
Better Caching with Machine Learned Advice
Thodoris Lykouris
Cornell University

teddlyk@cs.cornell.edu

Sergei Vassilvitskii
Google Research

sergeiv@google.com

ABSTRACT
We investigate the use of machine learning to improve eviction
strategies in caching applications. We begin by showing that simply
following an ML oracle may be far from optimal. We then adapt
classical online algorithms to incorporate ML input. Our Predic-
tiveMarker algorithm has provable performance guarantees and
performs well empirically.

Introduction. While machine learning has made impressive
gains in the past decade, there are still a lot of hurdles that one
needs to overcome to deploy an ML system in practice [13].

One perennial problem is that many of the machine learning
methods are typically trained to minimize the expected loss, that is
they provide guarantees on the average performance of the method.
The challenge is that ML approaches can sometimes output answers
that are wildly far away from the truth [14], especially if the test
examples are drawn from a slightly different distribution than the
training set. The fact that many of the modern methods are black-
box only exacerbates the problem when the ML system returns
embarrassingly inaccurate answers.

While machine learning algorithms are in the business of pre-
dicting the future, online algorithms tell us how to act without
any knowledge of future inputs. These powerful methods show
how to hedge decisions so that regardless of what the future holds,
the online algorithm performs nearly as well as the best offline
optimum that has access to all of the available information.

However, since they protect against the worst case, online algo-
rithms may be overly cautious, which translates to high competitive
ratios even for seemingly simple problems. A prototypical example
is the online paging, or caching problem: a series of requests ar-
rives one at a time to a server equipped with some small amount of
memory. Upon processing a request, the server places the answer
in a local memory (in case an identical request comes in the near
future). Since the local memory has limited size, the server must
decide which of the current items to evict.

It is well known that if the local memory or cache has size k ,
then any deterministic algorithm has a competitive ratio, defined as
ratio of the online algorithm’s performance to the offline optimum,
of Ω(k). However, a matching O(k) bound can also be achieved by
almost any reasonable strategy; thus this metric fails to distinguish
between algorithms that perform well in practice, and those that

Permission to make digital or hard copies of part or all of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for third-party components of this work must be honored.
For all other uses, contact the owner/author(s).
, ,
© 2018 Copyright held by the owner/author(s).

perform poorly. The competitive ratio of the best randomized al-
gorithm is Θ(logk), which is also much higher than observed in
practice.

In this work we ask: What if the online algorithm is equipped
with a machine learned oracle? Can we achieve better competitive
ratios given a machine learned estimate of what the future holds?

We look for algorithms that:

• Make minimal assumptions on the accuracy of the oracle.
Specifically, since most machine learning guarantees are on
the expected performance, we only parametrize our results
by the average error of the ML-oracle, η.

• Are consistent: a better oracle (one with lower η) should lead
to lower competitive ratios. We call an algorithm perfectly
consistent if it is optimal when η = 0.

• Are worst-case competitive: no matter the performance of
the oracle on an instance, the algorithm should behave no
worse than the best competitive algorithm for the problem.

Related work. The case for using machine learning in low level
system applications has recently been made in [8]. The authors
show that it is indeed possible to achieve acceptable levels of pre-
diction at a speed that makes them viable in practice. However
they are forced to consider a restricted setting of immutable indices,
precisely to avoid the problems with ML described above. Specifi-
cally, they evaluate on the training set, and thus have fine grained
guarantees on the performance of the model.

In contrast, our work gives performance guarantees as a function
of the average model quality. To create our algorithms, we build
upon the foundational work on competitive analysis, (see the text
by Borodin and El-Yaniv [4]). Specifically for the caching problem,
many variants of caching have been studied over the years; our
main starting point will be the Marker algorithm introduced by
Fiat et al. [7].

