
Towards Interactive Curation & Automatic Tuning of ML Pipelines

Carsten Binnig1,2 Benedetto Buratti1 Yeounoh Chung1 Cyrus Cousins1 Dylan Ebert1
Tim Kraska1,3 Zeyuan Shang1 Isabella Tromba3 Eli Upfal1 Linnan Wang1 Robert Zeleznik1

Emanuel Zgraggen1
1 Brown University, USA 2 TU Darmstadt, Germany 3 Massachusetts Institute of Technology, USA

ABSTRACT
Democratizing Data Science requires a fundamental rethinking
of the way data analytics and model discovery is done. Available
tools for analyzing massive data sets and curating machine learning
models are limited in a number of fundamental ways. First, existing
tools require well-trained data scientists to select the appropriate
techniques to build models and to evaluate their outcomes. Second,
existing tools require heavy data preparation steps and are often too
slow to give interactive feedback to domain experts in the model
building process, severely limiting the possible interactions. Third,
current tools do not provide adequate analysis of statistical risk
factors in the model development. In this work, we present the first
iteration of QuIC-M (pronounced quick-m), an interactive human-
in-the-loop data exploration and model building suite. The goal is to
enable domain experts to build the full machine learning pipelines
an order of magnitude faster than machine learning experts while
having model qualities comparable to expert solutions.
1 INTRODUCTION
Data is everywhere. Companies store customer and sales informa-
tion, researchers collect data by running experiments and applica-
tion or website developers store interaction logs. But all this data
is useless without the means to analyze it. Extracting actionable
insights from data has been left to highly trained individuals who
have strong mathematics and computer science skills. They have
the background to query databases to create insightful reports and
visualizations, develop statistical models and implement scalable
infrastructures to process large and complex data. For example, it is
common practice for corporations to employ teams of data scientists
that assist stakeholders in finding qualitative, data-driven insights
to inform possible business decisions. Having such a high-entry
bar to data analysis however presents several challenges. For one,
it presents a bottleneck. While research is trying to understand and
promote visualization and data literacy and educational institutions
are ramping up their data science curricula there is still a short-
age of skilled data scientists. And second, and more importantly,
restricting data analysis to those with a computational background
creates an inequality. Small business owners without programming
skills or research domains where computational background might
not be as prevalent are at a disadvantage as they can not capitalize
on the power of data.

We believe that there is an opportunity for tool builders to create
systems for people who are domain experts but neither mathemati-
cians, statisticians or programmers. We introduce the first version
of a system for Quality-aware Interactive Curation of Models, called
QuIC-M (pronounced quick-m). Making sense of data is exploratory
by nature, and demands rapid iterations and all but the simplest anal-
ysis tasks, require humans-in-the-loop to effectively steer the pro-
cess. QuIC-M exposes this workflow through a novel pen-and-touch

interface allowing domain experts to seamlessly interleave data
exploration with curation of machine learning pipelines. Through
QuIC-M domain experts can build these pipelines automatically
from high level tasks specification and at a fast pace without the
need to involve a data scientist and without sacrificing quality. Em-
powering novice users to directly analyze data also comes with
drawbacks. It exposes them to “the pitfalls that scientists are trained
to avoid” [2]. We discussed and described such “risk” factors and
QuIC-M’s user interface in related works [1, 6]. In this paper we
focus on QuIC-M’s architecture for automatic machine learning
pipeline discovery.
2 OVERVIEW
To enable automatic discovery of data-driven insights, we propose
a system which takes “problems” provided by domain experts as
inputs and generates optimal machine learning pipelines as outputs.
Over time, the system adopts and improves its performance by
learning from past problems. This section contains definitions and
an overview of our architecture and the following sections provide
details about individual parts of our approach.

