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ABSTRACT
Sparse deep neural network (DNN) accelerators exploit the intrinsic
redundancy in data representation to achieve high performance
and energy efficiency. However, sparse weight and input activation
arrays are unstructured, and their processing cannot take advantage
of the regular data-access patterns offered by dense arrays, thus
the processing incurs increased complexities in dataflow orchestra-
tion and resource management. In this work, we first present the
importance of the data reduction mechanism, i.e., how partial sums
are accumulated spatially or temporally, a perspective that has not
been fully explored in current literature. Motivated by the reduction
analysis, we propose Stitch-X, a novel DNN inference accelerator
architecture that can stitch together sparse weights and input acti-
vations for parallel execution. Specifically, Stitch-X employs a novel
dataflow that leverages both spatial and temporal reduction to bal-
ance energy efficiency and dataflow control complexity. Moreover,
Stitch-X adopts a new runtime Parallelism Discovery Unit (PDU)
to efficiently extract fine-grained parallelizable operations from
irregular sparse data arrays to enable a higher performance over a
wide range of input data densities and for a variety of DNN layers.
Our evaluations show that Stitch-X consistently achieves a 3.8×
speedup and improves energy-delay-squared-product (ED2P) by a
factor of 10.3× over an efficient, dense DNN accelerator. Compared
to a state-of-the-art sparse DNN accelerator, Stitch-X delivers 1.6×
better performance. A silicon prototype of the Stitch-X architecture
is scheduled for 2018.

1 INTRODUCTION
Deep learning [1] has emerged to be a key approach to solving
complex cognition and learning problems. Deep neural networks
(DNNs) in particular have become pervasive due to their successes
across a variety of applications, including image recognition [2–6],
object detection [7, 8], semantic segmentation [9–11], language
translation [12], audio synthesis [13] and autonomous driving [14].
State-of-the-art DNNs [2–11] require up to billions of operations
and hundreds of megabytes to store activations and weights, pre-
senting substantial workloads and memory traffic.

The core computation behind DNN processing is the dot-product
of input activations and weights. To obtain substantial performance
and energy efficiency gains [15–20], many prior works, from re-
search prototypes to industrial products, proposed specialized hard-
ware to accelerate DNN processing [21–34]. Algorithmic techniques
such as quantization and pruning [35, 36] can be used to sparsify
data, which could be exploited to further enhance the performance
of efficiency DNN processing [37–40]. A dot-product involves com-
puting products followed by partial-sum reduction. To better under-
stand the design complexities associated with partial-sum reduction

Figure 1: (a) SR versus TR energy. (b) Taxonomy of DNN
accelerators based on data reuse and reduction mechanism.
Non-existent dataflows are grayed out, and sparse accelera-
tors are annotated using bold font.

for sparse data, we analyze the reduction mechanisms in existing
DNN accelerator designs. Despite being overlooked in the well-
known dataflow analysis [27], the reduction mechanism plays a
key role in constructing efficient dataflows and can lead to more
than 3× difference in the overall energy efficiency. Motivated by
this insight, we propose Stitch-X, a sparse DNN accelerator ar-
chitecture that leverages a hybrid, spatial-temporal reduction to
balance energy efficiency and dataflow control complexity. To max-
imize the degree of parallelism for reduction, Stitch-X utilizes a
novel and scalable Parallelism Discovery Unit (PDU) that dynami-
cally stitches together input activation and weight pairs to produce
readily reducible partial sums.

We evaluate Stitch-X over a suite of modern DNNs [2–4, 6] that
have been pruned by methods demonstrated in [35, 36] with no
accuracy loss when tested using ImageNet [41]. Stitch-X achieves
up to 4.3× speedup (3.8× on average) and improves energy-delay-
squared-product (ED2P) by up to 13.2× (10.3× on average) over a
state-of-the-art dense DNN accelerator. To compare sparse DNN
accelerators, we use the metric of Proximity to Oracle Speedup
(PTOS), i.e., the achieved speedup benchmarked as a percentage of
the oracle speedup1. Stitch-X achieves a PTOS of 77.4%, surpassing
the state-of-the-art sparse DNN accelerator [40] by 1.6×.

2 DNN REDUCTION MECHANISM
We present a new perspective in DNN dataflow analysis: the method
in which partial sums are accumulated, i.e., reduced.

Spatial Reduction (SR) refers to spatial partial-sum accumula-
tion without explicit storage during the reduction process. Given

1Oracle performance is defined as the total number of effectual multiplications, i.e.,
both operands are non-zero, divided by the number of available multipliers.



Figure 2: (a) Stitch-X microarchitecture diagram. (b) Paral-
lelism Discovery Unit (PDU) hardware structure.

