
On The Importance of Execution Ordering in
Graph-Based Distributed Machine Learning Systems

Sayed Hadi Hashemi, Sangeetha Abdu Jyothi, Roy Campbell
University of Illinois at Urbana-Champaign

ABSTRACT
Execution of operations in distributed machine learning systems
has largely ignored dependencies between communication and
computation ops. In this paper, we make the case that model-aware
ordering of operations at individual machines can decrease the step
time of training iteration in distributed machine learning systems
while also improving network utilization. The contributions of this
work are:
• We introduce a metric for quantitatively measuring the efficiency
of ordering of ops (§1).

• We propose an ordering heuristic for Model-Replica with Param-
eter Server systems (§2.1).

• We chalk out a roadmap for developing fast heuristics for model-
aware ordering of ops in Model-Replica systems with all-reduce
synchronization (§2.2).

• We evaluate our ordering mechanism on Model-Replica with
Parameter Server on TensorFlow and show that the training
efficiency can be improved by up to 78% through better ordering
of tasks with 46% reduction in step time (§3).

1 PROBLEM DEFINITION
Graph-Based Machine Learning Systems such as TensorFlow [1]
and PyTorch [12] evolved as a response to the growing complexity
of problems that artificial intelligence is trying to solve. In these
systems, a machine learning model (model) is represented by a
directed acyclic graph (DAG) with predefined operations (ops) as
nodes and their data/control dependencies as edges.

When a distributed model is sent for execution, each op is as-
signed a tag [1]. This tag determines the device on which the op
with will run. Using the type of op, we can also infer the associated
resource on the device: computation unit, or communication chan-
nel from a specific source. Thus, the tagging of ops in a distributed
model allows to precisely determine the number and type of ops
assigned to a given device. In addition, the DAG gives us the relative
ordering of ops on a device, with multiple possible combinations.
We show that the performance of the model can vary widely across
the multiple feasible combinations. Our goal is to select and enforce
execution orders with minimal makespan.

First, we illustrate the significance of ordering with a simple ex-
ample. In Figure 1a, there are two communication ops (read1,read2)
and two computation ops (conv1,conv2) assigned to a device. While
both r1 → r2 → c1 → c2 and r2 → r1 → c1 → c2 are valid orders
topologically, as shown in figures 1b and 1c, the latter has the worst
step time due to lack of overlap between transfer and computation.

Next, we define the problem formally. An execution order is
defined as a function thatmaps an op to a real number. Thismapping
determines the relative ordering of ops on a given resource. Our goal
is to determine an execution order that minimizes the makespan
of the model. This problem of finding an order that minimizes the

(a) DAG

(b) Best Execution Order

(c) Worst Execution Order

Figure 1: Example of impact of ordering on performance

makespan can be mapped to the job shop problem[9] which is
known to be NP-complete.

Given a performance oracle,Cost , which predicts the actual cost
of running an op on a resource, the upper and lower boundaries of
the makespan respectively are:

Cost(G) =
∑
op∈G

Cost(op), Cost(G) = max
r ∈R

∑
op∈Gr

Cost(op) (1)

whereG is the set of all ops,R refers to all resources, andGr refers to
all ops assigned to the resource r . For a givenmakespan, t , "Ordering
Efficiency" (E) is defined as 1:

E(G,Cost , t) =
Cost(G) − t

Cost(G) −Cost(G)
(2)

With Ordering Efficiency, we can compare two execution order
quantitatively regardless of variations in execution scenarios. E = 1
means perfect ordering (which may not be possible at all), and E = 0
means serialized execution.

2 MODEL-REPLICA DISTRIBUTION
Many large-scale machine learning systems in practice are dis-
tributed using a paradigm called Model-Replica [5–7]. In MR, a
base model is replicated on several devices (also known as work-
ers) and the input data is partitioned among these replicas. The
goal of replicas is to collectively update a persistent collection of
parameters. Therefore, at each step of training, MR requires syn-
chronization among workers.

There are two major patterns for synchronization: (a) Param-
eter server: where one or more special devices called Parameter
Servers (PS) store the master copy of the parameters and aggregate

1This metric is an update to "Scheduling Efficiency" metric in the original job shop
problem

updates to them([1, 4, 6, 11]). A worker loads a fresh copy of pa-
rameters at the beginning of each step and sends updates back to
PS during the step. (b) All Reduce: where each worker keeps a
copy of all parameters([2, 5, 7]). Changes are propagated directly to
other workers with collective algorithms such as bucket algorithm
[3] or recursive halving-doubling [15].

