
Treelite: toolbox for decision tree deployment
Hyunsu Cho

University of Washington

chohyu01@cs.washington.edu

Mu Li

Amazon Web Services

mli@amazon.com

ABSTRACT
This paper introduces a brand new tree library treelite1. The library
is a toolbox to facilitate easy deployment of models and accelerate

prediction performance. It has a Python wrapper that allows users

to integrate it as part of their workflow. Treelite is able to read tree

ensemble models that are trained by any tree libraries, including

XGBoost [1], LightGBM [2], and scikit-learn [3]. Treelite is also

designed to minimize dependencies at the time of deployment. It

used to be the case that one had to ship his tree model with the

original tree library that trained it; with treelite, it is no longer.

Finally, treelite allows for optimizations that improve prediction

performance without changing any detail of the model.

1 INTRODUCTION
Treelite is designed with deployment scenarios in mind. Deploy-

ment involves two machines: the host machine and the target ma-

chine. See Figure 1 for a pictorial representation of the workflow.

The host machine is the machine that 1) has treelite installed and

2) stores the model of interest. The target machine on the other

hand is the machine on which actual predictions will be made. We

make no assumption as to whether the host and target machines

will be the same or distinct. Most likely they will be distinct, as

we may want to avoid installing treelite and other dependencies

on the target system. The two machines are to exchange a single

C file that contains all relevant information about the tree model.

No other object is exchanged. The target machine requires only a

functional C compiler to make predictions; it needs neither treelite

nor other tree libraries (XGBoost, LightGBM, and others).

2 DESIGN OF TREELITE
2.1 Interoperability with many tree libraries
Treelite offers multiple front-end interfaces to work with other

tree libraries. First, there is a dedicated interface to import models

produced by XGBoost [1], LightGBM [2], and scikit-learn [3]. In

particular, treelite provides a seamless integration with XGBoost.

In addition, treelite provides the model builder API that lets the

user programmatically specify his model. This is useful if the user

uses other packages to train the model. The user is asked to specify

every test condition as well as every leaf output.

2.2 Extensible modular design
As shown in Figure 1, there is a clear separation between the front-

end (parts of treelite that interact with other tree libraries) and

the back-end (parts of treelite that generate deployable C files).

The modular design facilitates future extension. A crucial piece in

the design is a common schema for decision tree ensembles. The

front-end and the back-end shall communicate in no way other

1
Hosted at https://github.com/dmlc/treelite; documentation at http://treelite.io

than the common schema. The schema is designed to accommodate

both random forests and gradient boosted trees.

2.3 Faster prediction with rule compilation
The given tree ensemble model is converted into a C program by

“compiling” decision rules into nested if-else conditions. Each test

node is converted into a pair of if-else statements as follows:

if (/* comparison test for the test node */) {
/* ... code for the left child node ... */

} else {
/* ... code for the right child node ... */

}

The left and right child nodes are then recursively expanded into C

code until every leaf node is expanded.

By compiling rules, we enable compile-time optimizations that

are specific to the model being examined. Previously, a model would

be loaded from a file at runtime, and the prediction logic would be

oblivious to any information specific to that particular model. With

rule compilation, however, the compiler has access to every bit of

information from the particular model being compiled, which it

can use to further optimize the resulting machine code. As an early

demonstration, treelite offers two optimizations
2
.

2.3.1 Annotate conditional branches. We predict the likelihood

of each condition by counting the number of data points from the

training data that satisfy that condition. If a condition is true at least

50% of the time (over the training data), the condition is labeled

as “expected to be true.”; otherwise, it is labeled as “expected to be

false.” Both GCC and clang compilers provide the compiler intrinsic

__builtin_expect specifying the likely outcome of a condition.

This helps the compiler make more intelligent decisions about the

ordering of branches, thereby improving branch prediction.

2.3.2 Use integer thresholds for conditions. This optimization

replaces all thresholds in the test nodes with integers so that each

threshold condition performs integer comparison instead of the

usual floating-point comparison. The thresholds are said to be

“quantized” into integer indices. On such platforms as x86-64, re-

placing floating-point comparisons with integer ones improves

performance by 1) reducing executable code size and 2) improving

data locality.

3 RELATEDWORKS
There are several algorithmic approaches to accelerate prediction.

Early stopping [4] finds that, for “easy” data points, we can use only

first 25-75% of member trees without loss of accuracy. Tree indexing

[5] embeds trees as objects in a spatial database and uses a R-tree-

like structure to reduce tree traversals to sub-linear complexity.

