
DAWNBench: An End-to-End Deep Learning
Benchmark and Competition

Cody Coleman, Deepak Narayanan, Daniel Kang, Tian Zhao, Jian Zhang, Luigi Nardi,
Peter Bailis, Kunle Olukotun, Chris Ré, Matei Zaharia

http://dawn.cs.stanford.edu/benchmark

ABSTRACT
Despite considerable research on systems, algorithms and hard-
ware to speed up deep learning workloads, there is no standard
means of evaluating end-to-end deep learning performance. Exist-
ing benchmarks measure proxy metrics, such as time to process
one minibatch of data, that do not indicate whether the system as a
whole will produce a high-quality result. In this work, we introduce
DAWNBench, a benchmark and competition focused on end-to-end
training time to achieve a state-of-the-art accuracy level, as well
as inference with that accuracy. We have seeded the benchmark
with entries for image classification on CIFAR10 and ImageNet, and
question answering on SQuAD, showing differences across models,
software and hardware. We believe DAWNBench will provide a
useful, reproducible means of evaluating the many tradeoffs in deep
learning systems.

1 INTRODUCTION
Deep learning methods are effective but computationally expensive,
leading to a great deal of work to optimize their computational
performance. Researchers have proposed new software systems [1,
7, 8, 11, 25, 41], training algorithms [12, 16, 23, 24, 28, 37–40, 42, 44],
communication methods [8, 10, 11, 20, 34, 43] and hardware [6, 17–
19, 26, 32] to decrease this cost. Despite significant advances, it is
hard to measure or compare the utility of these results due to a
lack of standard evaluation criteria. Most existing benchmarks for
deep learning performance [2–4, 7, 9, 14, 36] only measure proxy
metrics such as the time to process one minibatch of data. In reality,
deep learning performance is far more complex. Approaches such
as using larger batch sizes [16, 26], reduced precision [8, 10, 19, 22]
and asynchronous updates [8, 11, 34, 43] can stop an algorithm
from converging to a good result, or increase the time to do so.
These approaches also interact in nontrivial ways and may require
updating the underlying optimization algorithm [16, 28, 31], further
affecting performance.

This lack of standard evaluation criteria leaves deep learning
practitioners having to navigate these trade-offs. For example, min-
imal effort back propagation (meProp) delivers a 3.1x speed up over
back propagation on MNIST [38]. Using 8-bit precision gives a 3x
speed up on MNIST [10]. Does combining meProp with 8-bit preci-
sion give a 9.3x speed up? Would that speed translate to a larger
model on a dataset like ImageNet, and combine with "Accurate,
Large Minibatch SGD" [16] to train an ImageNet model in 7 min-
utes? Currently, these questions can only be answered via tedious
and time-consuming experimentation. Researchers face a similar
challenge: when they have a new idea for an optimization, which

SysML’18, February 2018, Stanford, California USA
2018. ACM ISBN 978-x-xxxx-xxxx-x/YY/MM. . . $15.00
https://doi.org/10.1145/nnnnnnn.nnnnnnn

Tasks Metrics
Image classification Training time
Question answering Training cost

Inference latency
Inference cost

Table 1: Dimensions evaluated in the first version of DAWNBench.

Dataset Threshold
ImageNet 93% Top-5 Accuracy
CIFAR10 94% Top-1 Accuracy
SQuAD 75 F1 Score

Table 2: Target thresholds in the first version of DAWNBench.

previous techniques should they consider combining in evaluating
their results?

To provide an objective means of quantifying end-to-end deep
learning performance, we introduce DAWNBench, an open bench-
mark and competition for end-to-end deep learning training and in-
ference. Instead of simply measuring time per iteration (or through-
put), DAWNBench measures end-to-end performance in training
(e.g., time, cost) and inference (e.g., latency, cost) at a specified state-
of-the-art level of accuracy. This provides an objective means of
normalizing across differences in computation frameworks, hard-
ware, optimization algorithms, hyperparameter settings, and other
factors that affect real-world performance. Our initial release of
DAWNBench provides end-to-end learning and inference tasks in-
cluding image classification on CIFAR10 [29] and ImageNet [35],
and question answering on SQuAD [33], and reference implemen-
tations for each task. Over time, with community input, we plan
to expand the set of benchmark tasks (e.g., segmentation, machine
translation, video classification) and metrics.

