
Network Evolution for DNNs
Michael Alan

Chang

UC Berkeley

Aurojit Panda

NYU, ICSI

Domenic Bottini

UC Berkeley

Lisa Jian

UC Berkeley

Pranay Kumar

UC Berkeley

Scott Shenker

UC Berkeley, ICSI

1 INTRODUCTION
Deep neural networks (DNNs) power a wide range of modern ap-

plications, including autonomous vehicles, datacenter schedulers,

search engines, etc. Many of these applications must meet respon-

siveness and accuracy bounds; consequently, training and serving

performance for these models has become crucial. The community

has addressed these performance requirements in several ways

including: (a) building specialized data flow systems such as Ten-

sorFlow [1] and MxNet [2]; (b) deploying hardware accelerators

such as GPUs, FPGAs, TPUs, etc. to accelerate training and serving;

(c) developing and adopting distributed training algorithms that

allow model training to be scaled across several physically sepa-

rated servers in a data center; etc. These efforts are complimentary

and are commonly deployed together, e.g., most specialized ML

frameworks implement distributed training algorithms which dis-

tribute training tasks across servers thereby parallelizing training,

and make use of hardware accelerators to improve execution time

for individual tasks.

Existing proposals for improving DNN training performance

have however largely ignored the network fabric. This gap in the

literature is particularly surprising given that most machine learn-

ing models are relatively large, ranging from the 120MB Inception-

v3 [14] model to the 820MB VGG-16 [13] model, and must be trans-

ferred in entirety twice each training iteration. Furthermore, recent

advances in software-defined networking and programmable net-

works have made it feasible to implement optimizations that target

the network. Given these observations we ask two questions:

(a)Does thenetwork fabric affectDNN training performance?
We address this question in §2 and show through analytical argu-

ments and empirical data that network performance impacts DNN

training time, and that this impact increases as a function of the

number of workers, limiting scalability.

(b) Given the previous observation, what network services
can most improve DNN training performance? As we discuss
in §3, distributed training algorithms make use of the network dur-

ing an aggregation phase – where data from multiple workers is

aggregated to compute an updated model – and a distribution phase
– where the updated model is sent to each worker. We empirically

measure the possible benefit from improving network overheads

for each stage, and show that improving distribution leads to better

gains than improving aggregation. Additionally we also find that

while improving the aggregation phase requires adding applica-

tion specific functionality to the network, the distribution phase

can be improved using existing mechanisms, and requires minimal

network changes.

Therefore our analysis indicates that optimizing the network

fabric can improve DNN training time, and techniques targeting

the distribution phase of learning algorithms provide greater im-

provements than ones targeting the aggregation phase.

2 DOES THE NETWORK AFFECT DNN
TRAINING PERFORMANCE?

We begin by analyzing what impact the network has on DNN train-

ing time. In this section, and through the rest of this paper we focus

our analysis on distributed training algorithms that make use of

parameter servers [9] and are synchronous [1]. Each iteration of

these training algorithms proceeds as follows: each worker ran-

domly samples training data and uses this sample to train a model,

then sends this updated model to one or more parameter servers.
Each parameter server waits to receive updates from all workers,

at which point it aggregates these updates to generate a new model.

Finally once the parameter server has computed a new model it

distributes this model to all workers, who then begin working on

the next iteration. Note that in this computational model the coordi-

nation required is that the parameter server wait for updates from

all workers. As a result this model is amenable to pipelining and

in most current implementations, workers begin training (forward

propagation) as soon as possible without waiting to receive the

entire model, and send updates for each layer as soon as they are

available (i.e., as soon as back-propagation is complete through a

layer). Pipelining in the backpropagation step has a more significant

impact since this step typically takes longer [4]; as a result, our

analysis only factors in pipelining during backpropagation.

We consider the following three effects when analyzing if and

how the network affects training time: processing cycles spent

transferring data, effects due to latency, and effects due to through-

put.

Processing Cycles In existing ML frameworks there is a connec-

tion between each parameter server and worker. During aggrega-

tion each worker must send an updated model to each parameter

server, requiring the ML framework to initiate n ·w transfers (across

nodes) in the case where there are n parameter servers, andw work-

ers. Similarly during the distribution phase each parameter server

must send to each ofw workers, requiring n ·w transfer. Initiating a

transfer consumes CPU cycles (either to call into a message passing

library, or to queue up messages in a message queue) and thus we

find that the number of CPU cycles required for network transfers

in current frameworks grows with both number of workers and

parameter servers.

Latency Each parameter server must wait for an update from all

workers, and the wait time is affected by network latency which

therefore also affects iteration time. Network latency is determined

both by distance between machines – which determines propaga-

tion delay – and the number of pending packets in the network



SysML, Feb 2018, Palo Alto, California M. Chang et al.

