
Learning Network Size While Training with ShrinkNets
Guillaume Leclerc, Raul Castro Fernandez, Samuel Madden

Massachusetts Institute of Technology
[leclerc,raulcf,madden]@mit.edu

1 INTRODUCTION
When designing neural networks, one of the key parameters is
the network size, i.e., the number of layers and neurons per layer.
Choosing these parameters appropriately can dramatically affect
performance, yet there is no reliable way to efficiently set them.
Although many search strategies and heuristics [1] have been pro-
posed, including random search, meta-gradient descent [11], Gauss-
ian processes [2], and Parzen Estimators [2], they generally require
a compute-intensive search of parameter space.

In this paper we present a method to automatically find an ap-
propriate network size, drastically reducing optimization time. The
key idea is to learn the right network size at the same time that
the network is learning the main task. For example, for an image
classification task, with our approach we can provide the training
data to a network—without sizing it a priori—and expect to end up
with a network that has learned to classify images with an accuracy
similar to a the best manually engineered network. Our approach
has two main benefits. First, we no longer need to choose a network
size before training. Second, the final network size will tuned to be
appropriate for the task at hand, and not larger. This is important
because over-sized networks have a lower inference throughput
and higher memory footprint.

Our approach has two main challenges. First, we need a way to
dynamically size the network during training. Second, we need a
loss function that optimizes for the additional task of sizing, with-
out deteriorating the learning performance of the main task. Our
approach, called ShrinkNets, copes with both challenges.

2 SHRINKNETS
During training, our approach starts with an explicitly over-sized
network. As training progresses, we learn which neurons are not
contributing to learning and remove them dynamically, effectively
shrinking the network. This method requires two key components:
first, we need a way to identify neurons that are not contributing
to the learning process, and second we need a way to balance the
network size and the generalization capability for the main task.
We introduce a new Filter layer that takes care of deactivating neu-
rons. We also modify existing loss functions to incorporate a new
term that takes care of balancing network size and generalization
capability appropriately.

Filter Layers: Filter layers have weights in the range [0,+∞]

and are usually placed after linear and convolutional layers. The
Filter Layer takes an input of size (B ×C × D1 × · · · × Dn), where
B is the batch size, C the number of features (or channels, in the
case of convolutional layers), and D any additional dimension. This
structure makes it compatible with fully connected layers with
n = 0 or convolutional layers with n = 2. Their crucial property is
a parameter θ ∈ RC . The output is defined as follows:

Filter (I ;θ) = I ◦max(0,θ) (1)

Where ◦ is the pointwise multiplication, and θ is expanded in all
dimensions to match the input size (except the second one since
they are equal by definition). It is easy to see that if for any k , if
θk ≤ 0, the kth input feature/channel is multiplied by zero and
have no influence on the output. If this happens, we say the Filter
layer deactivates the neuron. These disabled neurons/channels can
be removed from the network without changing its output. Before
explaining how that is achieved, we explain next how the weights
of the Filter Layer are initialized and adjusted during training.

Training Procedure: Once Filter layers are placed in a network
and initialized (sampled from the Uniform[0, 1] distribution), we
could train the network directly using our standard loss function,
and we could achieve performance equivalent to a normal neural
network. However, our goal is to find the smallest network with
reasonable performance. We achieve that by introducing sparsity
in the parameters of the Filter Layers, thus forcing the deactivation
of neurons. To obtain this sparsity, we simply redefine the loss
function:

L′(x ,y;θ) = L(x ,y) + λ |max(0,θ)| (2)

The additional term λ |max(0,θ)| introduces sparsity (see Lasso
loss [14]). The second component of the loss increases the gradient
with respect to θ , thus pushing its value towards zero. Neurons
with little impact on the original loss (gradient lower than λ), will
not be able to compete against this attraction towards zero. Because
the entries in θ with a value of 0 or less correspond to dead neurons,
λ effectively controls the number of neurons/channels in the entire
network. We introduced the max(. . .) into the loss to make sure
that neurons are permamently disabled when performing gradient
descent based optimization. Next, we explain how to implement
ShrinkNets efficiently.

