
Optimal Message Scheduling for Aggregation
Leyuan Wang

UC Davis, Computer Science
leywang@ucdavis.edu

Mu Li, Edo Liberty, Alex J. Smola
AWS Machine Learning Palo Alto
[mli,libertye,smola]@amazon.com

ABSTRACT
We derive algorithms for producing optimal aggregation schedules
for automatically aggregating gradients across di�erent compute
units, both CPUs and GPUs, with arbitrary topologies. We show
that this can be accomplished by solving a linear program on the
spanning tree polytope. We give analytic bounds for the value of
the optimal solution for arbitrary graphs. We also propose simple
schedules that meet those bounds for some speci�c graphs.

ACM Reference Format:
Leyuan Wang and Mu Li, Edo Liberty, Alex J. Smola. 2018. Optimal Message
Scheduling for Aggregation. In Proceedings of ACM Conference on Systems
and Machine Learning (SysML’18). ACM, New York, NY, USA, Article 4,
4 pages. https://doi.org/10.475/123_4

1 INTRODUCTION
Deep learning requires large amounts of computation for training.
In recent years a number of frameworks for parallel training such
as TensorFlow, CNTK, and MXNet have emerged to take advan-
tage of multiple GPUs and entire clusters of machines. Distributed
training is nontrivial since the target machines may have varying
and large numbers of GPUs and CPUs connected nonuniformly,
with signi�cant variance in network topology and the bandwidth
of di�erent network links.

A key primitive in all deep learning frameworks is the gather-
scatter operation [1, 5]. Computing parameterw requires a set of
updates �s to be aggregated from all servers s 2 S via � =

…
s �s .

These updates are then applied tow f (w,�). Subsequently, the
new value ofw is broadcast to all servers s .

Numerous variants of this communication protocol exist. Exam-
ples include bounded delay and asynchronous updates. For simplic-
ity and conciseness, we focus on the delayless synchronous variant.
In this paper, we further focus on the communication within a
single server, though our algorithms hold for machines with multi-
ple servers as well. Consider two popular high-performance GPU
servers—Amazon’s P3.16xlarge and NVIDIA’s DGX-1 (Figure 1) and
Amazon’s P2.16xlarge instances (Figure 2). Even among just these
two servers we see a multitude of (di�erent) processors, network
interconnection types, and bandwidths.

In the computations we consider here, a full set of gradients are
broadcast between compute units, which perform the aggregations.
The communication bandwidth between processors, not computa-
tion on the processors, is the bottleneck for the overall computation.

Permission to make digital or hard copies of part or all of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for pro�t or commercial advantage and that copies bear this notice and the full citation
on the �rst page. Copyrights for third-party components of this work must be honored.
For all other uses, contact the owner/author(s).
SysML’18, April 2018, Stanford, CA USA
© 2018 Copyright held by the owner/author(s).
ACM ISBN 123-4567-24-567/08/06. . . $15.00
https://doi.org/10.475/123_4

0 1 4 5

2 3 6 7

Figure 1: Communication design for AWS P3.16xlarge in-
stances. Each edge amounts to an NVLink connection (we
skipped PCI-E and QPI links for simplicity).

0 P 1 2 P 3 4 P 5 6 P 7

P P

8 P 9 10 P 11 12 P 13 14 P 15

Figure 2: The Amazon AWS P2.16xlarge instance. Solid lines
are PCI-E bus lanes (16 lanes wide).

We assume that the entire model �ts in the memory of the com-
pute units, justi�ed by the realization that GPU memory size has
outpaced model complexity—in fact, all recent image recognition
models are smaller than Alexnet [4]. Hence, the main challenge
in optimizing the overall computation is scheduling gather-scatter
algorithms e�ciently across compute units.

RelatedWork. The ParameterServer architecture o�ers a possible
strategy for communication [1] via a bipartite graph of workers and
servers. An alternative is to perform ring synchronization, such as
Baidu-Allreduce and Horovod. We show that these algorithms arise
as special cases of our optimization approach.

2 NETWORKS OF COMPUTE UNITS
Assume for now that the computer network consists only of nodes
that are able to perform aggregation, e.g., a network of CPUs or
of GPUs only. When we want to aggregate � =

…
s �s between

servers, all changes ultimately need to reach one �nal server, say
s⇤. This is only possible if there is a spanning tree T connecting
s⇤ to all other nodes. Since each node has computation capability,
we note that we can always reduce network tra�c if we aggregate
incomingmessages before transmitting them to the next destination.
For e�ciency we can aggregate by streaming data across the edges
simultaneously. This minimizes the overhead due to tree depth.

