
Controlling AI Engines in Dynamic Environments
Nikita Mishra Connor Imes Henry Ho�mann

University of Chicago
nmishra,ckimes,hankho�mann@cs.uchicago.edu

John D. La�erty
Yale University

john.la�erty@yale.edu

Abstract
A recent paper lists deploying AI in dynamic environments with
unpredictable changes as a major research opportunity. To ad-
dress this challenge we advocate the integration of AI and control
systems. AI and machine learning are well-suited to deal with
complexity, while control theory is speci�cally designed to manage
dynamics. �e integration of these approaches has several bene�ts:
1) fast reaction to dynamic changes, 2) error tolerance based on
runtime feedback, and 3) robust design that guarantees that operat-
ing requirements will be respected when possible or the ability to
report when those requirements cannot be met.1

1 �e Challenge of System Dynamics
�e last several years have seen a massive transition of Arti�cial
Intelligence and Machine Learning technologies from academia
and research labs into commodity products. AI systems are being
deployed in all types of computing systems from image analysis in
embedded systems to selecting and serving digital advertisements in
the cloud. While this transition has been wildly successful, a recent
survey notes several open research challenges in AI deployment,
including operating “in dynamic environments, i.e., , environments
that may change, o�en rapidly and unexpectedly, and o�en in
non-reproducible ways [27].”

Fortunately, control theory is an engineering discipline devoted
to operating in dynamic environments. Furthermore, there is a rich
history of deploying control theoretic solutions to computer man-
agement problems; e.g., meeting quality-of-service requirements
in web servers [8, 9, 23]. Control theory’s appeal is that it provides
a rigorous framework for designing systems that provably meet
requirements despite unpredictable system dynamics. �e draw-
back is that control deployment requires experts who can formulate
di�erence models of the computer system, a discipline in which
most programmers are not trained [8].

While it seems natural to combine AI engines with control sys-
tems to build AI that is robust in dynamic environments, this com-
bination requires developers who are experts in AI, control systems,
and the actual application area in which the system is to be de-
ployed. �is combination of expertise is an unrealistic burden to
place on a developer, as even AI experts are in short supply at
the moment. We therefore advocate a general framework for com-
posing AI engines with control that provides many of control’s
guarantees without requiring control expertise from the user. �e
proposed combination of AI and control has three bene�ts:
• Formally analyzable dynamic response.
• Fast adaptation to unpredictable dynamic events.
• Increased robustness to errors in the learned model.

1�is abstract is a summary of a full length paper to appear in ASPLOS 2018 [18].

Conference’17, Washington, DC, USA
2016. 978-x-xxxx-xxxx-x/YY/MM. . .$15.00
DOI: 10.1145/nnnnnnn.nnnnnnn

2 Allocating Heterogeneous Resource
As a motivational problem we consider allocating resources in a
heterogeneous multicore processor, speci�cally Samsung’s Exynos
Octa processor used in mobile devices and some internet-of-things
devices [24]. �e processor is based on an ARM big.LITTLE archi-
tecture with four big, high-performance cores and four LITTLE,
energy e�cient cores. �e big cores support 19 clock speeds and
the LITTLE cores support 14.

�e mobile and embedded systems running on these heteroge-
neous processors typically have latency requirements; i.e., they
must deliver reliable performance to e�ectively process (e.g., video
analysis) or produce (e.g., gaming) a data stream. Additionally, any
latency requirement should be met while minimizing energy to
prolong ba�ery life or reduce costs.

Finding the right combination of resources to meet a particu-
lar application’s latency requirement while minimizing energy is
a complex optimization process, and a number of AI and ML ap-
proaches have been proposed for this problem [1, 4–7, 13, 17, 19,
20, 25, 31, 33]. All these approaches estimate the performance and
energy of some resource con�guration, but they have limited ability
to deal with dynamic changes. In contrast, control theoretic ap-
proaches dynamically adjust resource usage based on the di�erence
between measured and expected behavior [2, 9, 11, 12, 14, 22, 26,
29, 30, 32]. Control formalisms, however, rely on “ground truth”
models of application response to resource usage.

Intuitively, combining learned models of complex hardware re-
sources with control-theoretic resource management should pro-
duce predictable latency and two recent research projects explore
such a combination. Recht et al. have proposed several approaches
for combining statistical learning models with optimal control the-
ory [3, 28]. Simultaneously, Ho�mann et al. have developed OS-
[10] and hardware-level resource management systems [21] that
combine learning and control to provide both energy and latency
guarantees in dynamic environments.

