
Predicate Optimization for a Visual Analytics Database
Michael R. Anderson, Michael Cafarella,

Thomas F. Wenisch

University of Michigan

{mrander,michjc,twenisch}@umich.edu

German Ros

Toyota Research Institute

german.ros@tri.global

ABSTRACT

Querying the content of images, video, and other non-textual data

sources requires expensive content extraction methods. Modern

extraction techniques are based on deep convolutional neural net-

works (CNNs) and can classify objects within images with as-

tounding accuracy. Unfortunately, these methods are slow, needing

several milliseconds per image using modern GPUs. The cost of

content-based queries over a huge video corpus is prohibitive.

A promising approach to reduce the runtime cost of queries of

visual content is to use a hierarchical model, such as a cascade,

where simple cases are handled by an inexpensive classifier. Prior

work has sought to design cascades that optimize the computational

cost of inference by, for example, using smaller CNNs. However, we

observe that there are critical factors besides the inference time that

dramatically impact the overall query time. Notably, by treating

the input image format and the requisite data handling costs as

part of our query optimization, we can enable much more efficient

cascades. We find that by jointly optimizing the CNN architecture

and input representation, we can provide up to a 40x speedup over

the cascades used in the NoScope video query system. We find up

to a 156x speedup over ResNet with no accuracy loss and a nearly

300x speedup for users willing to sacrificing some accuracy.

1 INTRODUCTION

Recent developments in computer vision have made feasible a long-

term dream for the database community: a visual analytics database,
which stores image data and answers user questions about its con-

tents. For example, video from a city’s traffic cameras could be used

to count cars per minute or construction trucks per hour. Video

from a fleet of self-driving cars could be used to compute statistics

about other drivers on the road, or even wildlife alongside the high-

way. The sheer volume and diversity of data that can be captured

by cameras opens up a huge range of analytical query possibilities.

A simple but very useful visual analytics data system would offer a

standard SQL query interface over stored image data with selection

predicates that can accurately test image contents.

Deep convolutional neural networks (CNNs)—the family of meth-

ods employed in modern computer vision systems—have enabled

huge strides in image understanding in the last few years. Unfortu-

nately, deep networks pose a considerable computational challenge

when deployed in an analytical database system: classifying a single

image can require a lengthy series of large tensor multiplications.

Since GPU hardware is generally far more expensive than image

sensors, any data system that requires most of a dedicated GPU

to process a single stream of video will never process more than a

fraction of the video produced in real-world, multi-camera applica-

tions. To process massive amounts of video at reasonable cost, we

need drastically lower costs for query processing.

There has been some recent work in optimizing the execution

time of these image classifiers (e.g., [1, 5, 6]). However, we note

that all of the visual data system optimizations to date suffer from

a critical defect: they concentrate only on computation and ignore

the inevitable data-handling costs, such as loading, marshalling,

and transformation. Any query optimization method that focuses

solely on reducing computational load cannot exploit complex data-
centric tradeoffs that weigh the amount of image data available, the

classifier accuracy, and data loading and transformation costs.

As an example, consider an optimizer choosing between two

CNN models (M1 andM2).M1 uses a 3-channel, full-color 224x224

pixel image as input whileM2 uses a 1-channel grayscale 224x224

pixel image. M1 has fewer convolutional layers and—despite the

larger input—requires fewer tensor operations thanM2, so its infer-

ence is faster.M2 uses less rich data thanM1, but has comparable

accuracy due to its additional layers. An optimizer considering only

inference speed would chooseM1. However, a data system based

onM2 might be faster, as its smaller inputs are loaded more quickly.

Such data-handling tradeoffs are particularly important because

visual analytics systems are likely to be diverse architecturally.

Some systems might store multiple versions of the same image

data (high-res vs. low-res or color vs. black-and-white). Others

might employ different storage systems (local server vs. cloud vs. in-

camera storage). Ignoring data-centric tradeoffs in such deployment

scenarios sacrifices substantial potential performance.

