
TOP: A Compiler-Based Framework for Optimizing
Machine Learning Algorithms through Generalized

Triangle Inequality

Yufei Ding
UC Santa Barbara

yufeiding@cs.ucsb.edu

Lin Ning, Hui Guang,
Xipeng Shen

North Carolina State
University

{lning,hguan2,xshen5}@ncsu.edu

Madanlal Musuvathi,
Todd Mytkowicz
Microsoft Research

{madanm,toddm}@microsoft.com

ABSTRACT
This paper describes our recent research progress on gener-
alizing triangle inequality (TI) to optimize Machine Learn-
ing algorithms that involve either vector dot products (e.g.,
Neural Networks) or distance calculations (e.g., KNN, K-
Means). The progress includes a new form of TI named An-
gular Triangular Inequality, abstractions to enable unified
treatment to various ML algorithms, and TOP, a compiler-
based optimizer for effectively applying TI to optimize ma-
chine learning algorithms. Experiments show that TOP is
able to automatically produce optimized algorithms that ei-
ther matches or outperforms manually designed algorithms,
giving up to 237x speedups and 2.5X on average1.

1. INTRODUCTION
Vector dot products and point-to-point distance calcula-

tions are essential to many important algorithms across var-
ious domains. Vector dot products, for instance, are the
core operations in artificial neural networks, as well as algo-
rithms used in document clustering and document retrieval.
Distance calculations are the essential computations in many
othe machine learning algorithms. The commonly used clus-
tering algorithm K-Means [15], for example, is an iterative
algorithm which computes the distances between every data
point and each of a set of K cluster centers in order to
decide which center is closest to each point. Other exam-
ples include K-Nearest Neighbor (KNN) [12], point-to-point
shortest path in graphs [4], 3D image construction [3], and
so on. In each of these algorithms, vector dot products or
distance calculations over a large number of data points form
the typical performance bottleneck.

Our research was initially inspired by previous manual
efforts by domain experts [8, 10] to apply the Triangle In-
equality (TI) theorem to optimize distance calculations for
some of those algorithms. TI says that the sum of two edges
of a triangle must be greater than the third edge. With
TI, one may easily get the lower and upper bounds of the
distances between two points. The bounds could be safely
used (and reused) in place of the actual distances in suitable
scenarios to save some distance calculations.

1This paper is based on the series of results we published at
PLDI’2017 [5], VLDB’2015 [6], ICML’2015 [7].

Domain experts have tried to leverage TI to manually
create variations of some machine learning algorithms to re-
duce the number of distance calculations. Creating these
efficient variants is often difficult and domain specific—the
variants often differ in distance definition (i.e., what defines
distance), calculation constraints (i.e., how they are em-
ployed), context of usage (i.e., when to use optimized imple-
mentations of distance definitions), and other aspects. Thus,
these previous efforts are often problem-specific. Coming up
with such a solution usually takes the domain experts deep
and nontrivial insights, theoretical analysis, and empirical
measurements. This point is empirically backed up by the
large number of research papers published in the premium
venues in the domains. For instance, in the recent 10 years of
top machine learning or data mining conferences, there are
more than 20 papers on developing algorithms to optimize
distance calculations for K-Means (e.g., [8, 11, 13,16,19]).

Our work is motivated by an observation that, despite
the many differences among those problems, the underlying
mechanisms in which distance calculations have been opti-
mized share commonality. This observation prompts us to
examine the algorithm design process from the perspective
of programming systems: If we can generalize the various
distance-related problems into a single abstract form, we
can develop an optimizing framework as a unified solution to
such algorithmic optimization problems. As a consequence,
such a framework saves the significant manual effort previ-
ously required to optimize distance-related algorithms. Also
the framework could provide a more systematic treatment to
existing distance-related problems than previous manually
optimized algorithms do, with even better performance.

We further expend the thought to vector dot products
based on the connections between vector dot products and
point-to-point distances. Moreover, we generalize the theory
of TI by developing a new type of TI, named Angle Triangu-
lar Inequality (ATI) [5]. ATI considers angles among vectors
rather than edges; it significantly expands the applicability
of TI-based optimizations, and at the same time, enhances
the tightness of the bounds.