Denote by G(V ,E) an undirected graph with vertices V corre-
sponding to compute units and edges E corresponding to commu-
nication links. Let T be the set of spanning trees on G. Let ce � 0
be the total time to transmit all gradients through edge e . The
time to synchronize all gradients along a single spanning T tree is
dominated by the link with the lowest bandwidth used by the tree.

C(T) = max
e

ceTe where Te = 1 if e 2 T (1)

https://doi.org/10.475/123_4
https://doi.org/10.475/123_4

SysML’18, April 2018, Stanford, CA USA L. Wang, M. Li, E. Liberty and A. J. Smola

In particular, Boruvka’s minimum weight spanning-tree algorithm
returns the optimal single spanning tree TMWST, i.e.,

C(T) � C(TMWST) for T 2 T .
In the case of the P3.16xlarge architecture (Figure 1), an optimal

single tree is given by the chain connecting all nodes with dual
NVLink edges with the exception of the edge (5, 7).

7 6 3 2 0 1 4 5

This is not optimal, since all the single NVLink connections, e.g.,
between (0, 3) or the dual connection (5, 7), are not used. If we used
multiple independent spanning trees, we could form 8 chains and
balance the network tra�c equally over them. This reduces the
communication time by 7/8, matching the bandwidth o�ered by ring
synchronization. We now generalize this.

The Spanning Tree Polytope. When balancing synchronization
over multiple spanning trees, each of which carries a portion of the
data, the solution can be found as an element of the spanning tree
polytope P(G), i.e., the convex combination of spanning trees onG .
In other words, the schedule sends �T tra�c using spanning treeT
and

Õ
�T = 1. It is convenient to de�ne Pe =

Õ
T 2T �TTe which is

the total amount of tra�c across edge e . This leads to the following
convex optimization problem:

C(G) := minimize
P 2P(G)

max
e

Pece (2)

L���� 2.1. For any connected graph the value C(G) of the opti-
mization problem (2) satis�es

max
e

ce � C(TMWST) � C(G) � n � 1Õ
e c
�1
e

(3)

This bound states that the highest bandwidth achievable by any
graph is bounded from above by the sum of overall edge bandwidths
uniformly distributed over a single spanning tree (n � 1 edges). In
the case of the P3.16xlarge network design, we obtain the optimal
schedule, achieving C(G) = 7/24, as follows:

0 1 4 5 0 1 4 5 0 1 4 5
= +

2 3 6 7 2 3 6 7 2 3 6 7

For P3.8xlarge servers which consist of half the GPUs, we obtain
the following optimal scheduling with C(G) = 1/3.

0 1 0 1 0 1
= +

2 3 2 3 2 3

3 NETWORKS WITH SWITCHES
Whenwe add switches, the problem ismore complicated.We cannot
consider only spanning trees as before but rather schedules. A
schedule is a fully speci�ed communication pattern that can achieve
the aggregation along the edges of the graph. Schedules are more
complex than trees because data needs to �ow through the switches
that cannot be aggregated. An example of such a network design is
that of P2.16xlarge AWS-EC2 servers. Any data crossing the central

W
al

lti
m

e
(s

ec
)

0

0.035

0.07

number of GPUs
2 4 8

Trees PS NCCL

W
al

lti
m

e
(s

ec
)

0

0.15

0.3

number of GPUs

2 4 8 16

Trees PS NCCL

W
al

lti
m

e
(s

ec
)

0

0.035

0.07

number of GPUs
2 4 8

Trees PS NCCL

W
al

lti
m

e
(s

ec
)

0

0.15

0.3

number of GPUs

2 4 8 16

Trees PS NCCL

Figure 3: Compare the communication overhead of train-
ing ResNet-152 with the proposed scheme, parameter server
(PS), and NCCL. Left: P2.16xlarge. Right: P3.16xlarge.

PCI express bridge also needs to �ow through other bridges, thus
consuming parts of their capacity.

To solve the problem, the term Pe should be rede�ned as Pe =Õ
S 2S �T Se , whereS is the set of all e�cient schedules and Se 2 Z+

is the number of times edge e participates in S . Other than that,
the problem remains unchanged. Given the set of schedules S,
the optimization is solvable using linear programming. Alas, S
could be very large, which would make this computation very
heavy. It is possible, however, to leverage characteristics of S and
symmetries in the network to reduce the solution space and make
the computation more manageable.