In this work, we propose a framework for handling data-centric

tradeoffs when optimizing visual analytical queries, focusing ex-

clusively on the CNN-based operator that implements an image-

sensitive relational predicate.

Our approach — One method of accelerating an expensive-but-

accurate CNN is to replace it with cascades of fast, high precision,

low recall classifiers [2, 6, 8]. This method is effective but focuses

on computational efficiency. Prior to any query processing, we start

with a similar approach, training a large number of simple candidate

binary-classification CNN models. We expand the candidate space

by varying not only CNN hyperparameters (as in prior work [6]),

but also the representation of the inputs; for example, we build

an n-layer CNN for high-resolution full-color inputs, one for low-

resolution full-color inputs, another for grayscale inputs, etc.

From these core candidate models, we then construct a massive

number of classifier cascades. All of these cascades have different

(and initially unknown) runtime and accuracy characteristics. Our

optimization method efficiently evaluates the cascades’ accuracy

using held-out data, and evaluates their runtime characteristics for

the system’s current deployment scenario. Finally, it attempts to

identify the cascades that are Pareto optimal and should thereby

be presented to the user as reasonable options for satisfying the

application-specific speed and accuracy constraints.



SysML, February 2018, Stanford, California USA Michael R. Anderson, Michael Cafarella, Thomas F. Wenisch and German Ros

2 METHODOLOGY

A classifier cascade is a series of classification models run one after

another until a trusted classification result is found. Our methods

depend upon building a large number of models and combining

them to create a huge number of cascades. We parameterize the

models in two ways: by varying the architecture of our CNN classi-

fiers and by performing transformations on the input images.

Model architecture variations — Tahoma uses standard convo-

lutional neural networks for its models. Each convolutional layer

is followed by a max pooling layer, connected by rectified linear

activations (ReLu). The final convolutional layer feeds into a fully

connected ReLu layer. A single sigmoid output node provides the

inferred label for our binary query task. When creating our set of

models, we vary the size and number of the network layers.

Input transformations — We also vary the representation of the

input to each model. The set of input transformation functions

comprises functions that perform one or more image processing

operations, such as image resolution scaling and color channel

modifications. These types of transformations are especially useful

towards our goal of building fast, small models: reducing image

size and color depth reduces number of model input values, directly

reducing the number of the tensor operations within the CNN.

The design space defined by these model architecture variations

and input transformation functions result in hundreds of different

model configurations. Once each model is trained on a labeled sub-

set of images, we can compose the models into cascades. Training

takes less than a minute for the smallest networks with the smallest

inputs and nearly an hour for the largest. While training all models

can take upwards of 12 hours, it is highly parallelizable.

3 EXPERIMENTS

We have implemented Tahoma as a prototype system, for which

full experimental results are presented in a paper currently under

submission. Here we present several key results that demonstrate

the effectiveness of our system in accelerating image classification

in a binary predicate setting.

Experimental Setup — To evaluate the methods and components

used in Tahoma, we designed a series of experiments using a set

of 10 queries with a single contains-object binary predicate, chosen

from the 1,000 categories in the ImageNet dataset [7]. A portion of

the ImageNet images comprised a holdout set for cascade configu-

ration. We evaluated performance using non-ImageNet images.

We used the Keras [3] deep learning library to train and execute

our CNNs.We varied several network architecture hyperparameters

to create a range of models for each binary predicate: number of

convolutional layers and the number of nodes in each layer. We

also varied the size of the input images, and for each of the four

image sizes, we used five different image representations: 3-channel

color, each individual color channel, and single-channel grayscale.

Overall, we created 1,301,405 possible cascades per predicate.