2.1 Ordering in Parameter Server
Search space for ordering in PS pattern can be reduced to the order-
ing of read ops on a worker. We observe that (i) Computation load
on PS is insignificant compared to communication, which makes
the ordering less influential on the overall performance, and (ii) read
ops on workers are leaves in the model, that are immediately exe-
cutable at the start of the step. Hence, the order of the computation
ops does not impact the makespan.

We calculate the order of a read op as2:

Order (read) = min{|Dep(op)| for op in G

if read ∈ Dep(op), |Dep(op)| > 1} (3)

where G is the set of all the ops in the DAG, and Dep(op) is the
set of read ops that op depends on. Intuitively this heuristic pri-
oritizes read ops that are connected to computation ops with less
dependencies. Evaluation is presented in §3.

2.2 Ordering in All Reduce
All Reduce requires all nodes to actively synchronize at the same
time. As a result, in MR+AR, a perfect execution order should
ensures that all workers reach the sync ops for each parameter
simultaneously. Hence, we need to order both computation and
communication ops.

Additionally, there are two windows for synchronizing each
parameter: (a) at the beginning of a step before the parameter is
modified or (b) at the end of a step after the parameter is updated.
This adds further complexity to the ordering problem3. Ordering
in MR+AR is ongoing work. .

3 EVALUATION
We extend TensorFlow 4 tracing capability to measure the cost
of both computational and communication ops5 to calculate the
"Ordering Efficiency". We implement the ordering algorithm as a
static analyzer and make changes in TensorFlow core to enforce
a given order on the sender side just before the response is sent
to the destination. 6. The experiments were run on a commodity
cluster 7 with one PS and one worker on separate nodes. We choose
a batch size for each model in a way that balances communication

2We use a heuristic-based approach to order read ops. We have the analysis with the
complete heuristic that uses "Cost Oracle" which is beyond the scope of this abstract.
The performance with the simple heuristic is within 5% of that obtained with the
complete cost function. Hence simple one has been chosen as the representative in
this abstract for ease of explanation.
3Most systems in practice perform the synchronization at the end of the step. A
simulation of running synchronization in the beginning can be found in systems
which removes the step barrier such as [7]
4top of the tree as of December 1, 2017: https://github.com/tensorflow/tensorflow/
commit/efbdc15b280374607895ab0ada467de4a0512e0c
5github.com/tensorflow/tensorflow/pull/14604
6The code is accessible from github.com/xldrx/orderedtf
732-core Xeon processor and 1Gbps ethernet network

0.4 0.6 0.8 1

0

0.5

1

Step Time (Normalized)

CD
F

w/ Ordering
No Ordering

Figure 2: Distribution of step time for different ordering al-
gorithms on InceprionV2 model.

incep
tion

resne
t152 vgg1

6
alexn

et seq-3
2

par-3
2

0

0.5

1

1.5

2

Th
ro
ug

hp
ut

Sp
ee
du

p w/ Ordering No Ordering

Figure 3: Throughput (Image/second) speedup of ordering
algorithms for different models. Higher the better. Seq-32 is
a 32-layer sequential model (similar to Recurrent models.)
Par-32 is a 32-layer parallel model.

and computation loads (Cost (G)−Cost (G)

Cost (G)
> 90%). We tested our

method on well-known models, Alexnet [10], ResNetV2-152 [8],
InceptionV2 [14], VGG16 [13] as well as two extreme toy models:
• Par-32: A flat model with 32 concurrent layers. All the topological
orders are the best order in this model .

• Seq-32: A sequential model with 32 layers similar to recurrent
models. Only one topological order out of 32! is the best order.

3.1 Results
Figure 2 shows the forward-pass step time cdf of 1-Worker 1-PS
training on InceptionV2.We repeat 1000 runs eachwith andwithout
the ordering heuristic. Enforcing ordering reduces the step time
by 46% on average. Moreover, the standard deviation in step time
is reduced by nearly 4× (48.3ms vs 187.1ms). We have observed
similar pattern with other models except Par-32.

Figure 3 shows the average speedup of differentmodels in forward-
pass. Notably, Resnet-152 has 78% higher ordering efficiency (which
results in 65% speed up in step time). Par-32, with all topological
orderings already optimum, is the only model whose performance
is hit marginally due to the ordering overhead.

2

https://github.com/tensorflow/tensorflow/commit/efbdc15b280374607895ab0ada467de4a0512e0c
https://github.com/tensorflow/tensorflow/commit/efbdc15b280374607895ab0ada467de4a0512e0c
github.com/tensorflow/tensorflow/pull/14604
github.com/xldrx/orderedtf

REFERENCES
[1] Martín Abadi, Paul Barham, Jianmin Chen, Zhifeng Chen, Andy Davis, Jeffrey

Dean, Matthieu Devin, Sanjay Ghemawat, Geoffrey Irving, Michael Isard, et al.
2016. TensorFlow: A System for Large-Scale Machine Learning.. In OSDI, Vol. 16.
265–283.

