
A Hierarchical Model for Device Placement
Azalia Mirhoseini*, Anna Goldie*, Hieu Pham, Benoit Steiner, Quoc V. Le and Jeff Dean

*Equal Contribution
Google Brain

{azalia,agoldie,hyhieu,bsteiner,qvl,jeff}@google.com

1 INTRODUCTION
We propose a hierarchical model for efficient placement of
computational graphs onto hardware devices, especially in
heterogeneous environments with a mixture of CPUs, GPUs,
and other computational devices.
Device placement can be framed as learning to partition

a graph across available devices, making traditional graph
partitioning methods [6, 12, 15] a natural baseline. A well-
established prior work is Scotch [15], an open source library
for graph partitioning, which includes optimizations such
as k-way Fiduccia-Mattheyses [6], Multilevel methods [3, 8,
11], Band Method [5], the Diffusion Method [14], and Dual
Recursive Bipartitioning Mapping [17].

Using deep networks and reinforcement learning for com-
binatorial optimization has already been proposed [4, 13, 20].
ColocRL [13] uses a recurrent neural network (RNN) policy
network to predict the placement of operations in a compu-
tational graph. While this approach outperforms traditional
graph partitioning heuristics and human expert placements,
it is limited to small graphs (with fewer than 1000 nodes)
and requires human experts to manually partition the graph
into collocation groups as a pre-processing step.
In this paper, we introduce a more flexible, end-to-end

approach which learns to optimize device placement for
neural networks that have tens of thousands of operations.
Unlike previous methods which require human experts to
feed in properties of the hardware or manually cluster oper-
ations, our method is automated and scales to much larger
computational graphs and novel hardware devices. Our ap-
proach finds non-trivial placements over multiple devices
for models such as Inception-V3 [19], ResNet [7], Language
Modeling [10], and Neural Machine Translation [22]. The
placements found by our model outperform TensorFlow’s
default placements [1], the Scotch algorithm’s placements,
and human expert placements, achieving runtime reductions
of up to 60.6% per training step.
2 METHOD
We train a hierarchical policy network that generates opti-
mized placements. Our policy consists of two sub-networks:
a Grouper that assigns operations in an input TensorFlow
graph to groups and a Placer that assigns groups to target
devices. We use a policy gradient approach to jointly train
the two sub-networks, incorporating the runtime of the pre-
dicted placements as our reward, Figure 1.

The objective of the proposed approach, which we refer
to as the Hierarchical Planner, is to minimize the runtime
for one forward pass, one back-propagation pass, and one
parameter update of the target neural network. To measure
runtime, predicted placements are run on actual hardware.
The Grouper is a feed forward model and the Placer is

a sequence-to-sequence model [18] with Long Short-Term
Memory [9] and a content-based attention mechanism [2].
To represent operations as inputs to the Grouper, we en-
code information about the operation, including type (e.g.,
MatMul, Conv2d, Sum, etc.), size and number of outputs, as
well as connections to other operations. We create group
embeddings by combining the embeddings of the member
operations. More precisely, each group embedding is the
concatenation of three components: the average of the mem-
ber operation type embeddings, the average of the member
operation sizes and number of outputs, and intra-group and
inter-group connectivity information encoded as an adja-
cency matrix.
The Placer’s RNN encoder reads the group embeddings

one at a time and produces M hidden states. We treat M ,
which is equal to the number of groups, as a hyperparameter.
The Placer’s decoder RNN predicts one device per time step.
The devices are returned in the same order as the input
group embeddings, i.e., the operations in the first group will
be placed on the device returned by the first decoder step,
and so on. Each device has its own trainable embedding,
which is then fed as input to the next decoder time step.

Grouper:
Group Operations

Placer:
Place Groups Measure Runtime

Update Policy

POLICY

Figure 1: Hierarchical model for device placement.

The planner optimizes the training time for a target model
(e.g., a TensorFlow graph) given the decisions made by the
Grouper and Placer. Let rd be the runtime per training step
for a predicted device placement d . We define the reward
for placement d as Rd = −sqrt(r ). The planner should try to
maximize the expectation of Rd given its decisions. As such,
the cost function we are optimizing for is:



Tasks CPU GPU #GPUs Human Scotch MinCut Hierarchical Runtime
Only Only Expert Planner Reduction

Inception-V3 0.61 0.15 2 0.15 0.93 0.82 0.13 16.3%
ResNet - 1.18 2 1.18 6.27 2.92 1.18 0%
RNNLM 6.89 1.57 2 1.57 5.62 5.21 1.57 0%

NMT (2-layer) 6.46 OOM 2 2.13 3.21 5.34 0.84 60.6%
NMT (4-layer) 10.68 OOM 4 3.64 11.18 11.63 1.69 53.7%
NMT (8-layer) 11.52 OOM 8 3.88 17.85 19.01 4.07 -4.9%

Table 1: Model Runtimes (seconds) for different placements (lower is better). OOM: Out Of Memory.