Dynamic Network Resizing It is possible to reduce the over-
head of the training process by removing neurons as soon as they
become deactivated by θ going to 0. To do this, we implemented a
neural garbage collectionmechanism which prunes deactivated neu-
rons on-the-fly, reducing the processing time andmemory overhead.
To support this feature, it is crucial to understand the information
flow between neurons and layers in the neural network. We achieve
this by representing such information flow as a graph. Vertices rep-
resent layers, and edges are event-hubs responsible for propagating
information about disabled neurons to the relevant layers.

3 EVALUATION
We implemented ShrinkNets, including the garbage collectionmech-
anism on top of PyTorch [10], and we have made the software open
source.1. We used our implementation to evaluate two crucial as-
pects of ShrinkNets, which we present next.

1The code is available as Python/PyTorch library on http://github.com/mitdbg/
fastdeepnets

http://github.com/mitdbg/fastdeepnets
http://github.com/mitdbg/fastdeepnets

102

103

104

H
id

de
n

U
ni

ts

0 20 40 60 80 100
Epoch

10−4

10−3

10−2

10−1

100

C
ro

ss
-E

nt
ro

py
lo

ss

λ = 10−5

λ = 10−4
λ = 10−3

λ = 10−2
λ = 10−1

Figure 1: Evolution of the number of hidden units and loss
over time on the MNIST dataset for different λ values

3.1 Does ShrinkNet converge?
We trained a one hidden layer neural network with one filter layer
to control the number of hidden units. We initialized the models
with 10000 neurons and trained them on MNIST [7] using different
values for λ. Figure Figure 1 shows that λ works as a proxy for
the network size, with bigger λ implying smaller networks. More
importantly, the figure helps us confirm that despite the regular
spikes—which are caused by the dynamic disabling of neurons—
ShrinkNets eventually converge.

3.2 Does ShrinkNet find good networks?
In this experiment we want to find an appropriate network size for
two network architectures, a multi-layer perceptron (MLP) and the
LeNet-5 model [7]. We have no prior information about the network
size, but we set an upper bound of 50 channels per convolutional
layer and 5000 neurons for fully connected layers. We then use
random search to vary the parameters that determine the network
size, i.e., λ in the case of ShrinkNets, the width of each layer in the
case of Fixed and similar to previous but adding a L2 penalty [9]
(Fixed-L2). We train all variants on MNIST [7], FashionMNIST [15]
and CIFAR10 [6]. We use the same number of epochs, 100 for MLPs
and 200 for LeNet-5. We select the epoch that performed the best on
the validation set and evaluated it on the testing set. We repeat this
process 50 times and show the distribution of the testing accuracy
in Figure 2.

The results in the figure show that ShrinkNets finds better net-
works with fewer training iterations than the other methods, be-
cause it achieves highermedian and less variable accuracies. Despite
the simple nature of this experiment, we believe that the results
generalize to more complex search methods; mainly because our
solution reduces the dimensionality of the space they have to ex-
plore.

97.0

97.5

98.0

98.5

A
cc

ur
ac

y
(%

)

MNIST

86

87

88

89

90
FashionMNIST

46

48

50

52

54

56

3
La

ye
rs

Fe
ed

Fo
rw

ar
d

CIFAR10

98.6

98.8

99.0

99.2

99.4

A
cc

ur
ac

y
(%

)

Fixed Fixed +L2 ShrinkNets

88

89

90

91

92

55

60

65

70

75

Le
N

et
-5

Figure 2: Distributions of testing accuracy for different
training methods, datasets and architectures using random
search

4 RELATEDWORK
There are many methods in the literature that aim to simplify net-
work structure. Most of them focuses on removing connections
(eg: [3], [4]). On the other side, ShrinkNets and some others [13]
and [12] try to remove entire neurons instead of connections. This
is very useful because it reduces the size of the matrices, produc-
ing speed-up even on devices/libraries that only support dense
matrices . ShrinkNets improves on [13] because it removes neu-
rons during training, speeding up the rest of the process. Further
it outperforms [12] on convergence speed and because it does not
need to change the optimizer. To the best of our knowledge this is
also the first work that tries to learn the number of channels in a
convolutional neural network.