Critically, we show that simply following the advice of the oracle
can be far from optimal. Instead, we modify the Marker algorithm
so that it gets the best of both worlds: when the ML error is low,
its performance will be nearly optimal; when it is high, it will be
not much worse than the approach without machine learning at all.
Formally, we prove a bound on the competitive ratio as a function
of the average error of the oracle.

The prior work that is closest in spirit to ours achieves a similar
goal—algorithms that do (almost) as well as their counterparts that
assume additional structure about the data, but also have worst case
guarantees. Such structural assumptions include that the data follow
some predicted patterns [9] or arrive from a stochastic distribution
[5, 11]. On a related note, Ailon et al. [2] consider “self-improving"
algorithms that effectively learn the input distribution, and adapt
to be nearly optimal in that domain. Finally, recently Medina and
Vassilvitskii [10] show how to use a machine learned oracle to
optimize revenue in repeated posted price auctions. Here we extend



Better Caching with Machine Learned Advice , ,

their model to the more general area of online algorithms and show
how to use tools from competitive analysis to achieve consistent,
and competitive algorithms for online caching.

Algorithms. It is well known that the optimal offline algorithm
for the caching problem evicts the element from the cache that will
arrive the furthest in the future. The popular Least Recently Used,
LRU, policy is a heuristic approximation to this optimum, relying
on locality of access that is often present in real world examples.
From a theoretical analysis standpoint, any deterministic caching
algorithm achieves a competitive ratio of Ω(k), and any randomized
caching algorithm achieves a competitive ratio of Ω(logk), see [12].

In this work, we assume access to an oracle h, which at every
time t , predicts the next time t ′ > t this element will arrive in the
future. For an element coming at time t , let y(t) be the actual time
it appears next, and h(t) be the predicted time. We consider the
average error of the oracle, η1 = 1

n
∑n
t=1 |h(t) − y(t)|, but note that

our results generalize to other metrics, such as squared loss.
It is tempting to simply trust the oracle, and evict the element

predicted to appear furthest in the future. Unfortunately this may
lead to arbitrarily bad performance. For a simple example, consider
a sequence on three elements, c,a,b,a,b,a,b, . . ., where the oracle
returns h(1) = 2 for c , and is always correct regarding a and b.
Then with k = 2, following the oracle will keep c in the cache, and
iteratively evict a and b, resulting in repeated misses. On the other
hand, the average error of the oracle is low; the trouble is that it
is concentrated on one element. While this example is contrived,
simple fixes do not work: even if the oracle only overestimates
the arrival time we can come up with examples with competitive
ratios that grow to infinity. As we will see, trusting the oracle also
performs poorly empirically.

Results. Our main technical contribution is an oracle-based
adaptation of the Marker algorithm [7] that achieves a compet-
itive ratio of min(2 + 2

√
η1/OPT , 4 logk) when using an oracle

with loss η1. Note that this competitive ratio is 2-consistent and
4-competitive.

The standard Marker algorithm runs in phases. In the beginning
of each phase, all elements are unmarked. When an element arrives
and it is already in the cache, the element is marked. If it is not in
the cache, a random unmarked element is evicted, the newly arrived
element is placed in the cache and is marked. Once all elements are
marked, the phase ends and we unmark all of the elements.

The Marker algorithm never evicts marked elements when there
are unmarked elements present. This property gives an upper bound
ofO(k) on the competitive ratio for any tie-breaking rule that evicts
an unmarked element. Fiat et al. [7] showed that evicting a random
unmarked element gives an O(logk) competitive ratio.

We propose using the predictions made by ML for tie-breaking,
specifically by evicting the element whose predicted next appear-
ance time is furthest in the future. We show that doing so reduces
the competitive ratio to O(2 + 2

√
η1/OPT ), but defer the proofs to

the full version of the paper. With an extra modification, essentially
switching to random eviction when the oracle performs poorly, we
can cap the performance ratio at min(2 + 2

√
η1/OPT , 4 logk)

Empirical Evaluation. We give preliminary results showing
the efficacy of our algorithm in practice. We consider sequences of

Figure 1: Ratio of average number of evictions as compared
to optimum for varying levels of oracle error.