J (θд ,θd ) = EP(d;θg,θd)[Rd ] =
∑
д∼πд

∑
d∼πd

p(д;θд)p(d |д;θd )Rd

Let θд and θd be parameters of the Grouper and Placer, re-
spectively. Here, p(д;θд) is the probability of a sample group
assignment д drawn from the Grouper softmax distribution
∼ πд and p(d ;θd ) is the probability of a sample device place-
ment d drawn from the Placer softmax distribution ∼ πd . We
use the REINFORCE rule [21] to optimize the cost function.
Our policy is trained in a distributed manner with a pa-

rameter server that is shared among several controllers. The
controllers update the policy asynchronously. We use 4 con-
trollers and 16 workers (4 per controller). Each worker exe-
cutes the placement given by its controller and reports the
runtime. Each controller is hosted on a single GPU. The work-
ers run the placements in parallel. Once all workers have
finished running the placements, the controller computes
the gradients using the measured runtimes.
3 EXPERIMENTS
We evaluate our method on four widely used neural net-
work models: Inception-V3 (batch size=32) [19] with 24,713
operations, ResNet (batch size=128) [7] with 20,586 oper-
ations, RNNLM (batch size=64) [10] with 9,021 operations
and NMT (batch size=64) [2, 23] with 2, 4, and 8 layers of
encoder-decoder with 28,044, 46,600, and 83,712 operations
respectively.
We compare our results against the following methods:

CPU andGPU only baselineswhere the entiremodel is placed
on a single CPU or GPU respectively. Scotch static map-
per [16] which takes as input the graph, the computational
cost of each operation and the compute and communica-
tion capacities of the pertinent devices. The Mincut baseline
is similar to Scotch but we only consider GPUs as our de-
vices. We use hand-crafted placements from previous publi-
cations. For Inception-V3 and Resnet human experts place
the graph on a single GPU. For RNNLM and NMT, existing
work [18, 23] places each LSTM layer on a separate GPU.

Our experiments are run on machines with 1 Intel Haswell
2300 CPU and up to 8 Nvidia Tesla K40 GPUs. We use Ten-
sorFlow r1.3 to run our evaluations.

Results: In Table 1, we report the performance of the Hi-
erarchical Planner. The only information available to our

method is the TensorFlow graph and a list of devices. The
reduction percentages are computed by taking the difference
between the runtime achieved by the Hierarchical Planner
and that of the best prior placement, and then dividing it
by that best prior runtime. For each of the models, we train
a new policy which learns to optimize placements for that
particular model. All results are after 1000 iterations of up-
dating the policy. In practice, this takes at most three hours
for our largest benchmark. The policy itself is a lightweight
network that is trained on a single GPU.

For ResNet and RNNLM, ourmodel learns that it is more ef-
ficient to use a single GPU, as this minimizes communication
cost. For Inception-V3, the Hierarchical Planner learns to dis-
tribute the model across 2 GPUs, achieving a 16.3% reduction
in runtime over placing the model on a single GPU. For NMT
with 2, 4, and 8 layers, we ran experiments with 2, 4, and 8
GPUs, respectively. We outperform the best prior results by
60.6% for NMT (2-layer) and 53.7% for NMT (4-layer). For
NMT (8-layer), the Hierarchical Planner finds a placement
that is 4.9% slower than that of human experts. Even in this
one case where the method slightly underperforms, it is still
useful to have an automated method of finding placements
that are comparable to those of human experts.
Results associated with both Scotch and MinCut were

significantly worse than human expert baselines, which is
consistent with results reported in [13].

Given that we train target neural networks for hundreds of
thousands of steps, the overhead of policy training is justified.
For example, to train WMT’14 En->Fr dataset which has
more than 36 million examples for one epoch (with batch-
size=64), we need to run the NMT model for approximately
562500 steps. Since we reduce the runtime per step from
3.64 to 1.69 seconds, this saves us 304 GPU-hours in each
epoch, which is significant even if we consider the roughly
102 GPU-hours we spent on training the policy.

4 CONCLUSION
We present a hierarchical method for efficiently placing
the operations of a computational graph onto devices. Our
method is entirely end-to-end and scales to computational
graphs containing over 80,000 operations. Our approach
finds highly granular parallelism within the graph, enabling
us to outperform prior methods by up to 60.6%.



REFERENCES
[1] MartÃŋn Abadi, Paul Barham, Jianmin Chen, Zhifeng Chen, Andy

Davis, Jeffrey Dean, Matthieu Devin, Sanjay Ghemawat, Geoffrey Irv-
ing, Michael Isard, Manjunath Kudlur, Josh Levenberg, Rajat Monga,
Sherry Moore, Derek G. Murray, Benoit Steiner, Paul Tucker, Vijay Va-
sudevan, Pete Warden, Martin Wicke, Yuan Yu, and Xiaoqiang Zheng.
2016. TensorFlow: A system for large-scale machine learning. In OSDI.

[2] Dzmitry Bahdanau, Kyunghyun Cho, and Yoshua Bengio. 2015. Neural
machine translation by jointly learning to align and translate. In ICLR.