[2] Dario Amodei, Rishita Anubhai, Eric Battenberg, Carl Case, Jared Casper, Bryan
Catanzaro, Jingdong Chen, Mike Chrzanowski, Adam Coates, Greg Diamos,
Erich Elsen, Jesse Engel, Linxi Fan, Christopher Fougner, Tony Han, Awni Y.
Hannun, Billy Jun, Patrick LeGresley, Libby Lin, Sharan Narang, Andrew Y.
Ng, Sherjil Ozair, Ryan Prenger, Jonathan Raiman, Sanjeev Satheesh, David
Seetapun, Shubho Sengupta, Yi Wang, Zhiqian Wang, Chong Wang, Bo Xiao,
Dani Yogatama, Jun Zhan, and Zhenyao Zhu. 2015. Deep Speech 2: End-to-
End Speech Recognition in English and Mandarin. CoRR abs/1512.02595 (2015).
http://arxiv.org/abs/1512.02595

[3] Mike Barnett, Lance Shuler, Robert vanDeGeijn, Satya Gupta, David G Payne, and
Jerrell Watts. 1994. Interprocessor collective communication library (InterCom).
In Scalable High-Performance Computing Conference, 1994., Proceedings of the.
IEEE, 357–364.

[4] Trishul M Chilimbi, Yutaka Suzue, Johnson Apacible, and Karthik Kalyanaraman.
2014. Project Adam: Building an Efficient and Scalable Deep Learning Training
System.. In OSDI, Vol. 14. 571–582.

[5] Minsik Cho, Ulrich Finkler, Sameer Kumar, David S. Kung, Vaibhav Saxena,
and Dheeraj Sreedhar. 2017. PowerAI DDL. CoRR abs/1708.02188 (2017).
arXiv:1708.02188 http://arxiv.org/abs/1708.02188

[6] Jeffrey Dean, Greg Corrado, Rajat Monga, Kai Chen, Matthieu Devin, Mark
Mao, Andrew Senior, Paul Tucker, Ke Yang, Quoc V Le, et al. 2012. Large scale
distributed deep networks. In Advances in neural information processing systems.
1223–1231.

[7] Priya Goyal, Piotr Dollár, Ross Girshick, Pieter Noordhuis, Lukasz Wesolowski,
Aapo Kyrola, Andrew Tulloch, Yangqing Jia, and Kaiming He. 2017. Accu-
rate, Large Minibatch SGD: Training ImageNet in 1 Hour. arXiv preprint
arXiv:1706.02677 (2017).

[8] KaimingHe, Xiangyu Zhang, Shaoqing Ren, and Jian Sun. 2016. Identitymappings
in deep residual networks. In European Conference on Computer Vision. Springer,
630–645.

[9] Anant Singh Jain and Sheik Meeran. 1999. Deterministic job-shop scheduling:
Past, present and future. European journal of operational research 113, 2 (1999),
390–434.

[10] Alex Krizhevsky, Ilya Sutskever, and Geoffrey E Hinton. 2012. Imagenet classifica-
tion with deep convolutional neural networks. In Advances in neural information
processing systems. 1097–1105.

[11] Mu Li, David G Andersen, Jun Woo Park, Alexander J Smola, Amr Ahmed,
Vanja Josifovski, James Long, Eugene J Shekita, and Bor-Yiing Su. 2014. Scaling
Distributed Machine Learning with the Parameter Server.. In OSDI, Vol. 1. 3.

[12] Adam Paszke, Sam Gross, Soumith Chintala, and Gregory Chanan. 2017. PyTorch:
Tensors and dynamic neural networks in Python with strong GPU acceleration.
(2017).

[13] Karen Simonyan and Andrew Zisserman. 2014. Very deep convolutional networks
for large-scale image recognition. arXiv preprint arXiv:1409.1556 (2014).

[14] Christian Szegedy, Vincent Vanhoucke, Sergey Ioffe, Jon Shlens, and Zbigniew
Wojna. 2016. Rethinking the inception architecture for computer vision. In
Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition.
2818–2826.

[15] Rajeev Thakur and William D Gropp. 2003. Improving the performance of
collective operations in MPICH. In European Parallel Virtual Machine/Message
Passing Interface Users’ Group Meeting. Springer, 257–267.

3

http://arxiv.org/abs/1512.02595
http://arxiv.org/abs/1708.02188
http://arxiv.org/abs/1708.02188

	Abstract
	1 Problem Definition
	2 Model-Replica Distribution
	2.1 Ordering in Parameter Server
	2.2 Ordering in All Reduce

	3 Evaluation
	3.1 Results

	References

