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ABSTRACT

Hyperparameter tuning is one of the most time-consuming steps
in machine learning. Adaptive optimizers, like AdaGrad and Adam,
reduce this labor by tuning an individual learning rate for each vari-
able. Lately, researchers have shown interest in simpler methods
like momentum SGD as they often yield better results. We ask: can
simple adaptive methods based on SGD perform well? We show
empirically that hand-tuning a single learning rate and momen-
tum makes SGD competitive with Adam. We analyze momentum’s
robustness to learning rate misspecification and curvature vari-
ation. We use this robustness to design YellowFin, an automatic
tuner for momentum and learning rate in SGD. YellowFin uses
a negative-feedback loop to compensate for the added dynamics
in asynchronous-parallel settings on the fly. We empirically show
YellowFin can converge in fewer iterations than Adam on ResNet
and LSTM models, with a speedup of up to 3.28x in synchronous
and up to 2.69x in asynchronous settings.
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1 INTRODUCTION

Accelerated forms of stochastic gradient descent (SGD) [10, 12], are
the de-facto training algorithms for deep learning [13]. Their use
requires a sane choice for their hyperparameters: typically a learning
rate and momentum parameter [13]. Adaptive optimizers aim to
eliminate hyperparameter search by tuning on the fly for a single
training run: algorithms like AdaGrad [3], RMSProp [14] and Adam
[6] use the magnitude of gradient elements to tune learning rates
individually for each variable and have been helpful in relieving
practitioners of tuning the learning rate.

Recently some researchers have started favoring simple momen-
tum SGD over the previously mentioned adaptive methods [1, 4],
often reporting better test scores [15]. Motivated by this trend, we
ask the question: can simpler adaptive methods based on momen-
tum SGD perform as well or better? We empirically show that,
with hand-tuned learning rate, Polyak’s momentum SGD achieves
faster convergence than Adam for a large class of models. We then
formulate the optimization update as a dynamical system and study
certain robustness properties of the momentum operator. Guided by
our analysis, we design YellowFin, an automatic hyperparameter
∗This extended abstract summarizes the most important contributions in our full
manuscript, with the same name, available on arXiv [17].
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tuner for momentum SGD (Section 2). It tunes both the learning rate
and momentum on the fly and can be faster than Adam (Section 3).
Finally, we discuss closed-loop YellowFin, designed for asynchro-
nous training. It uses a novel component for measuring the total
momentum in a running system, including any asynchrony-induced
momentum, a phenomenon described in [9]. This measurement is
used in a negative feedback loop to control the value of algorith-
mic momentum (Section 4). We release PyTorch and TensorFlow
implementations12 that can be used as drop-in replacements for
any optimizer. YellowFin has also been implemented in various
other packages and deployed in industry.

2 THE YELLOWFIN TUNER

In this section we summarize the main insight behind our tuner:
when the momentum value is high enough, gradient descent’s con-

vergence rate can be robust to learning rate misspecification and to

curvature variation. Robustness to learning rate misspecification
means tolerance to a less-carefully-tuned learning rate. Robustness
to curvature variation can imply a linear convergence on a class
of non-convex objectives where curvature varies significantly. To
demonstrate, we rewrite the momentum update

xt+1 = xt − α∇f (xt ) + µ (xt − xt−1), (1)

on a scalar quadratic, f (x ) with curvature h, with learning rate α
and momentum µ in terms of the momentum operator At at time t(
xt+1 − x∗

xt − x
∗

)
=

[
1 − αh + µ −µ

1 0

] (
xt − x

∗

xt−1 − x∗

)
≜ At

(
xt − x

∗

xt−1 − x∗

)
.

Lemma 2.1 (Robustness of the momentum operator). Our
robustness property stems from an unexplored fact: the momentum

operator’s spectral radius is constant in a subset of the hyperparameter

space, which we call the robust region. Specifically, if (1 − √µ )2 ≤
αh ≤ (1 + √µ )2 then the spectral radius of the momentum operator

at step t depends solely on the momentum parameter: ρ (At ) =
√
µ.

A homogeneous spectral radius for all operators At does not
guarantee a constant rate of convergence, nonetheless, we observe
this kind of behavior in practice. In our full manuscript we extend
this result to non-quadratics and discuss extensions to multidi-
mensional objectives [17]. We use these robustness insights and a
standard quadratic model analysis to drive the design of YellowFin,
an automatic tuner for momentum SGD. YellowFin uses on-the-fly
measurements from the gradients to tune both a single learning rate
and momentum. The measurement functions use a log-probability
assumption to yield estimates of the curvatures encountered during
training. Similarly, we get estimates of gradient variance and dis-
tance from a local minimum. These estimates are used to minimize
1PyTorch implementation: https://github.com/JianGoForIt/YellowFin_Pytorch
2TensorFlow implementation: https://github.com/JianGoForIt/YellowFin

https://github.com/JianGoForIt/YellowFin_Pytorch
https://github.com/JianGoForIt/YellowFin
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Figure 1: Training loss (left) and validation F1 (right) for the

3-layer constituency parsing LSTM on WSJ.
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Figure 2: Synchronous (left) and asynchronous (right) train-

ing loss for ResNet164 on CIFAR100.

the expected squared error on a local quadratic approximation. The
key point is that we force the tuner to work in the robust region by
setting an adaptive lower bound on the momentum value [17].