A problem consists of a dataset and a target attribute for pre-
diction. Domain experts can specify such problems, and potential
additional input such as user-defined features, through simple ges-
tures in our pen-and-touch UI. Our system will then automatically
attempt to find and present an optimal machine learning pipeline.
Alternatively, users can “fix” certain parts of the pipeline, like pre-
processing steps for example, and have the system fill in the blanks.
This process is done progressively, where the system gradually
optimizes over the space of possible pipelines, in order to display
results to users at interactive speeds and allow users to provide
feedback; e.g., by providing additional model constraints or visu-
ally changing decision planes based on domain knowledge. We
denote a pipeline as an end-to-end solution to produce the pre-
dicted targets for a given problem. A pipeline consists of machine
learning primitives (e.g., feature selection, pre-processing, model)
and corresponding hyper-parameters. Given a specific problem, it
is reasonable to firstly build the pipeline based on experiences, for
example, for an image classification problem, we tend to use deep
neural networks like AlexNet and ResNet. Based on this observa-
tion, we may generate candidate pipelines through rules collected
from best practices, which are gathered by analyzing hand-crafted
solutions for existing problems from various sources such as Kaggle
competitions [5] or the OpenML website 1. To efficiently organize
these candidate pipelines, we define the search space as an interface
to enumerate candidate pipelines. Note that these best practice
rules are usually parametric, which means that they can be further
fine-tuned with feedbacks from interactions. Therefore the search

1https://www.openml.org/



space can be evolved through time, from a general range of possible
answers to more problem-specific.

Although we apply rules to construct the search space, the search
space itself is still huge considering the complexity of machine
learning problems, and it is impossible to run every pipeline in the
search space without violating interactivity guarantees. To address
this, we further propose the cost model to provide a rough estimate
of "promisingness" of the candidate pipelines. With the cost model,
we may just drag the top K promising pipelines out of the search
space for validation. The cost model may be rough as first, but it
can be learned over iterations and becomes more accurate.

We may apply different strategies to schedule computing re-
sources on these pipelines to validate their performance on the
given problem to save resources and guarantee low-latency (e.g.,
we may validate these pipelines on a sample of data and throw ones
with bad performance). Finally, the back-end system returns the
best pipeline back to the front-end for visualization and interaction,
while the above-mentioned iteration will be running in the back-
ground, thus the answer pipeline will be improved continuously.

During the design of our system we particularly focused on the
following aspects. (1) Interactivity: data analysis is an exploratory
and iterative process, high-latencies are counterproductive and
limit the rate at which domain experts can produce insights; (2)
Progressiveness: instead of waiting minutes or hours on results, we
want users to see early results as soon as possible. We consciously
tradeoff some performance for interactivity by making all of our
components output results in a progressive-fashion through incre-
mental computation; (3) Modularity: there usually exist numerous
implementations for each component in our system, by explicitly
specifying the interfaces of each component, each implementation
is interchangeable, thus making our system modular and highly
configurable.
3 RULE-BASED SEARCH SPACE
Before applying each rule, we check the problem description and its
corresponding dataset schema to make sure it fulfills the condition
of the rule, and only apply rules applicable (e.g., we use random
forest classifier only for classification problem). Users are also able
to provide some hints (e.g., please use SVM first).

Based on the definition of pipeline, we know that a pipeline con-
sists of two parts: (1) the structure of a pipeline, i.e., what primitives
are in the pipeline (e.g., label encoder, min-max scaler, SVM, Ran-
dom Forest, etc.) and how they are connected to form the pipeline;
(2) the hyper-parameters of these primitives. Based on this observa-
tion, we have two kinds of rules: (1) structure rule, which specifies
the primitives in the pipeline (e.g., for categorical features, we may
use label encoding or one hot encoding); (2) parameter rule, which
specifies how to generate hyper-parameters for each primitive (e.g.,
for linear SVM, if the performance with large regularization factor
λ is bad, we may decrease it). These rules can be learned as well, for
example, we could also adjust the parameters of some rules based
on the performance of generated pipelines.
4 COST-BASED PIPELINE SELECTION
Cost models are important as a filtering for candidate pipelines,
since an accurate cost model could greatly save the computing
resources and decrease latency. For now, we use the history per-
formance as the estimated cost, i.e., if the average performances

(measured by the metrics, e.g., accuracy, F1 score) of pipelines gen-
erated by some rules are obviously better than others, we may select
pipelines from these rules with higher priority.