�is prior work, however, still requires expertise in both learning
and control methods to e�ectively deploy the proposed solution.
Recent work, however, de�nes abstractions that allow a number of
AI and learning techniques to be combined with an adaptive con-
troller, maintaining control-theoretic formal guarantees [18]. �is
paper reviews those abstractions and demonstrates their bene�ts.

3 Combining AI Engines and Control Systems
Figure 1 shows the proposed approach of spli�ing resource manage-
ment into learning and control sub-tasks and then composing their
solutions. When a new application enters the system, an adaptive
controller allocates resources using a generic model and records
latency and power. �e recorded values are sent to a learner, which
estimates the application’s latency and power in all other resource
con�gurations. �e learner extracts those that are predicted to be
Pareto-optimal and packages them in a data structure called the
performance hash table (PHT).�e PHT and the learner’s estimated
error are sent to the controller, which tunes its internal parameters

1

Control
System

big cores big speeds

LITTLE
cores

LITTLE
speeds

Resources

-
Performance Feedback

Performance
Requirement

App-
specific

Optimizer

Embedded/Mobile Device: Running
Generalized Control System

Machine learning model as
Performance Hash Table

+
Tuning parameter (pole) for

controller

Server: Running
transfer learning

algorithms

i
j
k

1
2
3
4

o

p

Figure 1. Combining learning and control to manage heteroge-
neous resources.

to tolerate that error and then selects an energy minimal resource
con�guration. �e only external, user-speci�ed parameter in this
approach is the latency requirement, meaning users can deploy this
framework with no control knowledge at all, but just knowledge
of an application’s performance requirements.

While the mathematical details are beyond the scope of this doc-
ument, the key to the proposed approach is that the control system
is abstract. While traditional controllers for computing manage
physical quantities—e.g., cores and clockspeed [22]—the proposed
control system manages speedup. �is abstraction creates a layer of
indirection between the behavior the controller is enforcing and the
speci�c physical mechanism that achieves it. �e mapping of the
desired behavior (speedup in this example) to speci�c resources is
done using learned models of the system’s performance and power
as a function of resource usage. �is abstract control system is thus
quite general, allowing di�erent AI/ML engines to be paired with
the controller and allowing the combination to be easily ported to
many di�erent computing systems; e.g., ARM embedded and Intel
server systems [16].

Additionally, while the proposed controller works at a higher
level of abstraction than typical controllers, it still provides formal
guarantees that it will converge to the desired behavior. In this case,
the guarantees are probabilistic and based on the error estimates
(or con�dence intervals) provided by the learners. �us, while any
AI/ML approach could be paired with the controller, the best results
will come from those which provide accurate con�dence intervals.

4 Reacting to Dynamic Events
To demonstrate the bene�ts of combining AI/ML and control, we al-
locate cores and clockspeed in a dynamic environment. Speci�cally
we choose 12 applications from embedded and mobile processing.
Each processes a stream of inputs, and we set a per input latency
goal based on the worst case input. We measure the number of
missed deadlines and the energy consumption over optimal for
each application. Many applications have inherent dynamics due
to input dependent processing. To create an additional dynamic
burden, one ��h of the way through each application’s execution
we launch a second application on a single big core. �is new appli-
cation disrupts the system and any resource allocator must adjust
to ensure the original application’s latency.

We compare the proposed combination of learning and control
to several published approaches. We compare to ML-based resource
allocators including: an o�ine approach that averages across all
prior behaviors [25], online multivariate regression [15, 17, 20],
the Net�ix algorithm modi�ed for resource management [4, 5],
and a hierarchical Bayesian model (HBM) [17]. We compare to two

0
20
40
60
80
100

D
ea
dl
in
e

M
iss

es
(%
)

lo
w
er

is
be
�e

r)

Ra
ce
− to
− id

le

PID
− C

on
tro
l

On
lin
e

Re
gre

ssi
on

Ne
tfli
x

HB
M

Ad
apt

ive
− C

on
tro
l

Co
ntr

ol +
Re
gre

ssi
on

Co
ntr

ol +
Ne
tfli
x

Co
ntr

ol +
HB

M
Op

tim
al

0

100

200

En
er
gy

O
ve
rO

pt
im

al
(%
)

(lo
w
er

is
be
�e

r)

Figure 2. Summary data for multi-app scenario.

control approaches including: a proportional-integrative-derivative
(PID) controller tuned for best average case behavior [9] and a self-
tuning controller for embedded systems [12]. We compare to the
heuristic of racing-to-idle, where all resources are allocated and
the system transitions to a low-power idle state if an input is not
worst case. Additionally, we compute an optimal resource schedule
through brute force search.