3 SYNCHRONOUS EXPERIMENTS

In this section, we empirically validate the importance of momen-
tum tuning and evaluate YellowFin, on both convolutional and
recurrent neural networks. We tune baseline optimizers, Adam and
momentum, SGD on learning rate grids with prescribed momen-
tum 0.9 for SGD. We run YellowFin without any hand tuning. For
visualization purposes, we smooth training losses with a uniform
window of width 1000. For Adam and momentum SGD on each
model, we pick the configuration achieving the lowest smoothed
loss. To compare two algorithms, we record the lowest smoothed
loss achieved by both. The speedup is reported as the ratio of itera-
tions to achieve this loss. We use this setup to validate our claims.

Momentum SGD is competitive with adaptive methods. In Figure 1
(left) and Figure 2 (left), we compare the training loss from tuned
momentum SGD and tuned Adam on ResNet164 [5] for CIFAR100
dataset [7] and a 3-layer LSTM [2] constituency parser for Penn
TreeBank WSJ dataset [8]. We can observe that momentum SGD
achieves 1.87x and 1.33x speedup to tuned Adam on ResNet and
LSTM model respectively.

YellowFin can match hand-tuned momentum SGD and can out-

perform hand-tuned Adam. In our experiments, YellowFin, with-
out any hand-tuning, yields training loss matching hand-tuned
momentum SGD for the ResNet and LSTM in Figure 1 (left) and Fig-
ure 2 (left). When comparing to tuned Adam, YellowFin achieves
1.38x to 2.33x speedups in training losses on the ResNet and LSTM
respectively. Noticeably, YellowFin also matches momentum SGD
in validation F1, outperforming Adam by 1% on the constituency
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Figure 3: When running YellowFin, total momentum µ̂t is
greater than algorithmic value on 16 asynchronous work-

ers (left). Closed-loop YellowFin automatically lowers al-

gorithmic momentum and matches total momentum to the

target value (right). Red dots are measured µ̂t at every step

with red line as its running average.

parsing LSTM. We refer to our full manuscript [17] for detailed
experiment protocol and results on more models.

4 CLOSED-LOOP YELLOWFIN

Asynchrony is a parallelization technique that avoids synchroniza-
tion barriers [11]. It yields better hardware efficiency, i.e. faster
steps, but can increase the number of iterations to a given met-
ric, i.e. statistical efficiency, as a tradeoff [16]. Mitliagkas et al. [9]
interpret asynchrony as added momentum dynamics. We design
closed-loop YellowFin, a variant of YellowFin to automatically
control algorithmic momentum, compensate for asynchrony and
accelerate convergence. We use the formula in (2) to model the
dynamics in the system, where the total momentum, µT , includes
both asynchrony-induced and algorithmic momentum µ,

E[xt+1 − xt ] = µT E[xt − xt−1] − αE∇f (xt ) (2)
We first use (2) to design a robust estimator µ̂T for the value of
total momentum at every iteration. Then we use a simple negative
feedback control loop to adjust the value of algorithmic momen-
tum so that µ̂T matches the target momentum decided by the basic
YellowFin algorithm. In Figure 3, we demonstrate momentum
dynamics in an asynchronous training system. As it directly uses
the target value as algorithmic momentum, the basic YellowFin
(left) exhibits total momentum µ̂T strictly larger than the target
momentum, due to asynchrony-induced momentum. Closed-loop
YellowFin (right) automatically brings down the algorithmic mo-
mentum, match measured total momentum µ̂T to target value and,
as we will see, significantly speeds up convergence compared to
YellowFin.

We evaluate closed-loop YellowFin with focus on the number
of iterations to reach a certain solution. To that end, we run 16 asyn-
chronous workers on a single machine and force them to update the
model in a round-robin fashion, i.e. the gradient is delayed for 15
iterations. Figure 2 (right) presents training losses on the CIFAR100
ResNet, using the basic YellowFin, closed-loop YellowFin and
Adam with the learning rate achieving the best smoothed loss in
Section 3. We can observe closed-loop YellowFin achieves 20.1x
speedup to YellowFin, and consequently a 2.69x speedup to Adam.
This demonstrates that 1) closed-loop YellowFin accelerates by
reducing algorithmic momentum to compensate for asynchrony
and 2) can converge in less iterations than Adam in asynchronous-
parallel training.
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