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1 INTRODUCTION
Deep convolutional neural networks are the enabling technology
behind the recent rapid progress in computer vision. A growing body
of research in convolutional network design [4, 8, 12, 13] reveals a
clear trend: deeper networks are more accurate. Consequently, the
best-performing image recognition networks have tens of millions of
parameters and hundreds of layers. While commodity GPUs are able
to substantially accelerate training, the high computation cost of very
deep networks hinders their deployment in latency sensitive end-
user applications and on low-power devices. Moreover, the depth of
these networks results in fundamental and significant increases in
prediction latency.

Figure 1: The SkipNet learns to route images through a sub-
set of layers on a per-input basis. Challenging images (top) are
routed through more layers than easy images (bottom).

The continuous improvements in accuracy, while significant, are
small relative to the growth in model complexity. A network that
doubles in depth may only improve by a few percentage points on key
benchmarks. These small improvements are critical to the adoption
of these models in real-world applications; however, they imply that
only a small fraction of images require very deep representations
and thus the vast majority of images could be accurately processed
using shallower architectures.

In this paper, we study the design of dynamically routed networks
(SkipNets), convolutional networks that determine which layers of a
convolutional neural network should be included when processing
a given image, illustrated in Fig. 1. We frame the routing problem
as a sequential decision problem in which the outputs of previous
layers are used to decide whether to bypass the subsequent layer.
The objective in the routing problem is then to bypass as many layers
as possible while retaining the accuracy of the full network. Not only
can routing policies significantly reduce the average cost of model
inference they also provide insight into the diminishing return and
role of individual layers.

While conceptually simple, learning an efficient routing policy
is challenging. To achieve a reduction in computation, we need to
bypass the correct layers in the network. This inherently discrete
decision is not differentiable, and therefore precludes the application

of established supervised learning methods based on gradient based
optimization. Although one could introduce a soft approximation
similar to soft-attention techniques [1, 14, 15], we show that the
subsequent hard thresholding required to achieve a reduction in the
cost of computation results in low prediction accuracy. Similar to our
goals, recent research has made progress in applying reinforcement
learning (RL) techniques to address hard attention in recurrent mod-
els [2, 9]. While these techniques are promising, in our experiments
we find that these RL based techniques are brittle, often getting
stuck in poor local minima and producing networks that are not
competitive with the state-of-the-art.

2 APPROACH
Dynamically routed networks are convolutional networks in which
layers are selectively included or excluded for a given input. The
per-input selection of layers is accomplished using small gating
networks that are interposed between layers. The gating networks
map the output of the previous layer or group of layers to a binary
decision to execute or bypass the subsequent layer or group of layers
as illustrated in Fig. 2.

Figure 2: SkipNet with recurrent gates. A unified recurrent gate is
shared across all the blocks.

More precisely, let xi be the input and F i (xi ) be the output of the
i th layer or group of layers, then we define the output of the gated
layer (or group of layers) as:

xi+1 = Gi (xi )F i (xi ) + (1 − Gi (xi ))xi , (1)

where Gi (xi ) ∈ {0, 1} is the gating function for layer i. In order for
Eq. 1 to be well defined, we require F i (xi ) and xi to have the same
dimensions. This requirement is satisfied by commonly used residual
network architectures and can be easily addressed by pooling or up-
sampling xi so its dimensions match that of F i (xi ). In our work, we
use ResNets [4] as our base models.

When designing the gating modules, we explore gating network
designs including both basic feed-forward convolutional architec-
tures and recurrent networks with varying degrees of parameter shar-
ing to address the trade-off between expressivity and computational
cost. In our experiments, we find the light-weighted recurrent gate
(roughly 0.04% of the computation of residual blocks) whose main
buiding block is a single layer Long Short Term Memory (LSTM) [5]
with hidden unit size of 10 outperform other designs.
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Figure 3: Computation reduction of SkipNet +SP and SkipNet +HRL+SP with recurrent gate on benchmark datasets.