5 CONCLUSION
In this paper we presented a novel technique to guess a reasonable
network size based on single parameter λ that control the tradeoff
between loss and network size. We demonstrated that ShrinkNets
works both on fully connected networks and convolutional neural
networks. Although the initial results are promising, there are many
additional avenues to explore. In the current implementation we
only “learn” the number of features (neurons or channels). We plan
to augment this with a dynamic number of layers as seen in [8] to be
able to determine the entire architecture. Further, as shown in Figure
1 that the loss temporarily suffers from the removal of neurons. It is
likely that the loss would be more stable if the number of neurons
converged faster or neurons disappeared more slowly. For this
reason we plan to explore proximal gradient methods to optimize
the filter vectors and/or randomize neuron removals. Finally, during
our evaluation we picked small datasets mainly to be able to train
many models and have statistically significant distributions. We
plan to verify that our approach see if it generalizes to bigger
datasets and other architectures like ResNet [5], which is possible
with small modifications to our existing code base.

2

REFERENCES
[1] Yoshua Bengio. 2012. Practical recommendations for gradient-based training of

deep architectures. Lecture Notes in Computer Science (including subseries Lecture
Notes in Artificial Intelligence and Lecture Notes in Bioinformatics) 7700 LECTU
(2012), 437–478. https://doi.org/10.1007/978-3-642-35289-8-26 arXiv:1206.5533

[2] James Bergstra, Rémi Bardenet, Yoshua Bengio, and Balázs Kégl. 2011. Algorithms
for Hyper-Parameter Optimization. In Advances in Neural Information Processing
Systems (NIPS). 2546–2554. https://doi.org/2012arXiv1206.2944S arXiv:1206.2944

[3] Yann Le Cun, John S Denker, and Sara a Solla. 1990. Optimal Brain Damage.
Advances in Neural Information Processing Systems 2, 1 (1990), 598–605. https:
//doi.org/10.1.1.32.7223 arXiv:arXiv:1011.1669v3

[4] SongHan, Huizi Mao, andWilliam J Dally. 2015. Deep Compression: Compressing
Deep Neural Networks with Pruning, Trained Quantization and Huffman Coding.
(2015). https://doi.org/abs/1510.00149/1510.00149 arXiv:1510.00149

[5] Kaiming He, Xiangyu Zhang, Shaoqing Ren, and Jian Sun. 2016. Deep Residual
Learning for Image Recognition. In 2016 IEEE Conference on Computer Vision
and Pattern Recognition (CVPR). 770–778. https://doi.org/10.1109/CVPR.2016.90
arXiv:1512.03385

[6] Alex Krizhevsky. 2009. Learning Multiple Layers of Features from Tiny Images.
. . . Science Department, University of Toronto, Tech. . . . (2009), 1–60. https://doi.
org/10.1.1.222.9220 arXiv:arXiv:1011.1669v3

[7] Y LeCun, L Bottou, Yoshua Bengio, and P Haffner. 2001. Gradient-Based Learning
Applied to Document Recognition. In Intelligent Signal Processing. 306–351. https:
//doi.org/10.1109/5.726791 arXiv:1102.0183

[8] Benjamin Meier. [n. d.]. Going Deeper: Infinite Deep Neural Networks. ([n. d.]).
https://github.com/kutoga/going_deeper/raw/master/doc/going_deeper.pdf

[9] Andrew Y Ng. 2004. Feature selection, \ell_1 vs. \ell_2 regularization, and rota-
tional invariance.. In ICML. 78–85. http://www.machinelearning.org/proceedings/
icml2004/papers/354.pdf

[10] Adam Paszke, Sam Gross, Soumith Chintala, Gregory Chanan, Edward Yang,
Zachary DeVito, Zeming Lin, Alban Desmaison, Luca Antiga, and Adam Lerer.
2017. Automatic differentiation in PyTorch. (2017).