2 BENCHMARK STRUCTURE
DAWNBench evaluates deep learning systems on different tasks
based on several metrics, using multiple datasets. The benchmark
allows innovation in software, algorithms, communication meth-
ods, etc. By only specifying the task, DAWNBench also allows
experimentation of new model architectures and hardware. In the
initial release, we seed entries for two tasks: image classification
on CIFAR10 and ImageNet, and question answering on SQuAD,
and evaluate on four metrics: training time to a specified valida-
tion accuracy, cost (in USD) of training to a specified validation
accuracy using reserved public cloud instances1, average latency
of performing inference on a single item (image or question), and
average cost of inference for 10,000 items (Table 1). Each dataset

1Spot instances are not allowed due to volatile pricing.

http://dawn.cs.stanford.edu/benchmark
https://doi.org/10.1145/nnnnnnn.nnnnnnn

SysML’18, February 2018, Stanford, California USA Coleman et al.

0 50 100 150 200 250
Number of epochs

0.90
0.91
0.92
0.93
0.94

To
p-

1
V

al
id

at
io

n
A

cc
.

Convergence Rate

0

500

1000

1500

2000

2500

Im
ag

es
 /

se
co

nd

Throughput

0.0 0.5 1.0 1.5 2.0 2.5 3.0 3.5 4.0
Time (in hours)

0.90
0.91
0.92
0.93
0.94

To
p-

1
V

al
id

at
io

n
A

cc
.

Batch size

End-to-end Training Time

Batch size = 32 Batch size = 256 Batch size = 2048

Figure 1: Effect of minibatch size on convergence rate, throughput,
and end-to-end training time of a ResNet56 CIFAR10model written
in TensorFlow and run on a Nvidia P100. Learning rates are tuned
as per [16].

has a specific target threshold all entries must exceed to be con-
sidered (Table 2). Outside submissions can choose which subset
of metrics to be evaluated on. We also provide reference imple-
mentations and seed entries, implemented in two popular deep
learning frameworks, PyTorch and TensorFlow. These reference
implementations were collected and adapted from official reposito-
ries on Github, and produce accuracy numbers on par with those
reported in the original research papers [21], while also conforming
to the various performance recommendations published with these
frameworks [15].

3 EXAMPLE RESULTS
In this section, we offer preliminary results that seek to answer two
questions: (1) Is training time to a specified validation accuracy a
useful metric to evaluate deep learning systems? (2) What type of
insights can DAWNBench surface?

Evaluating Impact of Minibatch Size. To illustrate the value of
DAWNBench’s end-to-end performance metric, we use it to study
howminibatch size impacts both the convergence rate and hardware
performance (FLOPS) of a deep learning workload, making it hard
to reason about end-to-end performance from either metric alone.
Prior work [5, 13, 16, 27, 30] has shown that picking aminibatch size
too small or too large can lead to poor convergence, i.e. minibatch
size affects convergence. Additionally, larger minibatch sizes better
saturate hardware execution units [5, 13]. In choosing theminibatch
size that minimizes total time to a target accuracy, we must balance
these two factors. As we show in Figure 1, for a ResNet56 model
implemented in TensorFlow and trained on the CIFAR10 dataset
on a Nvidia P100 GPU, a minibatch size of 32 produces the best
convergence rate (least number of epochs to highest accuracy), and
a minibatch size of 2048 produces the best throughput (number of
images processed divided by total time taken). A minibatch size of
256 represents a reasonable trade-off between convergence rate and
throughput. A minibatch size of 256 reaches an accuracy of 93.38%,
which is only 0.43% less than the maximum accuracy achieved
with a minibatch size of 32, in 1.9x less time. Benchmarks that
focus exclusively on convergence rate and throughput are unable
to surface these practical trade-offs for factors even as simple as

10
0

10
1

10
2

Training time (hours; log10)

10
1

10
2

In
f.

tim
e

(m
s;

 lo
g1

0) TensorFlow

10
0

10
1

10
2

Training time (hours; log10)

10
1

10
2

In
f.

tim
e

(m
s;

 lo
g1

0) PyTorch

ResNet56
ResNet164 (B)
ResNet164 (NB)

1 K80 (GC)
1 K80 (EC2)
1 P100
16 vCPUs (GC)

Figure 2: Inference time vs. training time to 93% val. acc., for dif-
ferent hardware, frameworks, and model architectures in DAWN-
Bench’s seed entries. ResNet164 (B) uses a bottleneck building block,
while (NB) uses a simple building block.

minibatch size. Due to the impact and importance of these trade-
offs, training time to a specified validation accuracy is a useful
metric to evaluate deep learning systems.

