
Efficient and Programmable Machine Learning on Distributed
Shared Memory via Static Analysis

Jinliang Wei
Carnegie Mellon University

jinlianw@cs.cmu.edu

Garth A. Gibson
Carnegie Mellon University and

Vector Institute
garth@cs.cmu.edu

Eric P. Xing
Petuum Inc. and Carnegie Mellon

University
epxing@cs.cmu.edu

ABSTRACT
Distributed shared memory (DSM) offers superior performance
for applications that perform fine-grain reads and writes to in-
memory variables, such as iterative machine learning (ML) training,
but presents a great challenge for application developers due to
data dependency over shared mutable states. Thus iterative ma-
chine learning training is often parallelized by replicating the same
computation on different data partitions (a.k.a. data parallelism)
ignoring data dependency. Since ML training can often tolerate
bounded error [7], such parallelization may still produce a working
solution at the cost of additional computation.

In many cases, preserving data dependency greatly reduces the
computation needed to achieve the same model quality without
harming computation throughput. In this paper, we show that such
opportunity may be exploited with minimal programmer effort via
static analysis. We present a system called Orion that statically
parallelizes serial for-loop nests, which read and write distributed
shared memory and schedules computation on a distributed cluster,
preserving fine-grained data dependency. Orion may ignore certain
dependences (given programmer permission), potentially falling
back to data parallelism, when preserving all data dependency
results in a serial execution. We show that a machine learning
training program parallelized by Orion may get a 3.5× speedup
compared to a data-parallel implementation based on parameter
servers due to preserving data dependency, while enjoying a much
more usable programming model.

1 INTRODUCTION
Distributed shared memory (DSM) [9, 11, 18] provides a global
address space for objects distributed among a cluster of nodes’
memory. By abstracting away network communication, it provides
a simple programming model for application developers. More im-
portantly it offers efficient fine-grained reads and updates when
there are indices on the globally shared variables. This is partic-
ularly suitable for machine learning training as it often performs
frequent sparse reads and updates over a large number of in-memry
parameters. Indeed the superior performance of distributed shared
memory for machine learning training has been demonstrated by
various parameter server systems [5, 12, 19]. Applications on DSM
systems, including parameter servers and Piccolo [17] are usually
implemented as a program that runs on each worker node and the
worker programs share state via DSM. Programming an efficient
DSM application is still challenging for a number of reasons. The
biggest challenge arises from data dependency over shared mutable
states, which occurs when two instructions access the same variable
and one of them is a write.

DSM systems typically do not provide concurrency control over
the shared variables, and thus it’s left to the application programmer
to properly parallelize the serial computation to a distributed pro-
gram. Different parallelization could result in vastly different con-
vergence rate for ML training. A ML common practice referred to as
data parallelism simply replicates the same computation over differ-
ent data partitions, ignoring any data dependency and thus achiev-
ing high computation throughput. However, conflicting writes may
occur if two workers write to the same variable and workers might
read stale values as the most up-to-date values are buffered by
other workers. Since iterative machine learning training tolerates
bounded error, data parallelism may still produce a working solu-
tion but may take additional iterations to reach the same solution
quality compared to when data dependency is preserved [7, 10, 19].
In STRADS [10], application programmers are expected to design
and implement a computation scheduling strategy that maximally
preserves data dependency without severely reducing computation
throughput. While a proper scheduling strategy may significantly
improve ML training convergence time, coming up with such a
strategy imposes nontrivial burden on STRADS users.

In data-flow systems such as Dryad [8], Spark [21], Naiad [15]
and TensorFlow [2], dependency is described as a Directed Acyclic
Graph (DAG) where nodes are operators and edges are the opera-
tors’ inputs and outputs. Extracting parallelism is simple with such
an explict dependency representation. However, explicitly repre-
senting operators and their inputs and outputs in a DAG fundamen-
tally forbids the DAG from capturing fine-grained dependencies as
doing so would result in an intractably large graph. Deep learning
systems such as TensorFlow [2] provide parallelized operators to
utilize all cores in one GPU, but parallelizing the whole DAG across
multiple GPUs still relies on users and data parallelism is often
employed for simplicity.