Neither early stopping nor tree indexing were incorporated in this

2
Notice that the model information is wholly preserved; the optimizations only affect

the manner at which prediction is performed.

https://github.com/dmlc/treelite
http://treelite.io

SYSML 2018, February 2018, Stanford, CA, USA Hyunsu Cho and Mu Li

Prediction
Subroutine

model.h
model.c

This contains
everything you’ll
need to make
prediction with
the model

Deployment

Front-end

Host Machine

XGBoost

LightGBM

Scikit-learn

Model
Builder

Package-agnostic
Model Schema

Models from
various packages

Treelite

Target Machine

Shared
library

(.dll/.so/.dylib)

Application

Runtime package
(optional)

Model optimization
for fast prediction

C compiler

Figure 1: How to deploy tree models with treelite
work. Tree indexing will not work well with high-dimensional

data, as spatial access trees, like KD-trees, suffer from the curse of

dimensionality [6].

Other works consider system-level optimizations to speed up

prediction without changing models or prediction accuracy. Several

existing works implement the If-Then-Else approach [2, 7–10], in

which each decision tree is translated into a sequence of if-then-else

blocks. A recent blog post by Facebook [11] utilizes distribution of

the training data to annotate branches. A high-speed corner detec-

tor implementation [9] also annotates branches, this time utilizing

runtime performance behavior of the program over data samples. A

fast document ranker [8] expresses interleaved traversal of decision

tree ensembles as simple logical bitwise operations, thereby elimi-

nating branches and control dependencies. Approaches known as

Pred and VPred [7] eliminates control dependencies by unrolling

feature-threshold comparisons.

There are deployment solutions geared towards deploying mod-

els trained with particular software packages. LightGBM [2] has

recently added support for converting its own models into C++

code. The sklearn-porter package [10] offers a suite of Python
scripts to convert many scikit-learn models. The latter supports

models other than decision tree ensembles, such as Support Vector

Machine and multi-layer perceptrons.

4 BENCHMARK
One dedicated EC2 instance of type m4.16xlarge was used to run

a benchmark. For each dataset descibed in Table 1, we trained a

1600-tree ensemble using XGBoost [1] and then another 1600-tree

ensemble using LightGBM [2]. After obtaining the models, we made

predictions on batches of varying sizes that were sampled randomly

from the data. Fifty samples for each size was taken. For treelite, we

imported each tree model (either trained by XGBoost or LightGBM),

exported it as a shared library, and then loaded it onto memory to

make predictions. For XGBoost and LightGBM, we simply loaded

the respective model by calling appropriate API calls. Throughput

is computed as the number of lines predicted per second.

3
“Allstate Claim Prediction Challenge” https://www.kaggle.com/c/ClaimPredictionCh

allenge

4
“HIGGS Data Set ” https://archive.ics.uci.edu/ml/datasets/HIGGS

5
O. Chapelle and Y. Chang. Yahoo! Learning to Rank Challenge Overview. Journal of
Machine Learning Research - W & CP, 14:1-24, 2011.

Table 1: Characteristics of three datasets

Dataset allstate3 higgs4 yahoo5

of features 4,227 28 699

Training set size 7M 10M 473,134

Validation set size 3M 100K 71,083

Overall, treelite outperforms both XGBoost and LightGBM by a

factor between 2x and 4x. The LightGBMmodel for allstate is par-
ticularly remarkable, in which treelite is 7.5x faster than LightGBM.

Note that any significant performance improvement is observed

only for sufficiently large batches of data points (at least 10,000 or

more). So treelite is currently suited for performing large batch pre-

diction. In general, the bigger the batch is, the overall throughput

would be.

102 103 104 105 106 107

Batch size

0

2e5

5e5

8e5

1e6

Th
ro

ug
hp

ut

allstate, vs. XGBoost
XGBoost
Treelite

102 103 104 105 106 107

Batch size

0

5e5

1e6

2e6

allstate, vs. LightGBM
LightGBM
Treelite

102 103 104 105 106 107

Batch size

0

1e5

2e5

3e5

Th
ro

ug
hp

ut

higgs, vs. XGBoost

XGBoost
Treelite

102 103 104 105 106 107

Batch size

0

5e5

1e6

higgs, vs. LightGBM
LightGBM
Treelite

102 103 104 105

Batch size

0

1e5

2e5

3e5

Th
ro

ug
hp

ut

yahoo, vs. XGBoost
XGBoost
Treelite

102 103 104 105

Batch size

0

1e5

2e5

3e5
yahoo, vs. LightGBM
LightGBM
Treelite

Figure 2: Throughput measured over varying sizes of data
batches. The error bars represent 95% confidence interval.

https://www.kaggle.com/c/ClaimPredictionChallenge
https://www.kaggle.com/c/ClaimPredictionChallenge
https://archive.ics.uci.edu/ml/datasets/HIGGS

Treelite: toolbox for decision tree deployment SYSML 2018, February 2018, Stanford, CA, USA

REFERENCES
[1] Tianqi Chen and Carlos Guestrin. 2016. XGBoost: A Scalable Tree Boosting

System. In Proceedings of the 22nd ACM SIGKDD International Conference on
Knowledge Discovery and Data Mining (KDD ’16). ACM, New York, NY, USA,

785–794. https://doi.org/10.1145/2939672.2939785 [Open-source project, hosted

at https://github.com/dmlc/xgboost].