Comparison of DAWNBench Seed Entries. We seeded DAWN-
Bench with single-GPU and CPU results for TensorFlow and Py-
Torch, using reference implementations of models when possible.
To illustrate some of the insights DAWNBench can surface, we show
some of the variability present across DAWNBench’s metrics even
from simple factors such as the model, software framework and
hardware type in Figure 2. This figure presents training time to 93%
validation accuracy, and single-image inference latency for various
ResNet architectures for the CIFAR10 dataset, on different hard-
ware platforms (1 K80 GPU on two cloud providers [Google and
Amazon], 1 P100 GPU on a private cluster, and a 16vCPU machine
on Google Cloud) and frameworks.

As the figure illustrates, TensorFlow is faster than PyTorch on
CPUs, but slightly slower on GPUs, both for training and inference.
This is partly due to data format: TensorFlow supports both NCHW
and NHWC layouts (N: Number of Samples, C: Number of Channels,
H: Height, W: Width), which give better performance on GPUs and
CPUs respectively, while PyTorch only supports NCHW. K80 per-
formance is similar on both cloud providers. Training and inference
time are proportional to the depth of the model, as expected.

4 CONCLUSION
DAWNBench proposes a simple, living benchmark for the perfor-
mance metrics practitioners care about most: end-to-end time to
train a model with state-of-the-art accuracy, and inference time
with that accuracy. We hope that this collection of tasks, seed en-
tries and our ongoing competition will provide a simple way to
test and validate a wide variety of new ideas, spanning systems,
algorithms, and hardware, to optimize deep learning. We intend to
keep DAWNBench up to date with new tasks and goals to help the
community track progress in deep learning systems.

ACKNOWLEDGMENTS
This research was supported in part by affiliate members and other
supporters of the Stanford DAWN project - Google, Intel, Microsoft,
Teradata, and VMware - as well as DARPA under No. FA8750-17-
2-0095 (D3M), industrial gifts and support from Toyota Research

DAWNBench: An End-to-End Deep Learning
Benchmark and Competition SysML’18, February 2018, Stanford, California USA

Institute, Juniper Networks, Keysight Technologies, Hitachi, Face-
book, Northrop Grumman, NetApp, and the NSF under grants DGE-
1656518, DGE-114747, and CNS-1651570.

REFERENCES
[1] Martín Abadi, Paul Barham, Jianmin Chen, Zhifeng Chen, Andy Davis, Jeffrey

Dean, Matthieu Devin, Sanjay Ghemawat, Geoffrey Irving, Michael Isard, et al.
2016. TensorFlow: A System for Large-Scale Machine Learning.. In OSDI, Vol. 16.
265–283.

[2] Robert Adolf, Saketh Rama, Brandon Reagen, Gu-Yeon Wei, and David Brooks.
2016. Fathom: Reference Workloads for Modern Deep Learning Methods. In
Workload Characterization (IISWC), 2016 IEEE International Symposium on. IEEE,
1–10.

[3] Soheil Bahrampour, Naveen Ramakrishnan, Lukas Schott, and Mohak Shah.
2015. Comparative study of deep learning software frameworks. arXiv preprint
arXiv:1511.06435 (2015).

[4] Baidu. 2017. DeepBench: Benchmarking Deep Learning operations on different
hardware. (Aug. 2017). https://github.com/baidu-research/DeepBench

[5] Yoshua Bengio. 2012. Practical recommendations for gradient-based training of
deep architectures. In Neural networks: Tricks of the trade. Springer, 437–478.

[6] Microsoft Research Blog. 2017. Microsoft unveils Project Brainwave
for real-time AI. https://www.microsoft.com/en-us/research/blog/
microsoft-unveils-project-brainwave/. (2017). Accessed: 2017-09-04.

[7] Sharan Chetlur, Cliff Woolley, Philippe Vandermersch, Jonathan Cohen, John
Tran, Bryan Catanzaro, and Evan Shelhamer. 2014. cuDNN: Efficient Primitives
for Deep Learning. arXiv preprint arXiv:1410.0759 (2014).

[8] Trishul Chilimbi, Yutaka Suzue, Johnson Apacible, and Karthik Kalyanaraman.
2014. Project Adam: Building an Efficient and Scalable Deep Learning Training
System. In Proceedings of the 11th USENIX Conference on Operating Systems Design
and Implementation (OSDI’14). USENIX Association, Berkeley, CA, USA, 571–582.
http://dl.acm.org/citation.cfm?id=2685048.2685094

[9] Soumith Chintala. 2017. Convnet-benchmarks: Easy Benchmarking of All Pub-
licly Accessible Implementations of Convnets. (Sept. 2017). https://github.com/
soumith/convnet-benchmarks original-date: 2014-07-12T03:18:46Z.