2 SYSTEM DESIGN AND EXPERIMENTS
We propose a system Orion for ML researchers/practitioners who
invent new models or algorithms and need to scale them out. Orion
provides an application library and a runtime which consists of a
set workers and a master for coordination. Application program-
mers implement a Juila [4] driver program which uses primitives
provided by the application library to initiate computation to be
performed by the runtime. In Orion, a dataset is represented as
a Distributed Array, a.k.a. DistArray, which is an n-dimensional
matrix, partitioned across multiple workers. DistArrays can store
objects of arbitrary serializable type. Similar to RDDs, DistArray
supports transformations (set operations such as map and groupBy)
that transforms one DistArray to another. Unlike RDD, DistArray

Figure 1: the 3×3 iteration space of
a two level loop nest; arrows denote
dependence vector; this loop is paral-
lelized by assigning each outer loop it-
eration (row) to a worker.

 0

 100

 200

 300

 400

 500

 600

 700

 800

1 4 8 16 64 128

se
co

nd
s

cores

750

290

165
136

37 24

Figure 2: per-data-pass execution
time of SGD matrix factorization on
various number of cores

 1
e+

08
 1

e+
09

 0 200 400 600 800 1000 1200 1400

tr
ai

ni
ng

 lo
ss

seconds

Data Parallel (BSP) on Bosen
Orion Parallelization

Figure 3: comparing SGD matrix fac-
torization parallelized by Orion with
a data-parallel implementation on
Bösen

supports point and range query on matrix elements, and more im-
portantly, in-place updates. When such a fine-grained operation is
invoked, Orion builds an index for that DistArray if one doesn’t
already exist, and the index can be either dense or sparse.

The driver program may create and transform DistArrays and
access its elements. It may also iterate over a DistArray in a loop.
The loop body may read and write any DistArray that is created
before the loop. Such loops are widely used in machine learning
training programs where the training algorithm often iterates over
the training dataset, model parameters or model dimensions. Since
a DistArray is an n-dimensional matrix, such a loop is essentially
a perfectly nested loop and the matrix is the iteration space. By
default, such a for-loop executes serialy on the driver. The pro-
grammer may parallelize it among the distributed workers by ap-
plying the @parallel_for macro. Many language tools such
as OpenMP [6] and MATLAB [1] also provide a parallel for-loop
construct. The major difference is that Orion can parallelize loops
with loop-carried dependences (i.e. dependency among loop iter-
ations) while preserving data dependency for DistArray accesses.
Moreover, Orion targets distributed execution while traditional par-
allelization algorithms target multicore shared-memory machines.

Opportunities for parallelization exist when data dependency is
sparse, i.e. when computation performs sparse accesses to shared
states. In many cases, such sparsity can be exposed via static anal-
ysis. When array access subscripts are linear combinations of the
loop induction variables (i.e. matrix indices), dependency among
loop iterations can be represented by dependence vectors [14, 20].
There exists a dependence vector from node i to node j in the
iteration space if iteration j depends on iteration i .

In many ML training algorithms, even when dependency exists
among loop iterations, the loop iterations may be executed in any
arbitrary serial order. For example, Stochastic Gradient Descent
(SGD) may process training data in any serial order, event though
different execution order may produce different, but equally valid
results (don’t-care-nondeterminism [16]). Eliminating ordering con-
straints may expose additional opportunities for parallel execution.
For example, in Fig. 1, if there were no ordering constraints, worker
2 may start executing iteration (2, 2) or (2, 3) while worker 1 is exe-
cuting iteration (1, 1). This is been not possible with the ordering
constraint as iteration (2, 2) can only be executed after (2, 1).

After the dependence vectors are computed, Orion tries to iden-
tify and parallelize cases (e.g. Fig. 1) that can take advantage of

iteration reordering. If there exist two dimensions i and j in the it-
eration space such that for any dependence vector d , either d[i] = 0
or d[j] = 0, the loop can be parallelized by partitioning the iteration
space along i and j and assigning all iterations with the same i to
the same worker. As long as we ensure iterations executing at the
same time have different values for both i and j, no two workers
can access the same variable at the same time. To handle the more
general cases, Orion employs a classic compiler parallelization algo-
rithm [20]. This algorithm transforms the iteration space to a loop
nest ofm levels of outer loops and n levels of inner loops such that
no dependence is carried by the inner loops. Thus for each outer
loop iteration, its inner loops can be executed in parallel.