Selected Results —We compared Tahoma against a pre-trained

ResNet implementation [4], as well as CNN cascade designs pro-

posed by NoScope [6], which comprise a subset of Tahoma’s design

space. In addition to its cascade designs, NoScope proposes several

0 200 400 600 800 1000 1200 1400

0.5

0.6

0.7

0.8

0.9

Throughput (fps)

A
c
c
u
r
a
c
y

All Cascades NoScope Cascades

Tahoma Optimal NoScope Optimal

Figure 1: An comparison of the cascade spaces of Tahoma

and NoScope. Gray points show all cascades generated by

Tahoma, with Pareto optimal points in blue. Cascades that

correspond to NoScope configurations are shown in red.

optimization methods to skip CNN classification of video frames al-

together; these methods are orthogonal to ours, but could be applied

to Tahoma in a video setting, further increasing speedup. Here, we

compare the CNN cascade designs of NoScope and Tahoma.

NoScope’s cascades share the same objectives as ours, but en-

compass a much smaller design space: a single simple classifier is

followed by a maximally accurate full-cost classifier, with no trans-

forms performed on the input representation. Within our design

space, two-level cascades that terminate in a full-cost classifier (i.e.,

ResNet) and use full-color 224x224 images as input correspond to

NoScope’s design space. An illustration of the difference in the

design spaces is shown in Figure 1.

We compared the performance of Tahoma compared with our

baselines under four different cost models that capture different

data handling cost models, each representing realistic deployment

scenarios with different combinations of data loading, transforma-

tion, and inference costs. We found that Tahoma showed speedups

ranging from 2x to 40x over NoScope under these models. Com-

pared to ResNet, Tahoma showed up to a 156x speed up with no

loss of accuracy. In situations where a loss in accuracy is tolera-

ble, Tahoma achieved an average throughput of 22,343 frames per

second—nearly 300 times the throughput of ResNet.

4 CONCLUSION AND FUTUREWORK

In this paper, we have presented a method of accelerating content

extraction from large corpora of visual data, with the aim of sup-

port visual analytics query. We showed how constructing a huge

number of classifier cascades from a wide variety of CNN-based

classification models can yield large speedups in content extraction.

While this paper primarily focused on image classification tasks,

it is just the beginning of the development of an analytics system

for visual data that will take full advantage of spatio-temporal local-

ity present in adjacent video frames to further accelerate content

extraction from video. We hope to include new state-of-the-art

computer vision methods to extract more complex data, which will

then allow the processing of complex analytical queries over video.



Predicate Optimization for a Visual Analytics Database SysML, February 2018, Stanford, California USA

REFERENCES

[1] Cristian Buciluǎ, Rich Caruana, and Alexandru Niculescu-Mizil. 2006. Model

compression. In KDD.
[2] Zhaowei Cai, Mohammad Saberian, and Nuno Vasconcelos. 2015. Learning

complexity-aware cascades for deep pedestrian detection. In ICCV.
[3] François Chollet et al. 2015. Keras. https://github.com/fchollet/keras. (2015).

[4] Kaiming He, Xiangyu Zhang, Shaoqing Ren, and Jian Sun. 2016. Deep residual

learning for image recognition. In CVPR.
[5] Geoffrey Hinton, Oriol Vinyals, and Jeff Dean. 2014. Distilling the knowledge in a

neural network. In NIPS Deep Learning Workshop.
[6] Daniel Kang, John Emmons, Firas Abuzaid, Peter Bailis, and Matei Zaharia. 2017.

NoScope: Optimizing neural network queries over video at scale. Proceedings of
the VLDB Endowment 10, 11 (2017), 1586–1597.

[7] Olga Russakovsky, Jia Deng, Hao Su, Jonathan Krause, Sanjeev Satheesh, Sean Ma,

Zhiheng Huang, Andrej Karpathy, Aditya Khosla, Michael Bernstein, Alexander C.

Berg, and Li Fei-Fei. 2015. ImageNet Large Scale Visual Recognition Challenge.

International Journal of Computer Vision (IJCV) 115, 3 (2015), 211–252.
[8] Yi Sun, Xiaogang Wang, and Xiaoou Tang. 2013. Deep convolutional network

cascade for facial point detection. In CVPR.

https://github.com/fchollet/keras

	Abstract
	1 Introduction
	2 Methodology
	3 Experiments
	4 Conclusion and Future Work
	References