[10] Christopher De Sa, Matthew Feldman, Christopher Ré, and Kunle Olukotun.
2017. Understanding and Optimizing Asynchronous Low-Precision Stochastic
Gradient Descent. In Proceedings of the 44th Annual International Symposium on
Computer Architecture. ACM, 561–574.

[11] Jeffrey Dean, Greg Corrado, Rajat Monga, Kai Chen, Matthieu Devin, Mark
Mao, Andrew Senior, Paul Tucker, Ke Yang, Quoc V Le, et al. 2012. Large Scale
Distributed Deep Networks. In Advances in neural information processing systems.
1223–1231.

[12] Xavier Glorot, Antoine Bordes, and Yoshua Bengio. 2011. Deep sparse rectifier
neural networks. In Proceedings of the Fourteenth International Conference on
Artificial Intelligence and Statistics. 315–323.

[13] Ian Goodfellow, Yoshua Bengio, and Aaron Courville. 2016. Deep Learning. MIT
Press. http://www.deeplearningbook.org.

[14] Google. 2017. TensorFlow Benchmarks. (2017). https://www.tensorflow.org/
performance/benchmarks

[15] Google. 2017. TensorFlow Performance Guidelines. (2017). https://www.
tensorflow.org/performance/performance_models

[16] Priya Goyal, Piotr Dollár, Ross Girshick, Pieter Noordhuis, Lukasz Wesolowski,
Aapo Kyrola, Andrew Tulloch, Yangqing Jia, and Kaiming He. 2017. Accu-
rate, Large Minibatch SGD: Training ImageNet in 1 Hour. arXiv preprint
arXiv:1706.02677 (2017).

[17] Graphcore. 2017. Accelerating Next Generation Machine Intelligence. https:
//www.graphcore.ai/technology. (2017). Accessed: 2017-09-04.

[18] Song Han, Xingyu Liu, Huizi Mao, Jing Pu, Ardavan Pedram, Mark A. Horowitz,
and William J. Dally. 2016. EIE: Efficient Inference Engine on Compressed Deep
Neural Network. SIGARCH Comput. Archit. News 44, 3 (June 2016), 243–254.
https://doi.org/10.1145/3007787.3001163

[19] Song Han, Huizi Mao, andWilliam J Dally. 2015. Deep compression: Compressing
deep neural networks with pruning, trained quantization and huffman coding.
arXiv preprint arXiv:1510.00149 (2015).

[20] Aaron Harlap, Henggang Cui, Wei Dai, Jinliang Wei, Gregory R Ganger, Phillip B
Gibbons, Garth AGibson, and Eric P Xing. 2016. Addressing the straggler problem
for iterative convergent parallel ML. In SoCC. 98–111.

[21] Kaiming He, Xiangyu Zhang, Shaoqing Ren, and Jian Sun. 2016. Deep residual
learning for image recognition. In Proceedings of the IEEE conference on computer
vision and pattern recognition. 770–778.

[22] Andrew G. Howard, Menglong Zhu, Bo Chen, Dmitry Kalenichenko, Weijun
Wang, Tobias Weyand, Marco Andreetto, and Hartwig Adam. 2017. MobileNets:
Efficient Convolutional Neural Networks for Mobile Vision Applications. (2017).
arXiv:1704.04861 http://arxiv.org/abs/1704.04861

[23] Forrest N. Iandola, Song Han, Matthew W. Moskewicz, Khalid Ashraf, William J.
Dally, and Kurt Keutzer. 2016. SqueezeNet: AlexNet-level accuracy with 50x fewer

parameters and< 0.5 MB model size. (2016). https://arxiv.org/abs/1602.07360
[24] Sergey Ioffe and Christian Szegedy. 2015. Batch normalization: Accelerating deep

network training by reducing internal covariate shift. In International Conference
on Machine Learning. 448–456.