When the dependency is dense or when dependence vectors do
not accurately capture the fine-grained dependency, Orion may fail
to parallelize the loop, resulting in a serial execution. In this case, the
programmay declare a buffer for a DistArray and write to the buffer
instead. The buffered updates are applied to DistArray by Orion
in a best effort manner. This may eliminates some dependency,
permitting parallelization.

In a distributed program, each read on DistArray may cause a
remote procedure call (RPC) to fetch a value over network. Orion
tries to identify DistArrays that can be pipelined among workers
to eliminate random accesses over network. For DistArrays that
cannot be pipelined, Orion synthesizes a function that computes
the DistArray access subscripts to prefetch values in bulk.

To demonstrate Orion’s effectiveness, we present an SGD matrix
factorization application on Orion, which is implemented in 70 lines
of Julia code, while implementations on parameter servers [5, 19]
and GraphLab [13] take 300-400 lines of code. Our experiments
were conducted on a cluster of up to 12 nodes, which each contains
16 physical cores (Intel E5-2698Bv3 Xeon) and 64 GiB of RAM, and
used the Netflix [3] dataset (rank is set to 1000). Fig. 2 shows the per-
data-pass execution time when the same algorithm is parallelized
across different number of CPU cores. Orion’s parallelization gains
a 5.5× speedup using 16 cores on 1 machine and a 31× speedup
using 128 cores on 8 machines compared to serial execution, with-
out harming per-data-pass convergence progress. Fig. 3 compares
Orion’s parallelization with a data-parallel (BSP) implementation
on Bösen [19] using 12 nodes. Even though Orion is 6× slower
than Bösen in terms of per-data-pass execution time, it reduces the
time spent to achieve the same model quality by 3.5× thanks to
preserving data dependency.

2

REFERENCES
[1] MATLAB Parfor Documentation. https://www.mathworks.com/help/distcomp/

parfor.html/.
[2] M. Abadi, P. Barham, J. Chen, Z. Chen, A. Davis, J. Dean, M. Devin, S. Ghemawat,

G. Irving, M. Isard, M. Kudlur, J. Levenberg, R. Monga, S. Moore, D. G. Murray,
B. Steiner, P. Tucker, V. Vasudevan, P. Warden, M. Wicke, Y. Yu, and X. Zheng.
Tensorflow: A system for large-scale machine learning. In 12th USENIX Sympo-
sium on Operating Systems Design and Implementation (OSDI 16), pages 265–283,
2016.

[3] J. Bennett and S. Lanning. The netflix prize. In KDD Cup and Workshop, 2007.
[4] J. Bezanson, A. Edelman, S. Karpinski, and V. B. Shah. Julia: A fresh approach to

numerical computing. SIAM Review, 59(1):65–98, 2017.
[5] H. Cui, A. Tumanov, J. Wei, L. Xu, W. Dai, J. Haber-Kucharsky, Q. Ho, G. R.

Ganger, P. B. Gibbons, G. A. Gibson, and E. P. Xing. Exploiting iterative-ness
for parallel ml computations. In Proceedings of the ACM Symposium on Cloud
Computing, SOCC ’14, pages 5:1–5:14, New York, NY, USA, 2014. ACM.

[6] L. Dagum and R. Menon. Openmp: An industry-standard api for shared-memory
programming. IEEE Comput. Sci. Eng., 5(1):46–55, Jan. 1998.

[7] Q. Ho, J. Cipar, H. Cui, S. Lee, J. K. Kim, P. B. Gibbons, G. A. Gibson, G. Ganger,
and E. P. Xing. More effective distributed ml via a stale synchronous parallel
parameter server. In C. Burges, L. Bottou, M. Welling, Z. Ghahramani, and
K. Weinberger, editors, Advances in Neural Information Processing Systems 26,
pages 1223–1231. Curran Associates, Inc., 2013.

[8] M. Isard, M. Budiu, Y. Yu, A. Birrell, and D. Fetterly. Dryad: Distributed data-
parallel programs from sequential building blocks. In Proceedings of the 2Nd
ACM SIGOPS/EuroSys European Conference on Computer Systems 2007, EuroSys
’07, pages 59–72, New York, NY, USA, 2007. ACM.