[2] Guolin Ke, Qi Meng, Thomas Finley, Taifeng Wang, Wei Chen, Weidong Ma,

Qiwei Ye, and Tie-Yan Liu. 2017. LightGBM: A Highly Efficient Gradient Boosting

Decision Tree. In Advances in Neural Information Processing Systems 30 (NIPS ’17).
3149–3157. http://papers.nips.cc/paper/6907-lightgbm-a-highly-efficient-gradi

ent-boosting-decision-tree.pdf [Open-source project, hosted at https://github.c

om/Microsoft/LightGBM].

[3] F. Pedregosa, G. Varoquaux, A. Gramfort, V. Michel, B. Thirion, O. Grisel, M.

Blondel, P. Prettenhofer, R. Weiss, V. Dubourg, J. Vanderplas, A. Passos, D. Cour-

napeau, M. Brucher, M. Perrot, and E. Duchesnay. 2011. Scikit-learn: Machine

Learning in Python. Journal of Machine Learning Research 12 (2011), 2825–2830.

[Open-source project, hosted at https://github.com/scikit-learn/scikit-learn].

[4] Wei Fan, Fang Chu, Haixun Wang, and Philip S Yu. 2002. Pruning and dynamic

scheduling of cost-sensitive ensembles. In The 18th AAAI Conference on Artificial
Intelligence. 146–151.

[5] P. Zhang, C. Zhou, P. Wang, B. J. Gao, X. Zhu, and L. Guo. 2015. E-Tree:

An Efficient Indexing Structure for Ensemble Models on Data Streams. IEEE
Transactions on Knowledge and Data Engineering 27, 2 (Feb 2015), 461–474.

https://doi.org/10.1109/TKDE.2014.2298018

[6] Yannis Manolopoulos, Alexandros Nanopoulos, Apostolos N. Papadopoulos, and

Yannis Theodoridis. 2005. R-Trees: Theory and Applications. Springer Publishing
Company, Incorporated.

[7] N. Asadi, J. Lin, and A. P. de Vries. 2014. Runtime Optimizations for Tree-Based

Machine Learning Models. IEEE Transactions on Knowledge and Data Engineering
26, 9 (Sept 2014), 2281–2292. https://doi.org/10.1109/TKDE.2013.73

[8] Claudio Lucchese, Franco Maria Nardini, Salvatore Orlando, Raffaele Perego,

Nicola Tonellotto, and Rossano Venturini. 2015. QuickScorer: A Fast Algorithm

to Rank Documents with Additive Ensembles of Regression Trees. In Proceedings
of the 38th International ACM SIGIR Conference on Research and Development
in Information Retrieval (SIGIR ’15). ACM, New York, NY, USA, 73–82. https:

//doi.org/10.1145/2766462.2767733

[9] Edward Rosten and Tom Drummond. 2006. Machine Learning for High-Speed
Corner Detection. Springer Berlin Heidelberg, Berlin, Heidelberg, 430–443. https:

//doi.org/10.1007/11744023_34

[10] Darius Morawiec. [n. d.]. Scikit-learn porter. ([n. d.]). [Open-source project,

hosted at https://github.com/nok/sklearn-porter].

[11] Aleksandar Ilic and Oleksandr Kuvshynov. [n. d.]. Evaluating boosted decision

trees for billions of users. https://code.facebook.com/posts/975025089299409/

evaluating-boosted-decision-trees-for-billions-of-users/. ([n. d.]). Accessed:

November 24, 2017 [Archived at http://archive.is/e0SuX].

https://doi.org/10.1145/2939672.2939785
https://github.com/dmlc/xgboost
http://papers.nips.cc/paper/6907-lightgbm-a-highly-efficient-gradient-boosting-decision-tree.pdf
http://papers.nips.cc/paper/6907-lightgbm-a-highly-efficient-gradient-boosting-decision-tree.pdf
https://github.com/Microsoft/LightGBM
https://github.com/Microsoft/LightGBM
https://github.com/scikit-learn/scikit-learn
https://doi.org/10.1109/TKDE.2014.2298018
https://doi.org/10.1109/TKDE.2013.73
https://doi.org/10.1145/2766462.2767733
https://doi.org/10.1145/2766462.2767733
https://doi.org/10.1007/11744023_34
https://doi.org/10.1007/11744023_34
https://github.com/nok/sklearn-porter
https://code.facebook.com/posts/975025089299409/evaluating-boosted-decision-trees-for-billions-of-users/
https://code.facebook.com/posts/975025089299409/evaluating-boosted-decision-trees-for-billions-of-users/
http://archive.is/e0SuX

	Abstract
	1 Introduction
	2 Design of treelite
	2.1 Interoperability with many tree libraries
	2.2 Extensible modular design
	2.3 Faster prediction with rule compilation

	3 Related works
	4 Benchmark
	References

