ABSTRACT
We present a compact binary architecture with 60% fewer parameters and 50% fewer operations (OP) during inference compared to the current state of the art for keyword spotting (KWS) applications at the cost of 3.4% accuracy drop. This architecture makes use of binary orthogonal codes to analyze speech features from a voice command resulting in a model with minimal memory footprint and computationally cheap, making possible its deployment in very resource-constrained microcontrollers with less than 30kB of RAM.

1 INTRODUCTION
KWS has become a popular always-on feature in smartphones, wearables and smart home devices. It serves as the entry point for speech based applications once a predefined command (e.g. “Ok Google”, “Hey Siri”) is detected from a continuous stream of audio. Because KWS applications are always running they follow a very efficient architectural design and are often implemented on small dedicated microcontrollers. These devices are constrained in terms of memory and compute capabilities, limiting the complexity and memory footprint of the deployed model.

We present BinaryCmd, read as “binary command”, a novel neural network (NN) architecture for audio that represents the weights as a combination of predefined orthogonal binary basis that can be generate very efficiently on-the-fly. This property enables the off-loading of the convolutional filters from the model, resulting in models with smaller memory footprint and a more efficient inference stage. Inspired by ResNet’s bottleneck layer [5] and LBCNN [9], where the suitability of sparse binary filters for image classification tasks is proven, we present a vastly reduced architecture from those generally use for vision problems and adjusted it at both macroarchitectural and microarchitectural levels to better capture the temporal dimension of input audio commands.

We compare our work to HelloEdge [15] following their microcontroller classification scheme and particularly focusing on the small (S) group, where the model size limit is set to 80kB and the maximum number or OPs during inference is 6M. Likewise, we use Google’s Speech Commands Dataset [13] to train and evaluate our architecture. BinaryCmd requires significantly less parameters and OPs than the best architecture in [15] that relies in depthwise separable convolutional neural networks (DS-CNN) [4, 6, 14] and that is, to the best of our knowledge, the current state of the art for KWS applications.

2 A BINARY NETWORK FOR KWS

System Overview. The implemented KWS system is comprised of two fundamental blocks where speech features are first extracted from the 1s voice command input and are fed to a NN-based block that outputs the id of the detected voice command. The system’s macroarchitecture is depicted in Figure 1. We follow the same strategy as in [15] to extract an array of 49 x 10 MFCC speech features from the input speech signal and feed them to our network.

Architecture. We present a novel NN block containing the following elements: three nested on-the-fly convolutional layers (they represent BinaryCmd’s core, Figure 2) followed by a standard convolutional, max-pooling and fully connected layers. All convolutional layers use ReLu as activation functions and have been trained using batch normalization [7].

On-the-fly convolutions. Unlike standard convolutional neural networks (CNN), our architecture does not learn convolutional filters directly. Instead, it learns weighting coefficients of deterministic binary basis that are combined in a linear fashion manner to generated the filters. We use orthogonal variable spreading factor, OVSF1, binary codes of length 2n, n ∈ N, to generate these basis. The filter creation process using the OVSF basis can be didactically illustrated as in Figure 3: First the generator outputs a set of 2n-dimensional arrays of [+1, −1] elements; then the arrays get reshaped to match the dimensions of the convolutional filter (a 4-dimensional tensor); and finally they get combined using the learned weights. We use the generated filters in our convolutional layers.

This work has been implemented in TensorFlow [1] using as base the source code provided in [15].

1OVSF codes were introduced for 3G communication systems as channelizations codes aiming to increase system capacity in multi-user access scenarios[2]
3 EVALUATION

We evaluate three configurations of BinaryCmd with a focus on reducing on-device memory footprint and number of OPs per inference pass while maintaining acceptable accuracy rates that outperform other models [3, 10–12] found in the recent literature with comparable number of OPs. The three configurations share the majority of network parameters and only differ in the number of filters, stride and ratio parameters used in our on-the-fly convolutional layers. The parameters used in our experiments are shown in Table 2. For a given filter dimensions $dim = inCh \times w \times h \times outCh$ there are dim dimensional OVSF orthogonal binary basis. The ratio parameter, $\rho \in [0, 1]$, specifies the percentage of basis that are used to generate a filter. Intuitively, the smaller the ratio, the coarser the filters and the bigger the model size savings would be, and vice-versa.