[11] Fabian Pedregosa. 2016. Hyperparameter optimizationwith approximate gradient.
(2016). arXiv:1602.02355 https://arxiv.org/pdf/1602.02355.pdfhttp://arxiv.org/abs/
1602.02355

[12] George Philipp and Jaime G Carbonell. 2017. Nonparametric Neural Network. In
Proc. International Conference on Learning Representations. 1–27. arXiv:1712.05440
https://www.cs.cmu.edu/{~}jgc/publication/NonparametricNeuralNe

[13] Simone Scardapane, Danilo Comminiello, Amir Hussain, and Aurelio Uncini.
2017. Group sparse regularization for deep neural networks. Neurocomputing
241 (2017), 81–89. https://doi.org/10.1016/j.neucom.2017.02.029 arXiv:1607.00485

[14] Robert Tibshirani. 1996. Regression Selection and Shrinkage via the Lasso. (1996),
267–288 pages. https://doi.org/10.2307/2346178 arXiv:1369âĂŞ7412/11/73273

[15] Han Xiao, Kashif Rasul, and Roland Vollgraf. 2017. Fashion-MNIST: a Novel
Image Dataset for Benchmarking Machine Learning Algorithms. (2017).
arXiv:1708.07747 https://arxiv.org/pdf/1708.07747.pdfhttp://arxiv.org/abs/1708.
07747

3

https://doi.org/10.1007/978-3-642-35289-8-26
http://arxiv.org/abs/1206.5533
https://doi.org/2012arXiv1206.2944S
http://arxiv.org/abs/1206.2944
https://doi.org/10.1.1.32.7223
https://doi.org/10.1.1.32.7223
http://arxiv.org/abs/arXiv:1011.1669v3
https://doi.org/abs/1510.00149/1510.00149
http://arxiv.org/abs/1510.00149
https://doi.org/10.1109/CVPR.2016.90
http://arxiv.org/abs/1512.03385
https://doi.org/10.1.1.222.9220
https://doi.org/10.1.1.222.9220
http://arxiv.org/abs/arXiv:1011.1669v3
https://doi.org/10.1109/5.726791
https://doi.org/10.1109/5.726791
http://arxiv.org/abs/1102.0183
https://github.com/kutoga/going_deeper/raw/master/doc/going_deeper.pdf
http://www.machinelearning.org/proceedings/icml2004/papers/354.pdf
http://www.machinelearning.org/proceedings/icml2004/papers/354.pdf
http://arxiv.org/abs/1602.02355
https://arxiv.org/pdf/1602.02355.pdfhttp://arxiv.org/abs/1602.02355
https://arxiv.org/pdf/1602.02355.pdfhttp://arxiv.org/abs/1602.02355
http://arxiv.org/abs/1712.05440
https://www.cs.cmu.edu/{~}jgc/publication/NonparametricNeuralNe
https://doi.org/10.1016/j.neucom.2017.02.029
http://arxiv.org/abs/1607.00485
https://doi.org/10.2307/2346178
http://arxiv.org/abs/1369–7412/11/73273
http://arxiv.org/abs/1708.07747
https://arxiv.org/pdf/1708.07747.pdfhttp://arxiv.org/abs/1708.07747
https://arxiv.org/pdf/1708.07747.pdfhttp://arxiv.org/abs/1708.07747

	1 Introduction
	2 ShrinkNets
	3 Evaluation
	3.1 Does ShrinkNet converge?
	3.2 Does ShrinkNet find good networks?

	4 Related Work
	5 Conclusion
	References