[9] K. L. Johnson, M. F. Kaashoek, and D. A. Wallach. Crl: High-performance all-
software distributed shared memory. In Proceedings of the Fifteenth ACM Sympo-
sium on Operating Systems Principles, SOSP ’95, pages 213–226, New York, NY,
USA, 1995. ACM.

[10] J. K. Kim, Q. Ho, S. Lee, X. Zheng, W. Dai, G. A. Gibson, and E. P. Xing. Strads:
A distributed framework for scheduled model parallel machine learning. In
Proceedings of the Eleventh European Conference on Computer Systems, EuroSys
’16, pages 5:1–5:16, New York, NY, USA, 2016. ACM.

[11] K. Li and P. Hudak. Memory coherence in shared virtual memory systems. ACM
Trans. Comput. Syst., 7(4):321–359, Nov. 1989.

[12] M. Li, D. G. Andersen, J. W. Park, A. J. Smola, A. Ahmed, V. Josifovski, J. Long,
E. J. Shekita, and B.-Y. Su. Scaling distributed machine learning with the pa-
rameter server. In 11th USENIX Symposium on Operating Systems Design and
Implementation (OSDI 14), pages 583–598, Broomfield, CO, Oct. 2014. USENIX
Association.

[13] Y. Low, D. Bickson, J. Gonzalez, C. Guestrin, A. Kyrola, and J. M. Hellerstein.
Distributed graphlab: A framework for machine learning and data mining in the
cloud. Proc. VLDB Endow., 5(8):716–727, Apr. 2012.

[14] D. E. Maydan, J. L. Hennessy, and M. S. Lam. Efficient and exact data dependence
analysis. In Proceedings of the ACM SIGPLAN 1991 Conference on Programming
Language Design and Implementation, PLDI ’91, pages 1–14, New York, NY, USA,
1991. ACM.

[15] D. G. Murray, F. McSherry, R. Isaacs, M. Isard, P. Barham, and M. Abadi. Naiad:
A timely dataflow system. In Proceedings of the Twenty-Fourth ACM Symposium
on Operating Systems Principles, SOSP ’13, pages 439–455, New York, NY, USA,
2013. ACM.

[16] K. Pingali, D. Nguyen, M. Kulkarni, M. Burtscher, M. A. Hassaan, R. Kaleem, T.-H.
Lee, A. Lenharth, R. Manevich, M. Méndez-Lojo, D. Prountzos, and X. Sui. The tao
of parallelism in algorithms. In Proceedings of the 32Nd ACM SIGPLAN Conference
on Programming Language Design and Implementation, PLDI ’11, pages 12–25,
New York, NY, USA, 2011. ACM.

[17] R. Power and J. Li. Piccolo: Building fast, distributed programs with partitioned
tables. In Proceedings of the 9th USENIX Conference on Operating Systems Design
and Implementation, OSDI’10, pages 1–14, Berkeley, CA, USA, 2010. USENIX
Association.

[18] J. Protic, M. Tomasevic, and V. Milutinovic. Distributed shared memory: Concepts
and systems. IEEE Parallel Distrib. Technol., 4(2):63–79, June 1996.

[19] J. Wei, W. Dai, A. Qiao, Q. Ho, H. Cui, G. R. Ganger, P. B. Gibbons, G. A. Gibson,
and E. P. Xing. Managed communication and consistency for fast data-parallel it-
erative analytics. In Proceedings of the Sixth ACM Symposium on Cloud Computing,
SoCC ’15, pages 381–394, New York, NY, USA, 2015. ACM.

[20] M. E. Wolf and M. S. Lam. A loop transformation theory and an algorithm to
maximize parallelism. IEEE Transactions on Parallel and Distributed Systems,
2(2):452–472, Oct. 1991.

[21] M. Zaharia, M. Chowdhury, T. Das, A. Dave, J. Ma, M. McCauly, M. J. Franklin,
S. Shenker, and I. Stoica. Resilient distributed datasets: A fault-tolerant abstrac-
tion for in-memory cluster computing. In Presented as part of the 9th USENIX
Symposium on Networked Systems Design and Implementation (NSDI 12), pages
15–28, San Jose, CA, 2012. USENIX.

3

https://www.mathworks.com/help/distcomp/parfor.html/
https://www.mathworks.com/help/distcomp/parfor.html/

	Abstract
	1 Introduction
	2 System Design and Experiments
	References