Table 1: Comparison of three BinaryCmd configurations against DS-CNN, the current state of the art for KWS applications, and other baselines presented in [15] for microcontrollers limited to a maximum of 80kB of memory and 6M OPs. Details for each BinaryCmd configuration are shown in Table 2.

![Figure 4: Results comparison against architectures in [15] for the category of small (S) microcontrollers. DS-CNN has never been tuned below 38.6kB and 5.4M OPs. All other configurations in [15] result in larger and computationally more expensive models: (189kB [19.8M OPs] and (497kB [56.9M OPs]), respectively for medium and large categories of microcontrollers.]

![Figure 4: Results comparison against architectures in [15] for the category of small (S) microcontrollers. DS-CNN has never been tuned below 38.6kB and 5.4M OPs. All other configurations in [15] result in larger and computationally more expensive models: (189kB [19.8M OPs] and (497kB [56.9M OPs]), respectively for medium and large categories of microcontrollers.]

We compare BinaryCmd against DS-CNN and all the baselines analysed in [15]. Our configurations explore the void space of 1M-3M OPs and 10kB-25kB. Architectures lying in those range of values would fit in some commercially available mid-low end ARM microcontrollers, as show in Table 3. Our preliminary results, Figure 4, show the potential of our binary architecture: up to 59% model size and 67% number of OPs reduction at the expense of no more than 3.4% accuracy loss when compared to DS-CNN. All three of our configurations simultaneously achieve top accuracy-to-size (A2S) and accuracy-to-OPs (A2OPs) ratios meaning that BinaryCmd is a good first step towards the design of architecture capable of providing over 90% accuracy levels with minimal memory footprint and low computational costs.

<table>
<thead>
<tr>
<th>Config</th>
<th>#Filters</th>
<th>Strides $[x, y]$</th>
<th>Ratios (ρ)</th>
</tr>
</thead>
<tbody>
<tr>
<td>A</td>
<td>[64, 8, 32]</td>
<td>[2, 2], [2, 2], [1, 1]</td>
<td>[1.0, 1.0, 1.0]</td>
</tr>
<tr>
<td>B</td>
<td>[64, 16, 16]</td>
<td>[2, 2], [2, 2], [1, 1]</td>
<td>[1.0, 0.5, 1.0]</td>
</tr>
<tr>
<td>C</td>
<td>[16, 16, 16]</td>
<td>[2, 2], [1, 1], [1, 1]</td>
<td>[1.0, 1.0, 1.0]</td>
</tr>
</tbody>
</table>

Table 2: Parameters in BinaryCmd for each configuration. All parameters are given in triplets since there are three on-the-fly convolutional layers (see Figure 2).

Unlike in [15], where each architecture has been optimally trained after performing an exhaustive search for feature extraction and NN model hyperparameters, the work here presented only modifies the number of training steps from the default parameters provided in [15] source code, leaving room for more efficient training setups. Furthermore, our implementation only applies standard 8-bit quantisation to the weights of the second and third on-the-fly convolutional layers as well as the standard convolutional and fully connected layers that come later in the pipeline, meaning that further reducing the model’s memory footprint is also possible. In addition, implementing a quantisation scheme [8] that jointly provides model size reductions as well as more efficient inference is a path worth exploring for applications like KWS.

<table>
<thead>
<tr>
<th>Core</th>
<th>Freq</th>
<th>SRAM</th>
<th>Flash</th>
</tr>
</thead>
<tbody>
<tr>
<td>Cortex-M0+</td>
<td>30 MHz</td>
<td>16 kB</td>
<td>64 kB</td>
</tr>
<tr>
<td>Cortex-M0+</td>
<td>48 MHz</td>
<td>32 kB</td>
<td>256 kB</td>
</tr>
<tr>
<td>Cortex-M5</td>
<td>72 MHz</td>
<td>64 kB</td>
<td>250 kB</td>
</tr>
</tbody>
</table>

Table 3: Selection of mid-low end ARM Cortex-M microcontrollers.

4 SUMMARY AND FUTURE WORK

We have presented a binary architecture capable of giving near start of the art accuracy levels while requiring a fraction of model parameters and considerable less operations per inference pass. We make this possible by generating convolutional filters on-the-fly using binary orthogonal codes that can be generated efficiently and reduce then number of trainable parameters. In the next iterations of this work we will explore different architectures suitable for speech applications that exploit further the on-the-fly generation nature of our architecture enabling a more complex design while maintaining acceptable computational costs and model size.
REFERENCES