0
1
2
3
4
5
6

0 2.5 5 7.5 10 12.5

Ite
ra
tio

n	
Ti
m
e	

(s
ec
on

ds
)

Parameter	Server	Bandwidth	(Gbps)

Figure 1: Running the Inception-v3 model shows how
varying the parameter server link bandwidth affect train-
ing performance.

0

0.2

0.4

0.6

0.8

1 2 4 8N
et
w
or
k	
O
ve
rh
ea
d	
(s
ec
)

Number	of	Workers

Distribution	Phase Aggregation	Phase

Figure 2: Remaining time to send network-queued pa-
rameters at conclusion of the respective phase, assuming
10Gbps parameter server network

– which dictates the time each packet spends in network queues.

While propagation delay is unaffected by application, the number

of pending packets is proportional (as shown above) to both the

number of parameter servers and workers. Furthermore, queuing

delays are also affected by the choice of congestion control and

packet scheduling algorithms for the network.

Throughput Finally, the total amount of data transferred during

each training iteration depends on both the model size (m) and num-

ber of workers, and is given by 2 ·m ·w . Models can be hundreds

of megabytes in size – e.g., VGG-16 is 820MB, and Inception-v3

is 120MB – and hence several 100 megabytes of data need to be

transferred during each iteration. Furthermore, the time required

to transfer this data depends on network throughout, which con-

sequently impacts training time. Furthermore, distributed training

is not beneficial when network transfer times exceed computation

time at each worker, and as a result network throughput imposes

scaling limits on DNN training.

We validated the impact of network throughput on training

performance through empirical evaluation where we measured

training time for the Inception-v3 model as we varied network

network bandwidth. We ran our evaluation on Amazon EC2 [7],

and used 8 g3.4xlarge instances as workers and one c3.8xlarge as
a parameter server. Each workers was connected to the network

using a 3.5Gbps link, while the parameter server was connected

using a 10Gbps link. We implemented and trained the model using

TensorFlow 1.4, and used Linux tc to vary the parameter server

bandwidth. Our results, shown in Figure 1, show that throttling

network throughput to 2.5Gbps results in a 2.5× increase in training

time, validating the impact of network throughput on DNN training

time.

3 BREAKING DOWN DNN COMMUNICATION
Having established that the network affects DNN training perfor-

mance, we now take a closer look at how these jobs utilize the

network and compare strategies for reducing network overhead.

As seen above, each training iteration includes two communication

phases: a distribution phase where the parameter server sends an

updated model to all workers, and a aggregation phase where each
worker sends updates to the parameter server. Additional network

functionality can improve performance for both these phases. Net-

work primitives such as IP multicast [11] that allow a sender to

transmit data to multiple receivers can be used to reduce distribu-

tion overheads by reducing the number of messages sent by each

parameter server (thus reducing CPU cycles required), reducing

bandwidth requirements for the parameter server and reducing net-

work congestion. Similarly programmable switches [8] and NFs [5]

can be used to reduce aggregation overheads by offloading some

aggregation functionality to the network [10, 12].

These techniques differ in the requirements they place on the

network, ease of deployment and expected benefits:

Requirement: IPmulticast is widely implemented in current switches [3],

and adopting this technique requires minor changes to the network

configuration and DNN implementation. On the other hand use of

in-network aggregation requires adoption of new programmable

switches, which are not yet widely deployed, and changes to the

packet processing functionality implemented by these switches.

Deployability:Multicast based approaches can be deployed in any

network fabric where multicast is enabled and requires no addi-

tional application specific configuration. In contrast, when using

in-network aggregation network administrators must ensure that

the network and application agree on aggregation semantics. This

need for agreement adds significant complexity when deploying or

modifying DNN training applications.

Benefits: We compare the benefit of improving aggregation and

distribution by empirically measuring the network overheads for

each phase. These overheads provide an upper bound on the maxi-

mum improvement that can be expected when addressing either

of these phases. We used the same setup as in §2 to perform these

measurements, and show our result in Figure 1. We find that net-

work overheads are higher during the distribution phase, and these

overheads increase as we increase the number of workers, show-

ing that when training Inception-v3, the distribution phase is a

scaling bottleneck. We observed similar trends for Resnet-200 [6]

and VGG-16, and believe that this trend holds across a variety of

models.

The above observations indicate that it is easier to improve the

distribution phase for distributed learning algorithms, and improve-

ments to this phase have a greater impact on training performance.

4 CONCLUSION
In this paper we have argued that networks should evolve to better

support DNN training jobs, and that this evolution does not require

adding new hardware or specializing the network. While the net-

work is only one among several factors affecting DNN performance,

optimizing the network is essential to ensuring DNN scalability

and allowing the use of ever larger, and more complex models.



