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ABSTRACT
At Netflix, we are continually looking to improve our member
recommendations by following a data driven approach based on
machine learning algorithms. To enable faster iterations with high
confidence, there are two key components. Collecting historical
fact data and providing tools to do feature generation and model
training easily.

We describe the components needed for building a time ma-
chine for feature generation using Apache Spark that enables our
researchers to easily try ideas using historical data and makes run-
ning offline experiments and transitioning to A/B tests seamless.

1 INTRODUCTION
We want to make it easy for Netflix members to find great content
to fulfill their unique tastes. We follow a two-step approach: first,
we try an idea offline using historical data to see if it would have
made better recommendations. If it does, we then deploy a live
A/B test to see if it performs well in reality, which we measure
through statistically significant improvements in core metrics such
as member engagement, satisfaction, and retention.

While there are many ways to improve machine learning ap-
proaches, arguably the most critical is to provide better input data.
A model can only be as good as the data we give it. Most ma-
chine learning models expect input to be represented as a vector
of numbers, known as a feature vector. Somehow we need to take
an arbitrary input entity (e.g. a tuple of member profile, video,
country, time, device, etc.), with its associated, richly structured
data, and provide a feature vector representing that entity for a
machine learning algorithm to use. We call this transformation
feature generation and it is central to providing the data needed for
learning.

In Section 2, we describe how to store historical data in an ac-
curate yet cost-effective way. In Section 3, we describe how to
generate features based on the stored historical data.

2 HISTORICAL FACT DATA
Historical fact data for ourmembers allows us to go back in time and
generate features and models for the newer hypotheses’. (Examples
of facts are a member’s my list or viewing history). There are vari-
ous methods by which we could try to collect data for generating
features.

(1) Time versioned store: Each fact service 1 could maintain a
time versioned data store. But this has huge cost implications
and the service will not be optimized for serving end user
facing requests with low latency.

(2) Feature logging During online scoring, we could potentially
log all the computed features.

1Netflix embraces fine grained SOA, micro-service for each fact

(3) Pull based model A pull based model in which we poll the
various fact services daily to store the facts.

(4) Push based model A push based model where services log
temporally accurate facts at time of scoring the member.

The pros and cons of the above approaches are described in [1].

2.1 Snapshots Version 1: Pull-Based Model
Our first approach was the pull based model where we poll the fact
services once a for the facts. This has helped us greatly in reducing
the time for experimentation, enabling us to turn back the time for
the data we capture. Even as it is used successfully in production,
this approach presented us with the following challenges:

(1) Temporal Accuracy The data may not temporally accurate.
The polling happens once a day, whereas the computation of
recommendations for our members can happen at different
times during the day. Hence, the data used for online scoring
and offline model training may not be the same.

(2) Scale members for facts To increase the number of members
for which facts are stored, the micro-services polled also
need to be scaled up to handle the additional load.

2.2 Snapshots Version 2: Push-Based Model
This is our current approach in which services that compute recom-
mendations for our members push facts using a simple logger.log()
API allowing us to capture temporally accurate data and meets
stratification needs per algorithm.

2.2.1 Challenges and Solutions. With any solution that we de-
velop, we keep in mind cost efficiency (storage, compute) and strive
to achieve the right balance / trade-offs between the two.

(1) Volume: With a push based model, ’n’ services are logging
large number of members and we started seeing huge pres-
sure on our data pipeline [2].
This is being solved by de-duplicating of data being sent
(from service) by using a key value store, which also mini-
mizes our final storage.

(2) Facts Usage: Facts stored gets used in two forms. Feature gen-
eration pipelines use facts as Java objects (VM based opaque
object) whereas for exploratory analysis using Apache Spark,
nested structures are preferred. We need to provide API’s
that can support both use cases.
Our approach is to store in columnar format (Parquet), and
convert to POJO’s when required. For debugging use cases
(random seek) with low latency needs, we alternatively store
opaque objects with a TTL in a key value store.



Figure 1: Feature generation for online serving and offline training

3 DELOREAN: OFFLINE FEATURE
GENERATOR

3.1 Offline Feature Generation
One of the primary inputs to DeLorean, our offline feature genera-
tor, is the label data, which contains information about the contexts
(who viewed, in which place, at what time, etc.), items (videos or
video groups), and associated labels (watched or not), for which
to generate features. Labels are typically the targets used in super-
vised learning for each context-item combination. For unsupervised
learning approaches, the label is not required. As an example, for
personalized recommendation the context could be defined as the
member profile ID, country code, and time, whereas the recommen-
dation as the video, and the labels as plays or non-plays. In this
example, the label data is created by joining the set of snapshotted
contexts to the logged play actions.

Data elements are the ingredients that get transformed into
features by a feature encoder. Some of these are context-dependent,
such as viewing history for a profile, and others are shared by all
contexts, such as metadata of the videos. We handle these two types
of data elements differently.

For context-dependent data elements, we use the snapshots de-
scribed above, and associate each one with a data key. We bring
all the required snapshot data sources together with the values,
items, and labels for each context. Different contexts are broken up
to enable distributed feature generation. The snapshots are loaded
in a lazy fashion and a series of joins between the label data and
all the necessary context-dependent data elements are performed
using Apache Spark.

For context-independent data elements, DeLorean broadcasts
these bulk data elements to each executor. Since these data elements
have manageable sizes and often have a slow rate of change over
time, we keep a record of each update that we use to rewind back
to the appropriate previous version.

With all required data put together, features can be generated.
Once this is done, the data are represented as a Spark DataFrame
with an embedded schema. For many personalization application,
we need to rank a number of items for each context. To avoid shuf-
fling in the ranking process, item features are grouped by context

in the output. The final features are stored in Hive using a Parquet
format.

3.2 Separation of Data Retrieval and Data
Processing for Easy Deployment to
Production

One of the primary motivations for building DeLorean is to share
the same feature encoders between offline experiments and online
scoring systems to ensure that there are no discrepancies between
the features generated for training and those computed online in
production. When an idea is ready to be tested online, the model
is packaged with the same feature configuration that was used by
DeLorean to generate the features.

To compute features in the production system with the model
trained offline, we simply switch the data source from online snap-
shots to online micro-services. We directly call our online micro-
services to collect the data elements required by all the feature en-
coders used in a model and then assemble them into data maps and
pass them to the feature encoders. The feature vector is then passed
to the offline-trained model for computing predictions, which are
used to create our recommendations. Figure 1 shows the high-level
process of transitioning from an offline experiment to an online pro-
duction system where the blocks highlighted in yellow are online
systems, and the ones highlighted in blue are offline systems. Note
that the feature encoders are shared between online and offline to
guarantee the consistency of feature generation.

4 CONCLUSIONS
Fast experimentation is the hallmark of a culture of innovation.
Reducing the time to production for an idea is a key metric we use
to measure the success of our infrastructure projects. By collecting
the state of the online world at a point in time for a select set of
contexts, we were able to build a mechanism for turning back time
and implement feature generation, model training and validation
at scale. DeLorean is now being used in production for feature
generation in some of the latest A/B tests for our recommender
system.
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