[25] Yangqing Jia, Evan Shelhamer, Jeff Donahue, Sergey Karayev, Jonathan Long,
Ross Girshick, Sergio Guadarrama, and Trevor Darrell. 2014. Caffe: Convolu-
tional Architecture for Fast Feature Embedding. In Proceedings of the 22Nd ACM
International Conference on Multimedia (MM ’14). ACM, New York, NY, USA,
675–678. https://doi.org/10.1145/2647868.2654889

[26] Norman P. Jouppi, Cliff Young, Nishant Patil, David Patterson, Gaurav Agrawal,
Raminder Bajwa, Sarah Bates, Suresh Bhatia, Nan Boden, Al Borchers, Rick Boyle,
Pierre-luc Cantin, Clifford Chao, Chris Clark, Jeremy Coriell, Mike Daley, Matt
Dau, Jeffrey Dean, Ben Gelb, Tara Vazir Ghaemmaghami, Rajendra Gottipati,
William Gulland, Robert Hagmann, C. Richard Ho, Doug Hogberg, John Hu,
Robert Hundt, Dan Hurt, Julian Ibarz, Aaron Jaffey, Alek Jaworski, Alexander
Kaplan, Harshit Khaitan, Daniel Killebrew, Andy Koch, Naveen Kumar, Steve
Lacy, James Laudon, James Law, Diemthu Le, Chris Leary, Zhuyuan Liu, Kyle
Lucke, Alan Lundin, Gordon MacKean, Adriana Maggiore, Maire Mahony, Kieran
Miller, Rahul Nagarajan, Ravi Narayanaswami, Ray Ni, Kathy Nix, Thomas Norrie,
Mark Omernick, Narayana Penukonda, Andy Phelps, Jonathan Ross, Matt Ross,
Amir Salek, Emad Samadiani, Chris Severn, Gregory Sizikov, Matthew Snelham,
Jed Souter, Dan Steinberg, Andy Swing, Mercedes Tan, Gregory Thorson, Bo
Tian, Horia Toma, Erick Tuttle, Vijay Vasudevan, Richard Walter, Walter Wang,
Eric Wilcox, and Doe Hyun Yoon. 2017. In-Datacenter Performance Analysis
of a Tensor Processing Unit. In Proceedings of the 44th Annual International
Symposium on Computer Architecture (ISCA ’17). ACM, New York, NY, USA, 1–12.
https://doi.org/10.1145/3079856.3080246

[27] Nitish Shirish Keskar, Dheevatsa Mudigere, Jorge Nocedal, Mikhail Smelyan-
skiy, and Ping Tak Peter Tang. 2017. On large-batch training for deep learning:
Generalization gap and sharp minima. ICLR (2017).

[28] Diederik Kingma and Jimmy Ba. 2014. Adam: A method for stochastic optimiza-
tion. arXiv preprint arXiv:1412.6980 (2014).

[29] Alex Krizhevsky and Geoffrey Hinton. 2009. Learning multiple layers of features
from tiny images. (2009).

[30] Mu Li, Tong Zhang, Yuqiang Chen, and Alexander J Smola. 2014. Efficient
mini-batch training for stochastic optimization. In SIGKDD. ACM, 661–670.

[31] Ioannis Mitliagkas, Ce Zhang, Stefan Hadjis, and Christopher Ré. 2016. Asyn-
chrony begets Momentum, with an Application to Deep Learning. In Communi-
cation, Control, and Computing (Allerton), 2016 54th Annual Allerton Conference
on. IEEE, 997–1004.

[32] Dexmont Pena, Andrew Forembski, Xiaofan Xu, and David Moloney. 2017. Bench-
marking of CNNs for Low-Cost, Low-Power Robotics Applications. (2017).

[33] Pranav Rajpurkar, Jian Zhang, Konstantin Lopyrev, and Percy Liang. 2016.
SQuAD: 100,000+ Questions for Machine Comprehension of Text. arXiv preprint
arXiv:1606.05250 (2016).

[34] Benjamin Recht, Christopher Re, Stephen Wright, and Feng Niu. 2011. Hogwild:
A lock-free approach to parallelizing stochastic gradient descent. In Advances in
neural information processing systems. 693–701.

[35] Olga Russakovsky, Jia Deng, Hao Su, Jonathan Krause, Sanjeev Satheesh, SeanMa,
ZhihengHuang, Andrej Karpathy, Aditya Khosla, Michael Bernstein, Alexander C.
Berg, and Li Fei-Fei. 2015. ImageNet Large Scale Visual Recognition Challenge.
115, 3 (2015), 211–252. https://doi.org/10.1007/s11263-015-0816-y

[36] Shaohuai Shi, Qiang Wang, Pengfei Xu, and Xiaowen Chu. 2016. Benchmarking
state-of-the-art deep learning software tools. In Proceedings of the International
Conference on Cloud Computing and Big Data. IEEE.