The result of our exploration is Triangular OPtimizer
(TOP), a compiler and runtime software framework that en-
ables automatic algorithmic optimizations for various distance-
based problems and vector dot products involved in various
machine learning algorithms. Unlike typical program opti-
mizations that optimize an implementation of an algorithm

/*
Goal: Cluster points in S into K classes with T containing all cluster centers.
S: a set of query points to cluster.
T: a set of target points (i.e., cluster centers).
N: a set of indices of points. |N|=|S|.
*/
… // declarations
TOP_defDistance(Euclidean); // distance definition
T = init();
changedFlag = 1;
while (changedFlag){
 // find the closest target (a point in T) for each point in S
 N = TOP_findClosestTargets(1, S, T);
 TOP_update(T, &changedFlag, N, S); // T gets updated
}

Figure 1: K-Means written in TOP API. Prefix
“TOP ” indicates calls to TOP API. They will be
replaced with low-level function calls by TOP com-
piler, making the algorithm automatically avoid un-
necessary distance calculations.

at an instruction level, the algorithmic optimizations that
TOP enables change the algorithm used to find out rela-
tions between data points, thus generating new algorithms
that are up to hundreds of times faster than existing ones.

With TOP, users specify the distance problem using a set
of high-level and relatively intuitive APIs. TOP then au-
tomatically creates an optimized algorithm that minimizes
the distance calculations for that problem. We have found
that TOP is applicable to many problems involving vec-
tor dot products or distance-based calculations that meet
the Triangular Inequality condition, regardless of the do-
main, definition of distances, distance calculation patterns,
usage of the distances, and so on. Its generated algorithm
matches or outperforms the algorithms manually designed
by the domain experts. With TOP, many manual efforts by
domain experts could have been saved; it makes optimizing
new problems much easier, and boost the performance of
existing algorithms.

Specifically, we propose a simple abstraction, called ab-
stract distance-related problem, to formalize various distance-
related algorithms across seemingly disparate domains, in a
unified manner. The abstraction allows a systematic exam-
ination of all kinds of scenarios related with distance com-
putations, which in turn, leads to a spectrum of algorithmic
optimization along with some automatic mechanisms for se-
lecting the best optimization to use. For vector dot prod-
ucts, we implement code pattern matching in a source-level
compiler to recognize vector dot products whose results are
used only for some value comparisons, and then conduct an
automatic code transformation to apply TI or ATI to save
unnecessary vector dot products.

Through empirical explorations, we attain a set of insights
on the suitable ways to apply TI or ATI for various kinds of
problems. We turn these findings into a runtime library, the
invocations of which in a program would automatically save
unnecessary distance calculations or vector dot products.

Along with the library, we equip TOP with a set of APIs
and a compilation module. Through the API, programmers
can easily specify the problem of interest, as illustrated in
Figure 1. The compiler module then derives important prop-
erties of the problem, and inserts necessary calls of the li-

brary such that at runtime, unnecessary distance calcula-
tions can be effectively detected and avoided.

2. EXPERIMENTAL RESULTS
We evaluate the technique on eight benchmarks. The first

five benchmarks (KNNN [12], KNNjoin [1], KMeans [15],
ICP [3], NBody [9]) are distance-related problems, and the
other three, (Document clustering (DC) [14], Top-K Docu-
ment Retrieval (KDR) [20], Restricted Boltzman Machine
(RBM) Neural Networks [18]) involve dot products.

100

101

102

103

G
as

se
ns

or
Ke

gg
 M

in
iB

oo
N

E

G
as

se
ns

or
Ke

gg
 M

in
iB

oo
N

E

Ke
gg U

S
C

en
su

s
N

ot
re

D
am

e

Ab
al

on
e

Le
tte

r
Kr

ko
pt

48
-1

5c
r1

48
-1

5c
r2

32
-1

5c
r

en
ro

n
pu

bm
ed

ny
tim

es

en
ro

n
pu

bm
ed

ny
tim

es

M
N

IS
T

20
N

ew
sg

ro
up

f-M
N

IS
T

KNN

KNNJo
in

KMea
ns ICP

NBod
y DC

KDR
RBM

Benchmarks
Sp
ee
du
p

Figure 2: The graph shows the speedup over the
original implementation of the default algorithms on
Intel i5-4570 CPU and 16G memory; labeled with
datasets.

The graph in Figure 2 gives our speedups on each dataset
over the standard version (i.e., the original implementations
of the default algorithms.) Compared with the standard ver-
sion, which does not use TI-based optimizations, our tech-
nique achieves as much as 134X (NBody) speedups and 46X
on average. The technique also applies to GPU versions of
the code, yielding significant speedups as well; on an Kepler
GPU, the TI-optimized KNN outperforms a CUBLAS ver-
sion by up to 120X (11X on average) [2], and the optimized
RBM shows 3X speedups [17].

