github.io/
transfer-learning/. Accessed December 31, 2017.

[8] M. Abadi, P. Barham, J. Chen, Z. Chen, A. Davis, J. Dean, M. Devin, S. Ghemawat,
G. Irving, M. Isard, M. Kudlur, J. Levenberg, R. Monga, S. Moore, D. G. Murray,
B. Steiner, P. Tucker, V. Vasudevan, P. Warden, M. Wicke, Y. Yu, and X. Zheng.
Tensorflow: A system for large-scale machine learning. In Proceedings of the 12th
USENIX Conference on Operating Systems Design and Implementation, OSDI’16,
pages 265–283. USENIX Association, 2016.

[9] M. Armbrust, R. S. Xin, C. Lian, Y. Huai, D. Liu, J. K. Bradley, X. Meng, T. Kaftan,
M. J. Franklin, A. Ghodsi, et al. Spark sql: Relational data processing in spark. In
Proceedings of the 2015 ACM SIGMOD International Conference on Management
of Data, pages 1383–1394. ACM, 2015.

[10] H. Azizpour, A. S. Razavian, J. Sullivan, A. Maki, and S. Carlsson. Factors of
transferability for a generic convnet representation. IEEE transactions on pattern
analysis and machine intelligence, 38(9):1790–1802, 2016.

[11] J. Deng, W. Dong, R. Socher, L.-J. Li, K. Li, and L. Fei-Fei. Imagenet: A large-scale
hierarchical image database. In Computer Vision and Pattern Recognition, 2009.
CVPR 2009. IEEE Conference on, pages 248–255. IEEE, 2009.

[12] J. Donahue, Y. Jia, O. Vinyals, J. Hoffman, N. Zhang, E. Tzeng, and T. Darrell.
Decaf: A deep convolutional activation feature for generic visual recognition. In
E. P. Xing and T. Jebara, editors, Proceedings of the 31st International Conference
on Machine Learning, volume 32 of Proceedings of Machine Learning Research,
pages 647–655, Bejing, China, 22–24 Jun 2014. PMLR.

[13] I. Goodfellow, Y. Bengio, and A. Courville. Deep Learning. The MIT Press, 2016.
[14] K. He, X. Zhang, S. Ren, and J. Sun. Deep residual learning for image recognition.

In The IEEE Conference on Computer Vision and Pattern Recognition (CVPR), June
2016.

[15] A. Krizhevsky, I. Sutskever, and G. E. Hinton. Imagenet classification with deep
convolutional neural networks. In F. Pereira, C. J. C. Burges, L. Bottou, and K. Q.
Weinberger, editors,Advances in Neural Information Processing Systems 25, pages
1097–1105. Curran Associates, Inc., 2012.

[16] A. Kumar, R. McCann, J. Naughton, and J. M. Patel. Model selection manage-
ment systems: The next frontier of advanced analytics. ACM SIGMOD Record,
44(4):17–22, 2016.

[17] Y. Lecun, Y. Bengio, and G. Hinton. Deep learning. Nature, 521(7553):436–444,
5 2015.

[18] J. McAuley, C. Targett, Q. Shi, and A. Van Den Hengel. Image-based recommen-
dations on styles and substitutes. In Proceedings of the 38th International ACM
SIGIR Conference on Research and Development in Information Retrieval, pages
43–52. ACM, 2015.

[19] S. J. Pan and Q. Yang. A survey on transfer learning. IEEE Transactions on
knowledge and data engineering, 22(10):1345–1359, 2010.

[20] K. Simonyan and A. Zisserman. Very deep convolutional networks for large-
scale image recognition. CoRR, abs/1409.1556, 2014.

[21] J. Yosinski, J. Clune, Y. Bengio, and H. Lipson. How transferable are features
in deep neural networks? In Proceedings of the 27th International Conference
on Neural Information Processing Systems - Volume 2, NIPS’14, pages 3320–3328.
MIT Press, 2014.

[22] M. D. Zeiler and R. Fergus. Visualizing and understanding convolutional net-
works. In European conference on computer vision, pages 818–833. Springer, 2014.

3

https://github.com/jcjohnson/cnn-benchmarks
https://github.com/jcjohnson/cnn-benchmarks
https://databricks.com/blog/2016/01/25/deep-learning-with-apache-spark-and-tensorflow.html
https://databricks.com/blog/2016/01/25/deep-learning-with-apache-spark-and-tensorflow.html
https://spoddutur.github.io/spark-notes/distribution_of_executors_cores_and_memory_for_spark_application
https://spoddutur.github.io/spark-notes/distribution_of_executors_cores_and_memory_for_spark_application
https://world.openfoodfacts.org/
http://blog.cloudera.com/blog/2015/03/how-to-tune-your-apache-spark-jobs-part-2/
http://blog.cloudera.com/blog/2015/03/how-to-tune-your-apache-spark-jobs-part-2/
https://github.com/databricks/tensorframes
https://github.com/databricks/tensorframes
http://cs231n.github.io/transfer-learning/
http://cs231n.github.io/transfer-learning/

	1 Introduction & Motivation
	2 Problem Statement
	3 System Overview
	4 Initial Results & Ongoing Work
	References