Figure 2 shows the average (over all applications) deadline misses
and energy over optimal. A deadline is missed if an input takes
longer than the latency target. �e error bars show the worst and
best case deadline misses of any application. Some latencies are
unachievable for some applications; thus, even the optimal allocator
has some deadline misses. Race-to-idle misses more deadlines than
optimal because it cannot use LITTLE cores to do some work, it sim-
ply continues using all big cores despite the degraded performance.
Most approaches do badly in this dynamic scenario—even adaptive
control has 40% deadline misses. All combinations of learning and
control, however, produce be�er outcomes than the learners alone
because these learning approaches do not adapt to the interfering
application (or they do so too slowly to make a di�erence). �e com-
bination of HBM and control produces the fewest deadline misses
with an average of 20%, which is only 2 points more than optimal
and almost half of the best prior approaches. �is combination also
produces the lowest energy, just 6% more than optimal. Detailed,
per-application results are available in the full paper [18].

5 Conclusion & Future Work
�ese results demonstrate the two claims from the introduction.
First, the combination of learning and control quickly adapts to the
dynamics of the new application launch. Second, the combination is
always be�er then the learning approach alone because it corrects
for errors in the learned model. �is result is even more apparent
when looking at the behavior of applications without interference,
where learning plus control still outperforms learning by itself (for
details see the full paper).

We believe the proposed framework is quite general, and we plan
to test it on additional systems with di�erent goals. For example,
to meet a target power requirement on a server while maximizing
performance. We believe this framework is applicable for tasks
other than managing computing resources and we hope to deploy it
with other AI systems that must solve constrained optimizations in
dynamic environments, such as logistics systems, and autonomous
vehicles.

2

References
[1] R. Bitirgen et al. “Coordinated management of multiple inter-

acting resources in chipmultiprocessors: Amachine learning
approach”. In: MICRO. 2008.

[2] J. Chen and L. K. John. “Predictive coordination of multiple
on-chip resources for chip multiprocessors”. In: ICS. 2011.

[3] S. Dean et al. On the Sample Complexity of the Linear �a-
dratic Regulator. Tech. rep. 1710.01688v1. arXiv, 2017.

[4] C. Delimitrou and C. Kozyrakis. “Paragon: QoS-aware Sched-
uling for Heterogeneous Datacenters”. In: ASPLOS. 2013.

[5] C. Delimitrou and C. Kozyrakis. “�asar: Resource-e�cient
and QoS-aware Cluster Management”. In: ASPLOS. 2014.

[6] Z. Deng et al. “MemoryCocktail�erapy: AGeneral Learning-
Based Framework to Optimize Dynamic Tradeo�s in NVM”.
In: MICRO. 2017.

[7] C. Dubach et al. “A Predictive Model for Dynamic Microar-
chitectural Adaptivity Control”. In: MICRO. 2010.

[8] A. Filieri et al. “Control Strategies for Self-Adaptive So�ware
Systems”. In: TAAS 11.4 (2017), 24:1–24:31. doi: 10.1145/
3024188. url: h�p://doi.acm.org/10.1145/3024188.

[9] J. L. Hellerstein et al. Feedback Control of Computing Systems.
John Wiley & Sons, 2004. isbn: 047126637X.

[10] H. Ho�mann. “JouleGuard: energy guarantees for approxi-
mate applications”. In: SOSP. 2015.

[11] H. Ho�mann et al. “A Generalized So�ware Framework for
Accurate and E�cient Managment of Performance Goals”.
In: EMSOFT. 2013.

[12] C. Imes et al. “POET: A Portable Approach to Minimizing
Energy Under So� Real-time Constraints”. In: RTAS. 2015.

[13] E. Ipek et al. “Self-Optimizing Memory Controllers: A Rein-
forcement Learning Approach”. In: ISCA. 2008.

[14] B. Li and K. Nahrstedt. “A control-based middleware frame-
work for quality-of-service adaptations”. In: IEEE Journal on
Selected Areas in Communications 17.9 (1999).