N partial sums, SR is realized using an N : 1 adder tree to produce
an output in one time step (a single clock cycle). DianNao [24] and
NVDLA [23] are examples that adopted the SR approach.

Temporal Reduction (TR) refers to partial-sum accumulation
over time by using a single adder to accumulate one partial sum per
time step over N steps. TR’s advantage is that there is less control
dependence for partial-sum accumulation, since only one element
is being accumulated at a time, instead of N in SR. However, from
an energy perspective, TR incurs a register read and write cost each
cycle, which can be significant especially when the register file is
large. Examples of TR are found in TPU [21] and ShiDianNao [26].

Figure 1(a) demonstrates the energy of an N : 1 reduction (nor-
malized to a two-operand add) by sweeping the number of input
operands (N ) for the two types of reductions. The reduction factor
is defined as the maximum number of input operands that can be
reduced in a time step. The reduction factors for SR and TR are N
and 1, respectively. The comparison between SR and TR leads to
two conclusions. First, SR is always more energy-efficient than TR
due to TRâĂŹs extra register access energy in every accumulation
step. Second, the energy benefit of SR over TR (captured in the
TR/SR ratio) decreases with increasing reduction factors. The ratio
is the largest at small reduction factors (when N = 2 or 4) and
decreases to about two at N = 128.

Figure 1(b) summarizes the data reuse and reductionmechanisms
of existing DNN accelerators. Our proposed Stitch-X architecture
adopts a hybrid reduction (HR)mechanism to combine the efficiency
of SR with the flexibility of TR to handle the irregularity in the
data access patterns of sparse DNNs. Stitch-X employs a PDU to
facilitate SR to enable higher overall performance and efficiency.

3 THE STITCH-X ACCELERATOR
Figure 2(a) shows the top-level block diagram of the Stitch-X archi-
tecture including compute, control, and memory modules.

Computemodule consists of an array of 8×3 compute elements
(CEs), PDUs, and a Global Reduction Unit (GRU). Each CE contains
three multipliers. At the local CE level, Stitch-X applies HR; and at
the global level, Stitch-X applies SR across CEs along the diagonal,
vertical, and horizontal directions with the help of the GRU to
support different types of DNN layers.

Control module contains execution, CE buffer, and writeback
controllers. The execution controller coordinates input operand
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Figure 3: Overall performance of Stitch-X running modern
DNNs: AlexNet, VGG-16, ResNet-50, and Inception-v3.

streaming from the memory module to the compute module and
the OA local buffer writeback to DRAM. The CE buffer controller
fetches and delivers operands for computation. The writeback con-
troller determines the writeback address upon completion of a
reduction.

Memory module includes on-chip SRAM that serves as buffers
for storing input activations (IA), weights (W), and output activa-
tions (OA), as well as a DRAM controller.

Figure 2(b) shows a scalable PDU design that performs parallel
search on IA and W arrays to find reducible IA and W pairs. The
PDU operates on the channel index vectors of IA and W of sizeC at
the same time. The PDU uses a C ×C comparator matrix to search
for matching IA and W channel indices in parallel. The comparator
matrix produces a binary output at each junction, 1 for match and
0 for mismatch. Priority encoding is applied to each column of
comparison outputs to obtain an ordered index sequence. Finally,
iterative leading-one detection is used to locate the addresses for
fetching W operands from the W register file (RF). A similar ap-
proach is used to locate the addresses for fetching IA operands from
the IA RF. To target a higher degree of data parallelism, the decode
width can be increased accordingly.

4 EVALUATION
A prototype Stitch-X accelerator architecture was synthesized at a
1.0 GHz clock frequency in a commercial 40 nm CMOS technology.
The core area is 2.7 mm2 and the overhead of having PDU and
decoder to stitch input operands accounts for less than 8% of the
area, significantly lower than the decoding overhead reported in
the previous sparse DNN accelerator [38].

Figure 3 shows the overall performance of Stitch-X running a
range of modern DNN workloads, including AlexNet [2], VGG-
16 [3], ResNet-50 [4], and Inception-v3 [6]. For each network, we
evaluated the speedup and CE utilization of Stitch-X over an input-
stationary SR baseline DNN accelerator, denoted by D. Across all
the networks evaluated, Stitch-X achieves a 3.8× speedup over the
dense DNN accelerator while maintaining an average CE utilization
of 74%. Compared to the oracle, Stitch-X achieves a PTOS of 77%,
1.6× better than the state-of-the-art sparse accelerator that oper-
ates on both sparse W and IA operands [40]. In addition, Stitch-X
also achieves at least 70% CE utilization when processing fully-
connected layers and 1 × 1 convolution layers, both of which are
challenging to accelerate with existing DNN accelerator designs.
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