2.1 Routing Policy Learning with Hybrid RL
Because SkipNets make a sequence of discrete decisions, one at
each gated layer, we frame the task of estimating the gating function
in the context of policy estimation through reinforcement learning.
We define the routing policy:

π (xi , i) = P(Gi (xi ) = дi ) (2)

as a function from the input xi to the probability distribution over
the gate action дi to execute (дi = 1) or skip (дi = 0) layer i. We
define a sample sequence of gating decisions from the routing policy
as g = [д1, . . . ,дN ] ∼ πFθ (x) where Fθ =

[
F1θ , . . . , F

N
θ

]
is the

sequence of network layers parameterized by θ .
We define the joint objective function to maximize accuracy and

gate rewards:

J(θ ,π ) = Eg[Lθ (ŷ(x, Fθ , g),y)] + Eg

[ N∑
i=1

Ri

]
(3)

≈ Lθ (ŷ(x, Fθ , g ∼ π (x)),y) + Eg

[ N∑
i=1

Ri

]
, (4)

where L is the log likelihood of the true label y given the Skip-
Net prediction ŷ. The second component in Equation 4 (referred as
Jhybrid) is the expected rewards for gate decisions, whose gradients
can obtained by REINFORCE [16] algorithm, but the first compo-
nent becomes the loss of supervised classification and its gradient
can be calculated directly. We refer optimizing this hybrid objective
function as hybrid reinforcement learning

The gate reward Ri for gate i is defined as the future rewards for
that gate:

Ri =
α

N

N−i∑
j=0

(1 − дi )Ci + L(ŷ(x, Fθ , g),y). (5)

The constant Ci is the cost of executing F i and the term (1 − дi )Ci
reflects the reward associated with skipping F i . In our experiments,
all F i have the same cost and so we set Ci = 1. Finally, α is a
tuning parameter that allows us to trade-off the competing goals of
maximizing prediction accuracy and minimizing the computation.

2.2 Supervised Pre-training
Optimizing Eq. 4 starting from random parameters also consistently
produces models with poor prediction accuracy. We conjecture that
the degraded ability to learn an accurate model is due to interference
between policy learning and image representation learning.

We relax the gate outputs G(x) in Eq. 1 to continuous values, i.e.
approximating G(x) by S(x) ∈ [0, 1]. We round the output gating
probability of the routing modules to 0 or 1 in the forward pass.
During backpropagation we use the soft-max approximation [6].

That is, the gate is restored to soft outputs and the gradients to the
soft-max outputs can be calculated accordingly.

3 RESULTS
We evaluate SkipNets, using ResNets [4] as the base models, on the
CIFAR-10 [7], CIFAR-100 [7], SVHN [10] and ImageNet 2012 [11]
datasets. We show that with the hybrid learning procedure, SkipNets
learn routing policies that significantly reduce model inference costs
(45% on the CIFAR-10 dataset, 37% on the CIFAR-100 dataset, 86%
on the SVHN dataset and 30% on the ImageNet dataset) while pre-
serving accuracy in Fig. 3. We show SkipNet outperforms spatially
adaptive computation time (SACT) and adaptive computation time
(ACT) networks [3] on the ImageNet benchmark shown in Fig. 4.
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Figure 4: Comparison of SkipNet-101 with SACT and ACT. SkipNet
reduces up to 42% of the computation of SACT with the same accuracy.
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CIFAR-10

(b) SkipNet +RNNGate
SVHN

Figure 5: Visualization of easy (top two rows) and hard (bottom two
rows) images in the CIFAR-10 and SVHN. Easy examples are more
bright and clear while hard examples tend to be dark and blurry.

We also visualize the routing behavior of the learned routing
policy in Fig. 5 by grouping images by the number of skipped layers.
It reveals that it learns to identify more challenging images and route
those images through more layers of the network.
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