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ABSTRACT
This work presents CascadeCNN, an automated toolflow that pushes
the quantisation limits of any given CNN model, to perform high-
throughput inference by exploiting the computation time-accuracy
trade-off. Without the need for retraining, a two-stage architecture
tailored for any given FPGA device is generated, consisting of
a low- and a high-precision unit. A confidence evaluation unit
is employed between them to identify misclassified cases at run
time and forward them to the high-precision unit or terminate
computation. Experiments demonstrate that CascadeCNN achieves
a performance boost of up to 55% for VGG-16 and 48% for AlexNet
over the baseline design for the same resource budget and accuracy.

1 INTRODUCTION
While Convolutional Neural Networks are becoming the state-of-
the-art algorithm in various Machine Vision tasks [1][2][3], they
are challenged to deal with problems of continuously increasing
complexity. The significant advances of CNNs came with increased
number of layers [4], increased number of kernels [5] and more
complex architectures [6][7], which introduce substantial costs in
terms of computational and memory resources. To deploy CNNs
in real-world tasks which deal with vast amounts of data, it is
necessary that the high computation and memory requirements
of such models are alleviated. To this end, numerous compression
and precision quantisation techniques [8][9][10][11] have been
proposed which exploit the redundancy in CNN models to enable
the efficient deployment of CNNs on processing platforms.

In this context, FPGAs constitute a promising platform for CNN
inference due to their customisability which enables the use of opti-
mised low-precision arithmetic units to achieve high performance
at a low power envelope [12]. Existing FPGA-based CNN accelera-
tors have produced hardware designs that span from uniform 16-bit
activations and weights [13][14] with minimal effect on accuracy,
down to very high-performance binarised networks [15] but with
a significant accuracy loss. In this setting, given a fixed resource
budget, the attainable performance for a given error tolerance is
limited by the shortest wordlength that meets the error bound.

In this paper, we propose CascadeCNN, a novel automated ap-
proach of pushing the performance of precision-quantised CNN
models under the same resource budget, with negligible accuracy
loss. CascadeCNN employs a low-precision processing unit to ob-
tain rapid classification predictions together with a parametrised
mechanism for identifying misclassified cases based on prediction
confidence. Such detected cases are recomputed on a high-precision
unit to restore application-level accuracy and meet user-specified
limits. CascadeCNN considers the error tolerance and the target
CNN-device pair to select quantisation scheme, configure the con-
fidence evaluation mechanism and generate the cascaded low- and
high-precision processing units.

Figure 1: High-level CascadeCNN toolflow

2 CASCADE CNN
2.1 Overview
Fig. 1 shows the processing flow of CascadeCNN. The framework is
supplied with a high-level description of a trained CNN model (i.e.
Caffe model), the available computational and memory resources of
the target platform and an application-level error tolerance in a user-
defined metric (e.g. top-1/top-5 classification error), along with a
small evaluation set. CascadeCNN searches the architectural design
space and generates a two-stage hardware architecture, optimised
for the particular CNN model and target device. The generated
system (Fig. 2) consists of:

• A low-precision unit (LPU) which employs low-precision
arithmetic to trade lower accuracy with high-throughput
CNN inference.

• A high-precision unit (HPU) which guarantees the same
accuracy level as the reference model.

• A tunable Confidence Evaluation Unit (CEU) that detects
samples that were wrongly classified by the LPU and redi-
rects them to HPU for re-processing.

The key idea behind the proposed approach is that during the
execution of the system, the LPU will process the whole workload,
while the HPU will only process a fraction of it, based on the
CEU’s evaluation of classification confidence on LPU’s predictions,
reducing its memory and compute requirements. Moreover, the
accuracy loss that is induced due to the extreme model quantisation
of the LPU is restored to meet the user-specified error threshold.

Figure 2: CascadeCNN architecture

2.2 Quantisation
Arithmetic precision reduction is a widely studied technique which
exploits the inherent redundancy of CNNs to considerably reduce
thememory bandwidth and footprint requirements, minimise power
consumption and achieve higher performance. CascadeCNN em-
ploys a fine-grained search space across possible precision quan-
tisation schemes, that allows determining the number of integer



and fractional bits of weight and activation values by introducing a
different scaling factor for each layer. In this dynamic fixed-point
approach, the wordlength is kept uniform across layers with a dif-
ferent scaling factor for each layer. For each explored wordlength,
statistics regarding the quantisation effect of each layer on the
application-level accuracy are extracted using the user-provided
evaluation set. The per-layer statistics are used to guide the explo-
ration to the combination of scaling factors that achieve the highest
accuracy for each explored wordlength. In contrast to other frame-
works, CascadeCNN selects for the LPU a precision that achieves in-
termediate application-level accuracy, but with significantly higher
performance when mapped on its custom precision-optimised hard-
ware units. All input samples are processed by the LPU to obtain a
rapid classification decision, which is then fed to the Confidence
Evaluation Unit. A wordlength that achieves an accuracy that com-
plies with the user-specified error margins is selected for the HPU.

