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ABSTRACT
This paper introduces a brand new tree library treelite1. The library
is a toolbox to facilitate easy deployment of models and accelerate

prediction performance. It has a Python wrapper that allows users

to integrate it as part of their workflow. Treelite is able to read tree

ensemble models that are trained by any tree libraries, including

XGBoost [1], LightGBM [2], and scikit-learn [3]. Treelite is also

designed to minimize dependencies at the time of deployment. It

used to be the case that one had to ship his tree model with the

original tree library that trained it; with treelite, it is no longer.

Finally, treelite allows for optimizations that improve prediction

performance without changing any detail of the model.

1 INTRODUCTION
Treelite is designed with deployment scenarios in mind. Deploy-

ment involves two machines: the host machine and the target ma-

chine. See Figure 1 for a pictorial representation of the workflow.

The host machine is the machine that 1) has treelite installed and

2) stores the model of interest. The target machine on the other

hand is the machine on which actual predictions will be made. We

make no assumption as to whether the host and target machines

will be the same or distinct. Most likely they will be distinct, as

we may want to avoid installing treelite and other dependencies

on the target system. The two machines are to exchange a single

C file that contains all relevant information about the tree model.

No other object is exchanged. The target machine requires only a

functional C compiler to make predictions; it needs neither treelite

nor other tree libraries (XGBoost, LightGBM, and others).

2 DESIGN OF TREELITE
2.1 Interoperability with many tree libraries
Treelite offers multiple front-end interfaces to work with other

tree libraries. First, there is a dedicated interface to import models

produced by XGBoost [1], LightGBM [2], and scikit-learn [3]. In

particular, treelite provides a seamless integration with XGBoost.

In addition, treelite provides the model builder API that lets the

user programmatically specify his model. This is useful if the user

uses other packages to train the model. The user is asked to specify

every test condition as well as every leaf output.

2.2 Extensible modular design
As shown in Figure 1, there is a clear separation between the front-

end (parts of treelite that interact with other tree libraries) and

the back-end (parts of treelite that generate deployable C files).

The modular design facilitates future extension. A crucial piece in

the design is a common schema for decision tree ensembles. The

front-end and the back-end shall communicate in no way other
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Hosted at https://github.com/dmlc/treelite; documentation at http://treelite.io

than the common schema. The schema is designed to accommodate

both random forests and gradient boosted trees.

2.3 Faster prediction with rule compilation
The given tree ensemble model is converted into a C program by

“compiling” decision rules into nested if-else conditions. Each test

node is converted into a pair of if-else statements as follows:

if ( /* comparison test for the test node */ ) {
/* ... code for the left child node ... */

} else {
/* ... code for the right child node ... */

}

The left and right child nodes are then recursively expanded into C

code until every leaf node is expanded.

By compiling rules, we enable compile-time optimizations that

are specific to the model being examined. Previously, a model would

be loaded from a file at runtime, and the prediction logic would be

oblivious to any information specific to that particular model. With

rule compilation, however, the compiler has access to every bit of

information from the particular model being compiled, which it

can use to further optimize the resulting machine code. As an early

demonstration, treelite offers two optimizations
2
.

2.3.1 Annotate conditional branches. We predict the likelihood

of each condition by counting the number of data points from the

training data that satisfy that condition. If a condition is true at least

50% of the time (over the training data), the condition is labeled

as “expected to be true.”; otherwise, it is labeled as “expected to be

false.” Both GCC and clang compilers provide the compiler intrinsic

__builtin_expect specifying the likely outcome of a condition.

This helps the compiler make more intelligent decisions about the

ordering of branches, thereby improving branch prediction.

2.3.2 Use integer thresholds for conditions. This optimization

replaces all thresholds in the test nodes with integers so that each

threshold condition performs integer comparison instead of the

usual floating-point comparison. The thresholds are said to be

“quantized” into integer indices. On such platforms as x86-64, re-

placing floating-point comparisons with integer ones improves

performance by 1) reducing executable code size and 2) improving

data locality.

3 RELATEDWORKS
There are several algorithmic approaches to accelerate prediction.

Early stopping [4] finds that, for “easy” data points, we can use only

first 25-75% of member trees without loss of accuracy. Tree indexing

[5] embeds trees as objects in a spatial database and uses a R-tree-

like structure to reduce tree traversals to sub-linear complexity.

Neither early stopping nor tree indexing were incorporated in this

2
Notice that the model information is wholly preserved; the optimizations only affect

the manner at which prediction is performed.
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Figure 1: How to deploy tree models with treelite
work. Tree indexing will not work well with high-dimensional

data, as spatial access trees, like KD-trees, suffer from the curse of

dimensionality [6].

Other works consider system-level optimizations to speed up

prediction without changing models or prediction accuracy. Several

existing works implement the If-Then-Else approach [2, 7–10], in

which each decision tree is translated into a sequence of if-then-else

blocks. A recent blog post by Facebook [11] utilizes distribution of

the training data to annotate branches. A high-speed corner detec-

tor implementation [9] also annotates branches, this time utilizing

runtime performance behavior of the program over data samples. A

fast document ranker [8] expresses interleaved traversal of decision

tree ensembles as simple logical bitwise operations, thereby elimi-

nating branches and control dependencies. Approaches known as

Pred and VPred [7] eliminates control dependencies by unrolling

feature-threshold comparisons.

There are deployment solutions geared towards deploying mod-

els trained with particular software packages. LightGBM [2] has

recently added support for converting its own models into C++

code. The sklearn-porter package [10] offers a suite of Python
scripts to convert many scikit-learn models. The latter supports

models other than decision tree ensembles, such as Support Vector

Machine and multi-layer perceptrons.

4 BENCHMARK
One dedicated EC2 instance of type m4.16xlarge was used to run

a benchmark. For each dataset descibed in Table 1, we trained a

1600-tree ensemble using XGBoost [1] and then another 1600-tree

ensemble using LightGBM [2]. After obtaining the models, we made

predictions on batches of varying sizes that were sampled randomly

from the data. Fifty samples for each size was taken. For treelite, we

imported each tree model (either trained by XGBoost or LightGBM),

exported it as a shared library, and then loaded it onto memory to

make predictions. For XGBoost and LightGBM, we simply loaded

the respective model by calling appropriate API calls. Throughput

is computed as the number of lines predicted per second.

3
“Allstate Claim Prediction Challenge” https://www.kaggle.com/c/ClaimPredictionCh

allenge

4
“HIGGS Data Set ” https://archive.ics.uci.edu/ml/datasets/HIGGS

5
O. Chapelle and Y. Chang. Yahoo! Learning to Rank Challenge Overview. Journal of
Machine Learning Research - W & CP, 14:1-24, 2011.

Table 1: Characteristics of three datasets

Dataset allstate3 higgs4 yahoo5

# of features 4,227 28 699

Training set size 7M 10M 473,134

Validation set size 3M 100K 71,083

Overall, treelite outperforms both XGBoost and LightGBM by a

factor between 2x and 4x. The LightGBMmodel for allstate is par-
ticularly remarkable, in which treelite is 7.5x faster than LightGBM.

Note that any significant performance improvement is observed

only for sufficiently large batches of data points (at least 10,000 or

more). So treelite is currently suited for performing large batch pre-

diction. In general, the bigger the batch is, the overall throughput

would be.
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Figure 2: Throughput measured over varying sizes of data
batches. The error bars represent 95% confidence interval.
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