Network Evolution for DNNs SysML, Feb 2018, Palo Alto, California

REFERENCES
[1] Abadi, M., Agarwal, A., Barham, P., Brevdo, E., Chen, Z., Citro, C., Corrado,

G. S., Davis, A., Dean, J., Devin, M., Ghemawat, S., Goodfellow, I. J., Harp, A.,

Irving, G., Isard, M., Jia, Y., Józefowicz, R., Kaiser, L., Kudlur, M., Levenberg,

J., Mané, D., Monga, R., Moore, S., Murray, D. G., Olah, C., Schuster, M.,

Shlens, J., Steiner, B., Sutskever, I., Talwar, K., Tucker, P. A., Vanhoucke,

V., Vasudevan, V., Viégas, F. B., Vinyals, O., Warden, P., Wattenberg, M.,

Wicke, M., Yu, Y., and Zheng, X. Tensorflow: Large-scale machine learning on

heterogeneous distributed systems. CoRR abs/1603.04467 (2016).

[2] Chen, T., Li, M., Li, Y., Lin, M., Wang, N., Wang, M., Xiao, T., Xu, B., Zhang,

C., and Zhang, Z. Mxnet: A flexible and efficient machine learning library for

heterogeneous distributed systems. CoRR abs/1512.01274 (2015).
[3] Catalyst 6500: Configuring IP Multicast Layer 3 Switching. https:

//www.cisco.com/c/en/us/td/docs/routers/7600/ios/12-1E/configuration/

guide/swcg/mcastmls.pdf, retrieved 01/05/2017.

[4] CNN-benchmarks. https://github.com/jcjohnson/cnn-benchmarks, retrieved

01/03/2017.

[5] ETSI. Network Functions Virtualisation. Retrieved 07/30/2014 http://portal.etsi.

org/NFV/NFV_White_Paper.pdf.

[6] He, K., Zhang, X., Ren, S., and Sun, J. Deep residual learning for image recogni-

tion. CoRR abs/1512.03385 (2015).
[7] Amazon EC2 Instance Types. https://aws.amazon.com/ec2/instance-types/, re-

trieved 01/03/2017.

[8] Barefoot Tofino. https://barefootnetworks.com/products/brief-tofino/, retrieved

01/03/2017.

[9] Li, M., Andersen, D. G., Park, J. W., Smola, A. J., Ahmed, A., Josifovski, V.,

Long, J., Shekita, E. J., and Su, B.-Y. Scaling distributed machine learning with

the parameter server. In Proceedings of the 11th USENIX Conference on Operating
Systems Design and Implementation (Berkeley, CA, USA, 2014), OSDI’14, USENIX

Association, pp. 583–598.

[10] Luo, L., Liu, M., Nelson, J., Ceze, L., Phanishayee, A., and Krishnamurthy, A.

Motivating in-network aggregation for distributed deep neural network training.

In Workshop on Approximate Computing Across the Stack (2017), ACM.

[11] Ratnasamy, S., Ermolinskiy, A., and Shenker, S. Revisiting ip multicast. In

SIGCOMM (2006).

[12] Sapio, A., Abdelaziz, I., Canini, M., and Kalnis, P. Daiet: A system for data

aggregation inside the network. In Proceedings of the 2017 Symposium on Cloud
Computing (New York, NY, USA, 2017), SoCC ’17, ACM, pp. 626–626.

[13] Simonyan, K., and Zisserman, A. Very deep convolutional networks for large-

scale image recognition. CoRR abs/1409.1556 (2014).
[14] Szegedy, C., Vanhoucke, V., Ioffe, S., Shlens, J., and Wojna, Z. Rethinking the

inception architecture for computer vision. CoRR abs/1512.00567 (2015).

https://www.cisco.com/c/en/us/td/docs/routers/7600/ios/12-1E/configuration/guide/swcg/mcastmls.pdf
https://www.cisco.com/c/en/us/td/docs/routers/7600/ios/12-1E/configuration/guide/swcg/mcastmls.pdf
https://www.cisco.com/c/en/us/td/docs/routers/7600/ios/12-1E/configuration/guide/swcg/mcastmls.pdf
https://github.com/jcjohnson/cnn-benchmarks
http://portal.etsi.org/NFV/NFV_White_Paper.pdf
http://portal.etsi.org/NFV/NFV_White_Paper.pdf
https://aws.amazon.com/ec2/instance-types/
https://barefootnetworks.com/products/brief-tofino/

	1 Introduction
	2 Does the Network Affect DNN Training Performance?
	3 Breaking down DNN Communication
	4 Conclusion
	References

