Making Machine Learning Easy with Embeddings

Dan Shiebler

Twitter Cortex
dshiebler@twitter.com

ABSTRACT

Modeling teams at Twitter face a variety of uniquely hard, yet fun-
damentally related machine learning problems. For example, tasks
as different as ad serving, abuse detection and user timeline con-
struction all rely on powerful representations of user and content
entities. In addition, because of Twitter’s realtime nature, entity
data distributions are constantly in flux, so these representations
must be frequently updated. By generating high quality, up-to-date
representations and sharing them broadly across teams, we can
decrease duplication of efforts and multiplicatively increase cross-
team modeling productivity. At Twitter Cortex, we are making these
representations "first class citizens" of the Twitter ML platform by
commoditizing tools and pipelines that create high quality, custom,
regularly retrained, benchmarked and centrally hosted embeddings.

Introduction

Machine Learning systems need to operate on many types of en-
tities, such as images, text, audio, and music. But most Machine
Learning algorithms only understand one kind of input - a vector.
Therefore a critical component of any Machine Learning workflow
is the process of converting entities to vector representations, or
featurization. A common way to featurize an entity is to use a prede-
fined algorithm that extracts a vector representation, such as a Bag
of Words model. An alternative technique which often shows better
results is to use learned features, also known as embeddings. Since
a single learned embedding is often useful for a variety of tasks,
sharing embeddings between teams that work with similar data
reduces modeling effort and improves results. At Twitter, we have
achieved excellent results by applying embeddings to problems like
email recommendation, user timeline construction and onboarding.
However, unlike hand crafted features, which are generated by
rule based algorithms, learned embeddings are themselves outputs
of Machine Learning models that require data to train and may be
cumbersome to store and deploy. Like the models that they are used
with, embeddings need to be regularly retrained and benchmarked
- especially in a constantly changing system like Twitter. In order to
address these issues and reap the benefits of embeddings, we have
developed a series of tools that make it simple for teams throughout
Twitter to customize, develop, access and share embeddings

Example 1: User Engagement Embeddings

The graph of user content engagements holds an enormous amount
of information about Twitter users. We can model this graph by
separating users into "consumers" and "producers" !, and generating
embeddings for each consumer and producer such that consumer
u;’s likelihood to engage with producer u;’s posts is proportional

I The Twitter engagement graph is very lopsided, so it makes sense to model very
popular users differently

Abhishek Tayal
Twitter Cortex
atayal@twitter.com

Find Producers/Consumers, pull tuples of
(ProducerlD, ConsumerlD, Engagements)

v

Construct matrix and perform factorization

Consumer - Producer
Engagement Matrix

0.9 0.2
c 0.8 0.5
Erﬁbn:;g:grs X Er';?g(;‘dciigs ~ 04| [otos
(Rows) (Columns) 0.6
0.1 0.9
0.2 0.5]0.7

v

Propagate user embeddings to all users

v

Run user embedding benchmarks and post embeddings
and benchmarks to the Twitter Feature Registry

Figure 1: The ML workflows platform joins the engagement
embedding steps into a configurable and reusable pipeline.

to the similarity between u;’s embedding and u;’s embedding. We
generate these embeddings with the following pipeline (Fig 1):

(1) Run a data aggregation job that identifies producer users and
highly active consumer users? and accumulates all consumer-
producer engagements to form the sparse engagement graph.

(2) Represent this graph as the sparse NxM matrix A, where
each row represents a consumer, each column represents a
producer, and element (i, j) contains the number of times
that consumer u; engaged with producer u;’s posts. Factorize
this matrix into the Nxk and kxM matrices X and Y such
that XY ~ A (by utilizing techniques like those in [2] or [3]).
The rows of X are k-dimensional consumer embeddings and
the columns of Y are k-dimensional producer embeddings.

(3) Use a folding-in technique like in [5] to propagate the con-
sumer embeddings to all Twitter users.

(4) Run user embedding benchmarks to evaluate the quality
of the embeddings and publish the embeddings and bench-
marks to the Twitter Feature Registry.

These embeddings are useful for a variety of tasks within Twitter.
For example, we’ve seen that adding engagement embeddings to
email recommendation models produces significant performance

ZFiltering consumers on user activity can reduce graph sparsity and improve perfor-
mance and efficiency



improvements. In addition, teams with specialized needs can mod-
ify the pipeline configuration (such as switching the engagement
criteria) to generate customized embeddings.

Example 2: Skipgram Word Embeddings

The word2vec system, introduced in Mikolov 2013 [4], performs
very well at generating word embeddings. However, Tweets on
Twitter are written in over 80 languages, and Twitter has unique
word meanings and relationships that are not found in other forms
of text. In addition, there are certain types of "words" such as hash-
tags and user IDs that have an important role in shaping the mean-
ing of text on Twitter, but behave differently from normal words.
Furthermore, new words and terms like YOLO, ASOIF, and Covfefe
are introduced to the Twitter vernacular daily, and the meanings of
existing words change almost as quickly. Our word vector embed-
ding pipeline addresses these issues in a customizable fashion by
regularly executing the following pipeline:

(1) Pull recent Tweets (optionally filtered by quality, length,
etc and concatenated into conversations), identify frequent
words and phrases and generate cross-lingual skipgram word
pairs with configurable downsampling, window size, etc.

(2) Pass these pairs to the Cortex Generic Skipgram pipeline,
a customizable TensorFlow pipeline that generates embed-
dings for entities from (token, positive) skipgram pairs.

