
Draco: Robust Distributed Training against Adversaries
Lingjiao Chen, Hongyi Wang, Dimitris Papailiopoulos

University of Wisconsin-Madison

1 INTRODUCTION

In recent years, the computational paradigm for large-scale ma-
chine learning (ML) has started to shift towards massively large
distributed systems, sometimes comprising individually small, low-
cost compute nodes [1, 7, 9, 10, 12]. Moreover, recently some produc-
tion models are trained from user interaction with mobile devices
under the guise of Federated Learning (FL) [3, 8]. A nontrivial chal-
lenge in distributed and federated learning is protecting against
adversarial compute nodes that may affect the training process
in order to bias and corrupt the end model that will be used in
production.

A recent line of work [2, 6] studies this problem under a synchro-
nous training setup, where a parameter server (PS) stores the model,
and compute nodes evaluate gradient updates that are shipped to
the PS then. Existing work suggests that instead of averaging the
gradients, the PS can use a “robust” version of averaging, e.g., the
geometric median. Although this approach can be robust to up to
roughly half the compute nodes being adversaries, we find that it
is computationally inefficient, as the cost to compute the geometric
median can dwarf the cost of computing a batch of gradients.

Our Contributions: In this work, we present Draco, a framework
that uses algorithmic redundancy to robustify synchronous training
against adversarial compute nodes. The high level idea of Draco is
to allow each compute node to evaluate redundant gradients. Due
to the redundant computation, the PS can (i) detect the adversarial
nodes first, and then (ii) recover the correct gradient average from
the gradient updates shipped by the non-adversarial nodes. We
show that our capacity to tolerate adversaries, is proportional to
the level of gradient redundancy, giving rise to a fundamental trade-
off.

Comparing with the work of [2, 6], Draco is significantly faster
in both theory and experiments on PyTorch deployed on AWS EC2,
the end model is identical to one trained under no adversaries (e.g.,
algorithmic equivalence), and finally Draco comes with black-box
model- and problem-independent robustness guarantees irrespec-
tive of the non-convexity of the problem.

2 PROBLEM STATEMENT

The process of training a model from data can be cast as an opti-
mization known as empirical risk minimization (ERM):

min
w

1
n

n∑
i=1
ℓ(w ; zi ) (2.1)

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by the authors.
Abstracting with credit is permitted. To copy otherwise, or republish,to post on servers
or to redistribute to lists, requires prior specific permission and/or a fee.
SysML 18, Feb 2018, Stanford, CA, USA©2018

where zi ∈ Rm represents the i-th data point, n is the total number
of data points, w ∈ Rd is a parameter vector, and ℓ(w ; zi ) is a
loss function that measures the accuracy, or fidelity of the model
parameterized byw with respect to the data point zi .

One way to approximately solve the above ERM is through sto-
chastic gradient descent (SGD), which operates as follows:

wk = wk−1 − γ · ∇ℓ(wk−1; zik ), (2.2)
where ik is a random data-point index sampled from {1, . . . ,n},
and γ > 0 is the learning rate. In distributed setups, variants of
SGD operate in a similar way as (2.2).

Here we consider mini-batch SGD [5] , one of the most widely
implemented variants, which operates as follows: The PS stores a
global model, while the set of n data points is distributed among
the P compute nodes, and each compute node has access to a subset
(or all) of the data. During the computation phase of mini-batch
SGD, each of the P compute nodes samples B/P data points from
its local cached subset of the data, and computes the gradients of
these sampled data points with respect to the current model (where
B is commonly referred to as the batch-size). When each compute
node completes its local computation, it ships its gradient updates
back to the PS. The PS, upon receiving the gradient updates, applies
them to the global model (via averaging), and sends the updated
model back to the workers. The algorithm then continues on to its
next distributed iteration.

Adversarial Nodes. Here we consider the setup where a subset of
nodes can act adversarially against the training process. The goal
of an adversary can either be to completely mislead the end model,
or bias it towards specific areas of the parameter space. Formally,
an adversarial node is defined as follows.

Definition 2.1. A compute node is considered to be an adversarial
node, if it does not return the prescribed gradient update given its
allocated samples. Such a node can ship back to the PS any arbitrary
update of dimension equal to that of the true gradient.