We can use this to solve the synchronization problem for any
network of compute devices. In the speci�c case of the P2.16xlarge
servers, we obtain the schedule shown in Figure 4. Quite surpris-
ingly, the single 16-lane PLX between both halves is not the bot-
tleneck for an e�cient schedule. The utilization of the PLX within
the cards, the PLX interconnecting the cards, and the connection
between the two central PLX chips has the ratio 15:14:8. This can be
seen, e.g., by edge-counting over the schedule in Figure 4 and by av-
eraging over all schedules and lags. Furthermore, for P2.8xlarge, the
optimal schedule is given by the �rst three stages of this diagram
(we don’t need to synchronize the last step). There, the utilization
is 7:6 between intra-card PLX and inter-card PLX chips respectively.
In both cases the bottleneck is the intra-card connectivity, a rather
surprising result.

4 EXPERIMENTS
We implemented the proposed synchronization scheme inMXNet [2].
Each schedule is constructed as a computation graph. We leveraged
MXNet’s multi-threaded engine to execute these graphs in paral-
lel. We used the data communication workload in the multi-GPU
training of ResNet-152 [3] with data parallelism as our benchmark.
We measured the walltime for each batch, speci�cally the data syn-
chronization cost of a batch. For comparison, we also tested com-
munication with a parameter server (PS) [5] and using NVIDIA’s
NCCL multi-GPU communication library. Figure 3 shows prelimi-
nary results: with 4 GPUs on P3 and 8 GPUs on P2, the proposed
scheme performs as well as a PS that uses all-to-all communication.
Both of them outperform the ring-based NCCL. When adding more
GPUs, however, PS soon saturates the bottleneck connection, while
the proposed scheme only drops by 13% on P3 and 20% on P2.

Optimal Message Scheduling for Aggregation SysML’18, April 2018, Stanford, CA USA

REFERENCES
[1] A. Ahmed, Mohamed Aly, Joseph Gonzalez, Shravan Narayanamurthy, and A. J.

Smola. Scalable inference in latent variable models. In Proceedings of The 5th ACM
International Conference on Web Search and Data Mining (WSDM), 2012.

[2] Tianqi Chen, Mu Li, Yutian Li, Min Lin, Naiyan Wang, Minjie Wang, Tianjun
Xiao, Bing Xu, Chiyuan Zhang, and Zheng Zhang. Mxnet: A �exible and e�cient
machine learning library for heterogeneous distributed systems. arXiv preprint
arXiv:1512.01274, 2015.

[3] Kaiming He, Xiangyu Zhang, Shaoqing Ren, and Jian Sun. Deep residual learning
for image recognition. CoRR, abs/1512.03385, 2015.

[4] A. Krizhevsky, I. Sutskever, and G. Hinton. Imagenet classi�cation with deep
convolutional neural networks. In NIPS, 2012.

[5] M. Li, D. G. Andersen, J. Park, A. J. Smola, A. Amhed, V. Josifovski, J. Long,
E. Shekita, and B. Y. Su. Scaling distributed machine learning with the parameter
server. In OSDI, 2014.

SysML’18, April 2018, Stanford, CA USA L. Wang, M. Li, E. Liberty and A. J. Smola

A VISUAL ILLUSTRATION OF P2.16XLARGE
COMMUNICATION SCHEDULE

0 1 2 3 4 5 6 7

P P P P

P

P

P P

8 P 9 10 P 11 12 P 13 14 P 15

0 1 2 3 4 5 6 7

P P P P

P

P

P P

8 P 9 10 P 11 12 P 13 14 P 15

0 1 2 3 4 5 6 7

P P P P

P

P

P P

8 P 9 10 P 11 12 P 13 14 P 15

0 1 2 3 4 5 6 7

P P P P

P

P

P P

8 P 9 10 P 11 12 P 13 14 P 15

Figure 4: One of the 16 components of the optimal commu-
nication schedule for P2.16xlarge (the others use one of the
other 15 nodes as the root node for aggregation). The syn-
chronization proceeds in 4 steps, which are interleaved in 4
stages.

	Abstract
	1 Introduction
	2 Networks of Compute Units
	3 Networks with Switches
	4 Experiments
	References
	A Visual illustration of P2.16xLarge communication schedule