[3] S. T. Barnard and H. D. Simon. 1994. A fast multilevel implementation
of recursive spectral bisection for partitioning unstructured problems.
Concurrency: practice and Experience, 6(2):101âĂŞ117 (1994).

[4] Irwan Bello, Hieu Pham, Quoc V. Le, Mohammad Norouzi, and Samy
Bengio. 2016. Neural Combinatorial Optimization with Reinforcement
Learning. arXiv preprint arXiv:1611.09940 (2016).

[5] C. Chevalier and F. Pellegrini. 2006. Improvement of the efficiency of
genetic algorithms for scalable parallel graph partitioning in a multi-
level framework. EuroPar, Dresden, LNCS 4128, 243âĂŞ–252.

[6] Charles M Fiduccia and Robert M Mattheyses. 1988. A linear-time
heuristic for improving network partitions. In Papers on Twenty-five
years of electronic design automation. ACM, 241–247.

[7] Kaiming He, Xiangyu Zhang, Shaoqing Ren, and Jian Sun. 2016. Deep
residual learning for image recognition. In CVPR.

[8] B. Hendrickson and R. Leland. 1993. A multilevel algorithm for par-
titioning graphs. Technical Report SAND93âĂŞ1301, Sandia National
Laboratories (June 1993).

[9] Sepp Hochreiter and Juergen Schmidhuber. 1997. Long short-term
memory. Neural Computation (1997).

[10] Rafal Jozefowicz, Oriol Vinyals, Mike Schuster, Noam Shazeer, and
Yonghui Wu. 2016. Exploring the limits of language modeling. arXiv
preprint arXiv:1602.02410 (2016).

[11] G. Karypis and V. Kumar. 1995. A fast and high quality multilevel
scheme for partitioning irregular graphs. Technical Report 95-035,
University of Minnesota (June 1995).

[12] George Karypis and Vipin Kumar. 1995. METIS–unstructured graph
partitioning and sparse matrix ordering system, version 2.0. (1995).

[13] Azalia Mirhoseini, Hieu Pham, Quoc V. Le, Benoit Steiner, Moham-
mad Norouzi, Naveen Kumar, Rasmus Munk Larsen, Yuefeng Zhou,
Samy Bengio, and Jeff Dean. 2017. Device placement optimization
with reinforcement learning. In International Conference on Machine
Learning.

[14] F. Pellegrini. 2007. A parallelisable multi-level banded diffusion scheme
for computing balanced partitions with smooth boundaries. EuroPar,
Rennes, LNCS 4641, 191âĂŞ–200.

[15] François Pellegrini. 2009. Distillating knowledge about Scotch. In
Dagstuhl Seminar Proceedings. Schloss Dagstuhl-Leibniz-Zentrum für
Informatik.

[16] F. Pellegrini. 2009. Distillating knowledge about SCOTCH. (2009).
[17] F. Pellegrini and J. Roman. 1996. Experimental analysis of the dual

recursive bipartitioning algorithm for static mapping. Research Report,
LaBRI, Universite Bordeaux I (August 1996).

[18] Ilya Sutskever, Oriol Vinyals, and Quoc V. Le. 2014. Sequence to
sequence learning with neural networks. In NIPS.

[19] Christian Szegedy, Vincent Vanhoucke, Sergey Ioffe, Jon Shlens, and
Zbigniew Wojna. 2016. Rethinking the inception architecture for
computer vision. In CVPR.

[20] Oriol Vinyals, Meire Fortunato, and Navdeep Jaitly. 2015. Pointer
networks. In NIPS.

[21] Ronald J. Williams. 1992. Simple statistical gradient-following algo-
rithms for connectionist reinforcement learning. InMachine Learning.

[22] Yonghui Wu, Mike Schuster, Zhifeng Chen, Quoc V. Le, Mohammad
Norouzi, et al. 2016. Google’s Neural Machine Translation System:
Bridging the Gap between Human and Machine Translation. arXiv
preprint arXiv:1609.08144 (2016).

[23] Yonghui Wu, Mike Schuster, Zhifeng Chen, Quoc V. Le, Mohammad
Norouzi, Wolfgang Macherey, Maxim Krikun, Yuan Cao, Qin Gao,
Klaus Macherey, Jeff Klingner, Apurva Shah, Melvin Johnson, Xiaobing
Liu, ÅĄukasz Kaiser, Stephan Gouws, Yoshikiyo Kato, Taku Kudo,
Hideto Kazawa, Keith Stevens, George Kurian, Nishant Patil,WeiWang,
Cliff Young, Jason Smith, Jason Riesa, Alex Rudnick, Oriol Vinyals,
Greg Corrado, Macduff Hughes, and Jeffrey Dean. 2016. Google’s
NeuralMachine Translation System: Bridging the Gap betweenHuman
and Machine Translation. arXiv preprint arXiv:1609.08144 (2016).


	1 Introduction
	2 Method
	3 Experiments
	4 Conclusion
	References