Since the reduced-precision model employed by the LPU is de-
rived by straight quantisation (without retraining), its parameters
are extracted at run time in hardware from the HPU’s higher preci-
sionmodel. As a result of this weight-sharing approach, thememory
footprint of the proposed cascade system remains the same as in
the case of a single-stage architecture employing the HPU’s model.
2.3 Confidence Evaluation
The CascadeCNN tool allows the exploration of extreme quantisa-
tion schemes for the LPU, by aiming to identify potentially mis-
classified inputs based on the confidence of the LPU classification
prediction. To estimate this confidence, we build on the work of
[16] by generalising the proposed Best-vs-Second-Best (BvSB) met-
ric, which was previously examining solely binary classification
problems. Our generalised BvSB (gBvSB) metric is described as:

gBvSB<M,N >(p) =
M∑
i=1

pi −
N∑

j=M+1
pj (1)

where pi denotes the i-th element of the sorted probability vector p
of the prediction andM and N are tunable parameters of gBvSB. In
this context, a prediction is considered confident, and thus the pro-
cessing ends on the low-precision unit, when gBvSB<M,N >(p) ≥ th
whereM , N and threshold th form tunable parameters whose val-
ues are automatically determined using the evaluation set data and
the user-specified error tolerance. In this manner, the degree of
uncertainty on the classification decision is based on how spiky the
sorted probability distribution of the CNN’s prediction is.
2.4 Architecture
A scalable, fine-grained hardware architecture is designed that
is able to execute CNN inference, scale its performance with the
resources of a target FPGA and exploit higher degrees of parallelism
as thewordlength of activation andweight representation decreases.
The core of the architecture is a matrix multiplication (MM) unit,
parametrisedwith respect to the tiling of eachmatrix dimension and
the arithmetic precision of both activations and weights. The MM
unit comprises Multiply-Accumulate (MACC) units, grouped into
Processing Elements (PEs) that perform dot-product operations
(shown in Fig. 2). By casting convolution operations as matrix
multiplications and using batch processing for fully-connected (FC)
layers, both CONV and FC layers are mapped on the MM unit.

Given a CNN-FPGApair and a particularwordlength,CascadeCNN
searches the architectural design space by means of a roofline-based

Figure 3: Top-5 classification accuracy on ImageNet and per-
formance as a function of wordlength on Zynq ZC706.

Figure 4: CascadeCNN speed-up

performance model [17] in order to determine the highest perform-
ing configuration of the architecture. The configurable parameters
comprise the matrix tile sizes, that correspond to different levels of
parallelism in terms of number of PEs and MACCs-per-PE. In this
manner, CascadeCNN generates two architectures, the LPU and the
HPU, which are optimised for different wordlengths.

3 EVALUATION
To evaluate the proposed toolflow, we target image classification
using pretrained models on the ImageNet [18] dataset. CascadeCNN
is provided with models of VGG-16 [4] and AlexNet [1], along
with a small subset of the ImageNet validation set as an evaluation
set (200 labelled samples), targeting two different FPGA platforms,
Xilinx Zynq ZC706 and UltraScale+ ZCU102.

For both VGG-16 and AlexNet, CascadeCNN yields a wordlength
of 4 bits for the LPU. The selected 4-bit quantisation scheme intro-
duces a 14.38% and 18.65% degradation in classification accuracy
compared to an 8-bit precision respectively (Fig. 3). The CEU pa-
rameters are tuned on the evaluation dataset to generate systems
that introduce a wide range of classification errors, compared to a
faithful 8-bit implementation. To evaluate the performance gains
of CascadeCNN, we compare the generated two-stage system for
each error tolerance with a baseline single-stage architecture that
is optimised with a quantisation scheme that achieves the same or
better accuracy (ranging from 5 to 7 bit wordlengths). The achieved
speed-up on throughput is illustrated in Fig. 4 across a wide range
of error thresholds. In the case of high error tolerance, the speed-up
becomes less significant as the difference in wordlength between
the LPU and the baseline design decreases. On both target plat-
forms the performance has been improved by up to 55% for VGG-16
and up to 48% for AlexNet over the baseline design for the same
resource budget and error tolerance. The proposed methodology
can also be applied to other existing CNN accelerator architectures,
with variable performance gains.

4 CONCLUSION
This work presents CascadeCNN, an automated toolflow for CNN
inference acceleration exploiting the computation time-accuracy
trade-off. The cascaded two-stage architecture generated by the
toolflow demonstrates a performance boost of up to 55% for VGG-16
and 48% for AlexNet compared to a single-stage baseline architec-
ture for the same resource budget and error tolerance.
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