[37] Jascha Sohl-Dickstein, Ben Poole, and Surya Ganguli. 2014. Fast large-scale
optimization by unifying stochastic gradient and quasi-Newton methods. In
International Conference on Machine Learning. 604–612.

[38] Xu Sun, Xuancheng Ren, Shuming Ma, and Houfeng Wang. 2017. meProp: Spar-
sified Back Propagation for Accelerated Deep Learning with Reduced Overfitting.
In Proceedings of the 34th International Conference on Machine Learning (Pro-
ceedings of Machine Learning Research), Doina Precup and Yee Whye Teh (Eds.),
Vol. 70. PMLR, International Convention Centre, Sydney, Australia, 3299–3308.
http://proceedings.mlr.press/v70/sun17c.html

[39] Ilya Sutskever, James Martens, George Dahl, and Geoffrey Hinton. 2013. On the
importance of initialization and momentum in deep learning. In International
conference on machine learning. 1139–1147.

[40] T Tieleman and G Hinton. 2014. RMSprop Gradient Optimization. http://www.cs.
toronto.edu/~tijmen/csc321/ slides/ lecture_slides_lec6.pdf (2014).

[41] Leonard Truong, Rajkishore Barik, Ehsan Totoni, Hai Liu, Chick Markley, Ar-
mando Fox, and Tatiana Shpeisman. 2016. Latte: A Language, Compiler, and
Runtime for Elegant and Efficient Deep Neural Networks. In Proceedings of the
37th ACM SIGPLAN Conference on Programming Language Design and Implemen-
tation (PLDI ’16). ACM, New York, NY, USA, 209–223. https://doi.org/10.1145/
2908080.2908105

[42] B. Wu, F. Iandola, P. H. Jin, and K. Keutzer. 2017. SqueezeDet: Unified, Small, Low
Power Fully Convolutional Neural Networks for Real-Time Object Detection for
Autonomous Driving. In 2017 IEEE Conference on Computer Vision and Pattern

https://github.com/baidu-research/DeepBench
https://www.microsoft.com/en-us/research/blog/microsoft-unveils-project-brainwave/
https://www.microsoft.com/en-us/research/blog/microsoft-unveils-project-brainwave/
http://dl.acm.org/citation.cfm?id=2685048.2685094
https://github.com/soumith/convnet-benchmarks
https://github.com/soumith/convnet-benchmarks
http://www.deeplearningbook.org
https://www.tensorflow.org/performance/benchmarks
https://www.tensorflow.org/performance/benchmarks
https://www.tensorflow.org/performance/performance_models
https://www.tensorflow.org/performance/performance_models
https://www.graphcore.ai/technology
https://www.graphcore.ai/technology
https://doi.org/10.1145/3007787.3001163
http://arxiv.org/abs/1704.04861
http://arxiv.org/abs/1704.04861
https://arxiv.org/abs/1602.07360
https://doi.org/10.1145/2647868.2654889
https://doi.org/10.1145/3079856.3080246
https://doi.org/10.1007/s11263-015-0816-y
http://proceedings.mlr.press/v70/sun17c.html
http://www.cs.toronto.edu/~tijmen/csc321/slides/lecture_slides_lec6.pdf
http://www.cs.toronto.edu/~tijmen/csc321/slides/lecture_slides_lec6.pdf
https://doi.org/10.1145/2908080.2908105
https://doi.org/10.1145/2908080.2908105

SysML’18, February 2018, Stanford, California USA Coleman et al.

Recognition Workshops (CVPRW) (2017-07). 446–454. https://doi.org/10.1109/
CVPRW.2017.60

[43] Ce Zhang and Christopher Ré. 2014. Dimmwitted: A study of main-memory
statistical analytics. Proceedings of the VLDB Endowment 7, 12 (2014), 1283–1294.

[44] Xiangyu Zhang, Xinyu Zhou, Mengxiao Lin, and Jian Sun. 2017. ShuffleNet: An
Extremely Efficient Convolutional Neural Network for Mobile Devices. (2017).
arXiv:1707.01083 http://arxiv.org/abs/1707.01083

https://doi.org/10.1109/CVPRW.2017.60
https://doi.org/10.1109/CVPRW.2017.60
http://arxiv.org/abs/1707.01083
http://arxiv.org/abs/1707.01083

	Abstract
	1 Introduction
	2 Benchmark Structure
	3 Example Results
	4 Conclusion
	References