(3) Run word embedding benchmarks and publish the embed-
dings and benchmarks to the Twitter Feature Registry.

Word vector embeddings are used heavily throughout Twitter. Mod-
eling teams like abuse generation and recommendations use them
as components of Machine Learning pipelines, and they also show
remarkable success in tasks like keyword expansion.

Generating and Hosting Embeddings

Embedding generation pipelines often consist of a sequence of steps
that can be difficult to maintain and reuse (Fig 1). In order to address
this, we implement them within the Twitter ML Workflows platform
- a system built on top of Apache Airflow that links data processing
and ML components into reusable pipelines that can be configured
with a web interface. This makes it much easier for teams to share
steps between pipelines, keep embeddings up-to-date, and modify
pipelines to publish customized embeddings.

In order to share trained embeddings between teams, embedding
pipelines publish freshly trained embeddings to the Twitter Fea-
ture Registry, a library for ML feature data at Twitter. This makes
training and launching models that utilize embeddings require no
more effort than would be required for models that use any other
kind of feature (Fig 2).

Benchmarking

Unlike with a classification or regression model, it’s notoriously
difficult to measure the quality of an embedding. One of the reasons
for this is that different teams use embeddings differently. For exam-
ple, while some teams use user embeddings as model inputs, others
use them in nearest neighbor systems. To mitigate this problem
we have developed a variety of standard benchmarking tasks for
each type of embedding. Every time an embedding is retrained it

Team A's Data
Aggregation and
Feature Extraction

Cortex Embedding
Generation Pipeline

Job
Feature Registry
Y A 4 A 4
Team A's Machine Team B's Machine Team C's Machine
Learning Model Learning Model Learning Model

Figure 2: The Twitter Feature Registry abstracts the com-
plexity of feature generation, so even complex features like
embeddings can be easily accessed and reused.

is automatically reevaluated on these benchmarks, and the results
are published along with the embedding.

e Example: User Topic Prediction During onboarding, Twit-
ter users may indicate which topics interest them. The AU-
ROC of a logistic regression trained on a user embedding to
predict those topics is a measure of that embedding’s quality.

e Example: User Follow Jaccard We can estimate the sim-
ilarity of two users’ tastes by the Jaccard index of the sets
of accounts that the users follow. Over a set of user pairs,
the rank order correlation between the users’ embedding
similarity and follow set Jaccard index is another measure
of that embedding’s quality.

e Example: Word Embedding Analogies Task For each
analogy in a list of "word; is to wordy as words is to wordy"
analogies we compute the vector embd(word;)—embd(wordy)+
embd(words), and search for the N word embeddings closest
to that vector. The percent of time that wordy is among those
N words is a measure of that embedding’s quality.

Future Developments

We are working to build even more powerful embeddings systems
in the future. For example, we are in the process of developing a
generic pipeline for matching users and items with a deep coembed-
ding network and a candidate generation system (similar in spriti
to [1] and [6]). This will dramatically simplify tasks like timeline
construction and ad serving, where we must generate a set of items
that we believe a user would want to interact with.

Discussion

As organizations work to take advantage of the benefits of Ma-
chine Learning, it’s important to decrease duplication of efforts by
sharing utilities, resources, and models across teams and company
verticals. Tools that facilitate this collaboration, like systems for
sharing embeddings or building, tracking and launching models
can abstract away the complexities of model building and allow
Machine Learning to scale.



REFERENCES

[1] Paul Covington, Jay Adams, and Emre Sargin. 2016. Deep Neural Networks

for YouTube Recommendations. In Proceedings of the 10th ACM Conference on

Recommender Systems. New York, NY, USA.

Yifan Hu, Yehuda Koren, and Chris Volinsky. 2008. Collaborative Filtering for

Implicit Feedback Datasets. In Proceedings of the 2008 Eighth IEEE International

Conference on Data Mining (ICDM °08). IEEE Computer Society, Washington, DC,

USA, 263-272. https://doi.org/10.1109/ICDM.2008.22

Yehuda Koren. 2008. Factorization Meets the Neighborhood: A Multifaceted

Collaborative Filtering Model. In Proceedings of the 14th ACM SIGKDD International

Conference on Knowledge Discovery and Data Mining (KDD "08). ACM, New York,

NY, USA, 426-434. https://doi.org/10.1145/1401890.1401944

[4] Tomas Mikolov, Kai Chen, Greg Corrado, and Jeffrey Dean. 2013. Efficient Es-
timation of Word Representations in Vector Space. CoRR abs/1301.3781 (2013).
arXiv:1301.3781 http://arxiv.org/abs/1301.3781

[5] Badrul Sarwar, George Karypis, Joseph Konstan, and John Riedl. 2002. Incremental

singular value decomposition algorithms for highly scalable recommender systems.

In Fifth International Conference on Computer and Information Science. Citeseer,

27-28.

Ledell Wu, Adam Fisch, Sumit Chopra, Keith Adams, Antoine Bordes, and Jason

Weston. 2017. StarSpace: Embed All The Things! CoRR abs/1709.03856 (2017).

arXiv:1709.03856 http://arxiv.org/abs/1709.03856

[2

B3

G


https://doi.org/10.1109/ICDM.2008.22
https://doi.org/10.1145/1401890.1401944
http://arxiv.org/abs/1301.3781
http://arxiv.org/abs/1301.3781
http://arxiv.org/abs/1709.03856
http://arxiv.org/abs/1709.03856

	Abstract
	References