Algorithm Competitive Ratio
Blind Oracle 2.049

LRU 1.280
Marker 1.310

Predictive Marker 1.266
Table 1: Competitive Ratio using PLECO model.

checkins from BrightKite, a now defunct social network, and extract
the top 100 users with the longest non-trivial sequences. (Those
where the optimum eviction policy makes at least 50 mistakes.) The
dataset is publicly available at [1, 6].

We run two sets of experiments. First, to showcase the sensitivity
to learning errors, we run a synthetic test. For each element, we
compute the true next arrival time, setting it to n + 1 if it does not
appear in the future. To simulate the performance of an ML system,
we set h(t) = y(t) + ϵ , where ϵ is drawn i.i.d. from a lognormal
distribution with mean parameter 0 and standard deviation σ .

Second, we use the machinery introduced by Anderson et al. [3]
to model repeat consumption. We implement their PLECO model,
and use h(t) = t + 1/p(t), where p(t) represents the probability that
element that appeared at time t will re-appear at time t + 1.

We compare our approach against the all-seeing ex-post optimal,
the standard marker algorithm with the random tie-breaking rule,
as well as LRU. Finally, to demonstrate the pitfall in simply following
the oracle, we add an algorithm that evicts the element predicted
to be furthest in the future, which we refer to as BlindOracle.

We set k = 10, and summarize the synthetic results in Figure 1,
where we plot the competitive ratio of all algorithms. First, observe
that the performance of Predictive Marker is consistently better
than LRU and standard Marker, and degrades slowly as the average
error increases, as captured by the theoretical analysis. Second,
we empirically verify that blindly following the oracle works well
when the error is very low, but quickly becomes incredibly costly.

The results using the PLECO predictor from [3] are shown in
Table 1. We can again see that the Predictive Marker algorithm
outperforms all others. While the gains appear modest, we note
they are statistically significant at p < 0.001. Moreover, the off the
shelf PLECO model was not tuned or optimized for predicting the
next appearance of each element.

Conclusion. In this work we showed how to use ML advice to
augment classical caching algorithms. Our proposed approach is
efficient, has provable performance guarantees and performs well
in simulation.



, ,
Thodoris Lykouris and Sergei Vassilvitskii

REFERENCES
[1] [n. d.]. Brightkite data. http://snap.stanford.edu/data/loc-brightkite.html. ([n.

d.]).
[2] Nir Ailon, Bernard Chazelle, Kenneth L. Clarkson, Ding Liu, Wolfgang Mulzer,

and C. Seshadhri. 2011. Self-Improving Algorithms. SIAM J. Comput. 40, 2 (2011),
350–375. https://doi.org/10.1137/090766437

[3] Ashton Anderson, Ravi Kumar, Andrew Tomkins, and Sergei Vassilvitskii. 2014.
The Dynamics of Repeat Consumption. In Proceedings of the 23rd International
Conference on World Wide Web (WWW ’14). ACM, New York, NY, USA, 419–430.
https://doi.org/10.1145/2566486.2568018

[4] Allan Borodin and Ran El-Yaniv. 1998. Online Computation and Competitive
Analysis. Cambridge University Press, New York, NY, USA.

[5] Sébastien Bubeck and Aleksandrs Slivkins. 2012. The Best of Both Worlds:
Stochastic and Adversarial Bandits. In COLT 2012 - The 25th Annual Conference
on Learning Theory, June 25-27, 2012, Edinburgh, Scotland. 42.1–42.23. http:
//www.jmlr.org/proceedings/papers/v23/bubeck12b/bubeck12b.pdf