[15] J. Li and J. Martinez. “Dynamic power-performance adap-
tation of parallel computation on chip multiprocessors”. In:
HPCA. 2006.

[16] N.Mishra. “StatisticalMethods for ImprovingDynamic Sched-
uling and Resource Usage in Computing Systems”. English.
PhD thesis. 2017, p. 126. isbn: 9780355077810. url: h�ps:
//search.proquest.com/docview/1928485902?accountid=
14657.

[17] N. Mishra et al. “A Probabilistic Graphical Model-based
Approach for Minimizing Energy Under Performance Con-
straints”. In: ASPLOS. 2015.

[18] N. Mishra et al. “CALOREE: Learning Control for Predictable
Latency and Low Energy”. In: ASPLOS. 2018.

[19] P. Petrica et al. “Flicker: A Dynamically Adaptive Architec-
ture for Power Limited Multicore Systems”. In: ISCA. 2013.

[20] D. Ponomarev et al. “Reducing Power Requirements of In-
struction Scheduling �rough Dynamic Allocation of Multi-
ple Datapath Resources”. In: MICRO. 2001.

[21] M. H. Santriaji and H. Ho�mann. “GRAPE: Minimizing en-
ergy for GPU applications with performance requirements”.
In: MICRO. 2016.

[22] A. Shari� et al. “METE: meeting end-to-end QoS in multi-
cores through system-wide resource management”. In: SIG-
METRICS. 2011.

[23] S. Shevtsov et al. “Control-�eoretical So�ware Adaptation:
A Systematic Literature Review”. In: IEEE Transactions on
So�ware Engineering PP.99 (2017), pp. 1–1. issn: 0098-5589.
doi: 10.1109/TSE.2017.2704579.

[24] Y. Shin et al. “28nm High- Metal-Gate Heterogeneous �ad-
Core CPUs for High-Performance and Energy-E�cient Mo-
bile Application Processor”. In: ISSCC. 2013.

[25] D. C. Snowdon et al. “Koala: A Platform for OS-level Power
Management”. In: EuroSys. 2009.

[26] D. C. Steere et al. “A Feedback-driven Proportion Alloca-
tor for Real-rate Scheduling”. In: Proceedings of the �ird
Symposium on Operating Systems Design and Implementa-
tion. OSDI ’99. New Orleans, Louisiana, USA: USENIX As-
sociation, 1999, pp. 145–158. isbn: 1-880446-39-1. url: h�p:
//dl.acm.org/citation.cfm?id=296806.296820.

[27] I. Stoica et al. A Berkeley View of Systems Challenges for AI.
Tech. rep. 1712.05855v1. arXiv, 2017.

[28] S. Tu and B. Recht. Least-Squares Temporal Di�erence Learn-
ing for the Linear�adratic Regulator. Tech. rep. 1712.08642v1.
arXiv, 2017.

[29] V. Vardhan et al. “GRACE-2: integrating �ne-grained appli-
cation adaptation with global adaptation for saving energy”.
In: IJES 4.2 (2009).

[30] W. Yuan and K. Nahrstedt. “Energy-e�cient so� real-time
CPU scheduling for mobile multimedia systems”. In: SOSP.
2003.

[31] H. Zhang and H. Ho�mann. “Maximizing Performance Un-
der a Power Cap: A Comparison of Hardware, So�ware, and
Hybrid Techniques”. In: ASPLOS. 2016.

[32] R. Zhang et al. “ControlWare: A middleware architecture
for Feedback Control of So�ware Performance”. In: ICDCS.
2002.

[33] Y. Zhu andV. J. Reddi. “High-performance and energy-e�cient
mobile web browsing on big/li�le systems”. In: HPCA. 2013.

3

http://dx.doi.org/10.1145/3024188
http://dx.doi.org/10.1145/3024188
http://doi.acm.org/10.1145/3024188
https://search.proquest.com/docview/1928485902?accountid=14657
https://search.proquest.com/docview/1928485902?accountid=14657
https://search.proquest.com/docview/1928485902?accountid=14657
http://dx.doi.org/10.1109/TSE.2017.2704579
http://dl.acm.org/citation.cfm?id=296806.296820
http://dl.acm.org/citation.cfm?id=296806.296820

	Abstract
	1 The Challenge of System Dynamics
	2 Allocating Heterogeneous Resource
	3 Combining AI Engines and Control Systems
	4 Reacting to Dynamic Events
	5 Conclusion & Future Work