In the future, we are going to improve the cost model by con-
sidering other factors, e.g., training time, estimated performance,
rules used; and adjusting the parameters in the cost model using
the results of pipeline runs (similar to back propagation in neural
networks) to adaptively optimize the cost model. In other words,
the cost models can be learned as well.

5 OPTIMIZATION ALGORITHMS
There are different strategies to validate these candidate pipelines
on the given dataset. The most straightforward way is to use the
brute force search, which trains all candidate pipelines on the train
dataset, then evaluates their metrics, and returns the best one. How-
ever, since it is expensive to validate a pipeline, we could apply
more sophisticated methods to find the optimal pipeline with less
budget (e.g., CPU/IO resources, latency). However, optimization
algorithms like Bayesian Optimization [3] and Hyperband [4] does
not work well under this scenario because they only optimize hyper-
parameters without considering selection of primitives, and they
are designed for batch processing, which is not suitable for in-
teractive analytics. Based on these observations, we propose the
following adaptive algorithm via validation error.

First we split the dataset to get independent train (into several
equal sized batches of sub-samples) and validation sets, and pick a
fixed amount of pipelines from the search space. During an epoch,
we train these pipelines on some batches of sub-samples, and at the
end of each epoch, we apply a halting criteria on these pipelines by
checking their training and validation performance (e.g., accuracy)
to prune un-promising ones. We consider the training accuracy as
an upper bound of the true accuracy and we prune pipelines whose
training accuracy drops below the best validation accuracy seen
thus far. After that, for those surviving pipelines, we start another
new epoch with increased number of batches. We repeat these
epochs until we use the whole training set, and we pick the best
pipeline from the survivors as the final answer. Since one batch of
sub-sample is usually small, we may return the best pipeline in the
first epoch as the first answer and iteratively update it to achieve
low latency. This method has statistical guarantees that a finite set
of pipelines trained over a finite number of epochs have validation
accuracies close to their true accuracies at the end of each epoch.

6 CONCLUSION
To demonstrate the advantages of QuIC-M, we implemented a
prototype with all above mentioned techniques. We find that the
current implementation of our system is able to generate solutions
for simple classification and regression tasks which are on par with
hand-crafted solutions with friendly UI and short latency. We plan
to extend our prototype to support more problem types (e.g., text,
image, etc.), include more rules (e.g., using deep neural networks),
utilize more complex cost models, implement different optimization
strategies. And we plan to extensively benchmark our system to
understand more about the differences between our system and
hand-crafted solutions and to run user studies to evaluate the user
interface aspect of our system.

2



REFERENCES
[1] Andrew Crotty, Alex Galakatos, Emanuel Zgraggen, Carsten Binnig, and Tim

Kraska. 2015. Vizdom: interactive analytics through pen and touch. Proceedings
of the VLDB Endowment 8, 12 (2015), 2024–2027.

[2] Danyel Fisher, Rob DeLine, Mary Czerwinski, and Steven Drucker. 2012. Interac-
tions with big data analytics. interactions 19, 3 (2012), 50–59.

[3] Aaron Klein, Stefan Falkner, Simon Bartels, Philipp Hennig, and Frank Hutter.
2016. Fast bayesian optimization of machine learning hyperparameters on large
datasets. arXiv preprint arXiv:1605.07079 (2016).

[4] Lisha Li, Kevin Jamieson, Giulia DeSalvo, Afshin Rostamizadeh, and Ameet
Talwalkar. 2016. Hyperband: A novel bandit-based approach to hyperparameter
optimization. arXiv preprint arXiv:1603.06560 (2016).

[5] Mark Senn. 2017 (accessed December 29, 2017). Kaggle Competitions. https:
//www.kaggle.com/competitions

[6] Zheguang Zhao, Lorenzo De Stefani, Emanuel Zgraggen, Carsten Binnig, Eli
Upfal, and Tim Kraska. 2017. Controlling false discoveries during interactive
data exploration. In Proceedings of the 2017 ACM International Conference on
Management of Data. ACM, 527–540.

3

https://www.kaggle.com/competitions
https://www.kaggle.com/competitions

	Abstract
	1 Introduction
	2 Overview
	3 Rule-based Search Space
	4 Cost-based Pipeline Selection
	5 Optimization Algorithms
	6 Conclusion
	References