The accelerations come primarily from the savings of dis-
tance or dot product computations. Although the mount
of savings vary, depending on many factors, we observe over
91% computation savings for all the datasets tested on these
benchmarks other than RBM. In particular, we notice that
the savings are often more prominent for larger input and
problem settings (e.g., dataset size, data dimensions, and
the number of clusters). Dataset size is the most influential
factor across all benchmarks.

The overhead of bound computations is always negligible
compared to the original computation cost in the standard
version without TI optimization. The reason for this is two-
fold. First, bound computation itself is a scalar operation,
while both distance and dot product computation are vec-
tor operations. When the data dimension is high, the cost
of bound computation is much smaller than that of direct
distance and dot production computation. Second, the total
number of bound computations carried out is much smaller
than that of distance and dot product computations required
in a standard version.

3. REFERENCES
[1] C. Böhm and F. Krebs. The k-nearest neighbour join: Turbo

charging the kdd process. Knowledge and Information
Systems, Springer, 6(6):728–749, 2004.

[2] G. Chen, Y. Ding, and X. Shen. Sweet knn: An efficient knn on
gpu through reconciliation between redundancy removal and
regularity. In The Proceedings of IEEE International
Conference on Data Engineering, 2017.

[3] Y. Chen and G. Medioni. Object modeling by registration of
multiple range images. In Robotics and Automation, IEEE,
pages 2724–2729, 1991.

[4] E. W. Dijkstra. A note on two problems in connexion with
graphs. In Numerische mathematik, volume 1, pages 269–271,
1959.

[5] Y. Ding, L. Ning, H. Guan, and X. Shen. Generalizations of the
theory and deployment of triangular inequality for
compiler-based strength reduction. In ACM SIGPLAN
Conference on Programming Language Design and
Implementation (PLDI), 2017.

[6] Y. Ding, X. Shen, M. Musuvathi, and T. Mytkowicz. Top: A
framework for enabling algorithmic optimizations for
distance-related problems. In Proceedings of the 41st
International Conference on Very Large Data Bases, 2015.

[7] Y. Ding, X. Shen, M. Musuvathi, and T. Mytkowicz. Yinyang
k-means: A drop-in replacement of the classic k-means with
consistent speedup. In ICML, 2015.

[8] J. Drake and G. Hamerly. Accelerated k-means with adaptive
distance bounds. In 5th NIPS Workshop on Optimization for
Machine Learning, 2012.

[9] V. Eijkhout. Introduction to High Performance Scientific
Computing. Lulu. com, 2010.

[10] C. Elkan. Using the triangle inequality to accelerate k-means.
In ICML, volume 3, pages 147–153, 2003.

[11] A. Fahim, A. Salem, F. Torkey, and M. Ramadan. An efficient
enhanced k-means clustering algorithm. Journal of Zhejiang
University SCIENCE A, Springer, 7(10):1626–1633, 2006.

[12] E. Fix and J. L. Hodges Jr. Discriminatory
analysis-nonparametric discrimination: consistency properties.
In DTIC Document, 1951.

[13] G. Hamerly. Making k-means even faster. In SDM, SIAM,
pages 130–140, 2010.

[14] A. Huang. Similarity measures for text document clustering. In
Proceedings of the sixth new zealand computer science
research student conference (NZCSRSC2008), Christchurch,
New Zealand, pages 49–56, 2008.

[15] S. Lloyd. Least squares quantization in pcm. In Information
Theory, IEEE, volume 28,2, pages 129–137, 1982.

[16] W. K. Ngai, B. Kao, C. K. Chui, R. Cheng, M. Chau, and
K. Y. Yip. Efficient clustering of uncertain data. In Data
Mining, 2006. ICDM’06, IEEE, pages 436–445, 2006.

[17] L. Ning, R. Pittman, and X. Shen. LCD: A fast contrastive
divergence based algorithm for restricted boltzmann machine.
In The Proceedings of IEEE International Conference on
Data Mining, 2017.

[18] T. Tieleman. Training restricted boltzmann machines using
approximations to the likelihood gradient. In Proceedings of
the 25th International Conference on Machine Learning,
pages 1064–1071, New York, NY, USA, 2008. ACM.

[19] J. Wang, J. Wang, Q. Ke, G. Zeng, and S. Li. Fast approximate
k-means via cluster closures. In Computer Vision and Pattern
Recognition (CVPR), IEEE, pages 3037–3044, 2012.

[20] Y. Yang and X. Liu. A re-examination of text categorization
methods. In Proceedings of the 22nd annual international
ACM SIGIR conference on Research and development in
information retrieval, pages 42–49. ACM, 1999.

	Introduction
	Experimental Results
	References