[6] Eunjoon Cho, Seth A. Myers, and Jure Leskovec. 2011. Friendship and Mobility:
User Movement in Location-based Social Networks. In Proceedings of the 17th
ACM SIGKDD International Conference on Knowledge Discovery and Data Mining
(KDD ’11). ACM, New York, NY, USA, 1082–1090. https://doi.org/10.1145/2020408.
2020579

[7] Amos Fiat, Richard M. Karp, Michael Luby, Lyle A. McGeoch, Daniel D. Sleator,
and Neal E. Young. 1991. Competitive Paging Algorithms. J. Algorithms 12, 4
(Dec. 1991), 685–699. https://doi.org/10.1016/0196-6774(91)90041-V

[8] Tim Kraska, Alex Beutel, Ed H. Chi, Jeff Dean, and Neoklis Polyzotis. 2017. The
Case for Learned Index Structures. https://arxiv.org/abs/1712.01208

[9] Mohammad Mahdian, Hamid Nazerzadeh, and Amin Saberi. 2012. Online Opti-
mization with Uncertain Information. ACM Trans. Algorithms 8, 1 (2012), 2:1–2:29.
https://doi.org/10.1145/2071379.2071381

[10] Andrés Muñoz Medina and Sergei Vassilvitskii. 2017. Revenue Optimization with
Approximate Bid Predictions. CoRR abs/1706.04732 (2017). http://arxiv.org/abs/
1706.04732

[11] Vahab S. Mirrokni, Shayan Oveis Gharan, and Morteza Zadimoghaddam.
2012. Simultaneous approximations for adversarial and stochastic online bud-
geted allocation. In Proceedings of the Twenty-Third Annual ACM-SIAM Sym-
posium on Discrete Algorithms, SODA 2012, Kyoto, Japan, January 17-19, 2012.
1690–1701. http://portal.acm.org/citation.cfm?id=2095250&CFID=63838676&
CFTOKEN=79617016

[12] Rajeev Motwani and Prabhakar Raghavan. 1995. Randomized Algorithms. Cam-
bridge University Press, New York, NY, USA.

[13] D. Sculley, Gary Holt, Daniel Golovin, Eugene Davydov, Todd Phillips, Di-
etmar Ebner, Vinay Chaudhary, Michael Young, Jean-Francois Crespo, and
Dan Dennison. 2015. Hidden Technical Debt in Machine Learning Systems.
In Proceedings of the 28th International Conference on Neural Information Pro-
cessing Systems (NIPS’15). MIT Press, Cambridge, MA, USA, 2503–2511. http:
//dl.acm.org/citation.cfm?id=2969442.2969519

[14] Christian Szegedy,Wojciech Zaremba, Ilya Sutskever, Joan Bruna, Dumitru Erhan,
Ian J. Goodfellow, and Rob Fergus. 2013. Intriguing properties of neural networks.
CoRR abs/1312.6199 (2013). http://arxiv.org/abs/1312.6199

http://snap.stanford.edu/data/loc-brightkite.html
https://doi.org/10.1137/090766437
https://doi.org/10.1145/2566486.2568018
http://www.jmlr.org/proceedings/papers/v23/bubeck12b/bubeck12b.pdf
http://www.jmlr.org/proceedings/papers/v23/bubeck12b/bubeck12b.pdf
https://doi.org/10.1145/2020408.2020579
https://doi.org/10.1145/2020408.2020579
https://doi.org/10.1016/0196-6774(91)90041-V
https://arxiv.org/abs/1712.01208
https://doi.org/10.1145/2071379.2071381
http://arxiv.org/abs/1706.04732
http://arxiv.org/abs/1706.04732
http://portal.acm.org/citation.cfm?id=2095250&CFID=63838676&CFTOKEN=79617016
http://portal.acm.org/citation.cfm?id=2095250&CFID=63838676&CFTOKEN=79617016
http://dl.acm.org/citation.cfm?id=2969442.2969519
http://dl.acm.org/citation.cfm?id=2969442.2969519
http://arxiv.org/abs/1312.6199

	Abstract
	References