It is easy to prove that mini-batch SGD will fail to converge
even if there is only a single adversarial node. One may ask if there
is a way to robustify distributed training algorithms like SGD in
the presence of such adversaries. In the following, we show that
it is possible to introduce robustness by algorithmic redundancy
while guaranteeing an identical model to that of mini-batch SGD in
the adversary-free case. We would like to note that —in contrast to
previous works— our framework is applicable to any gradient-based
algorithms beyond SGD, such as (accelerated/coordinate/conjugate)
gradient descent and LBFGS [4, 11]. We skip the discussion of other
training algorithms due to space constraints.

2.1 Related Work

A series of recent works has very recently initiated the research
in adversary-tolerant distributed ML. Previous works [2, 6] studies
how to tolerate adversaries by the use of the geometric median



SysML’18, Feb 2018, Stanford, CA, USA L. Chen et al.

as the update rule instead of averaging. Compared to off-the-shelf
averaging update rule in adversary-free setting, the authors of the
above papers show different variants of the geometric median rule
can yield similar convergence results in terms of training error,
while being robust to adversarial nodes. Specifically, the authors
show that by using a variant of the geometric median, up to roughly
half the compute nodes can be adversarial without affecting con-
vergence rates significantly (for convex problems). Unfortunately,
computing the geometric median exactly is a rather computation-
ally inefficient procedure.

3 DRACO: ROBUST DISTRIBUTED TRAINING

VIA ALGORITHMIC REDUNDANCY

In this section we present a sketch of our algorithmic redundancy
approach.

In Draco instead of relying on computation from the PS side
(unlike the geometric median (GM) technique of [2, 6]), we require
that the compute nodes evaluate a few more gradients than what
they are originally assigned with. Overall, if a node initially com-
putes B

P gradients, then we request that it computes a total of r · BP
gradients (selected in a systematic way that we omit to describe
due to lack of space). We can show that Draco through the added
redundancy of factor r can tolerate up to (r −1)/2 adversarial nodes
(and hence up to 50% of all compute nodes) during training with
absolutely no effect on the training or testing accuracy of the model
trained a in an adversary-free setting.

Note that to mitigate the effect of adversarial nodes,Draco needs
r times the amount of gradient computation of “vanilla” mini-batch
SGD. Thus, a natural question is how small r can be to tolerate a
certain number (say s) of adversarial nodes. In the long version
of this paper, we manage to show that for algorithms that have
a hard requirement on zero effect on the training procedure in
the pressence of (r − 1)/2 adversaries, a factor of r redundancy is
information theoretically required. In addition, we seek to provide
a lower bound on the computational complexity of the update rules
at both the compute node and the PS.

The next question is, is there a systematic approach to design
a framework that achieves this optimal behavior? The answer is
positive, and its name is Draco. Specifically, Draco achieves an
optimal result, by materializing tools that we borrow form Coding
Theory (a repetition code and a cyclic code).
Brief summary of the techniques: Suppose ŝ ≜ 2s + 1 divides n.
Our repetition code implemented by Draco works as follows. We
first divide all compute nodes into ŝ groups. In each group, all nodes
compute the average of a set of exactly the same gradients, call it д̂.
Among all values returned by the compute nodes in the same group,
the PS uses majority vote to select one value. This guarantees that
as long as less than half of the nodes in a group are adversarial, the
majority procedure negates the presence of adversaries and returns
д̂. We omit to describe the cyclic code due to space constraints, but
its main utility is that it discards the “ŝ ≜ 2s+1 divides n" condition
required by the repetition code.

4 PRELIMINARY EXPERIMENTS

We compare our algorithm against the technique in [2, 6] that
uses the geometric median for averaging, instead of mean. We

implemented both the geometric median based mini-batch SGD
andDraco in PyTorch. Here we show preliminary experiments on a
simple fully connected layer neural network on MNIST, running on
m4.2xlarge instances in AWS EC2. Our cluster contains 45 compute
nodes.

Figure 1: Convergence performance.

In our experiments, we set the number of adversarial nodes to
s = 1, 3, 5 out of a total of 45 compute node. At each iteration, we
randomly have 1, 3, and 5 adversarial nodes, each of which always
returns a constant vector with magnitude -100 to the PS. As shown
in Figure 1, while the ordinary SGD algorithms fails to converge,
Draco converges with fewer iterations, smaller total runtime cost
and higher testing accuracy than the geometric median approach.
In fact, as shown from the table below our approach yields around
an order of magnitude faster runtime.

% of adversarial nodes 2.2% 6.7% 11.1%
Draco 84.15 84.15 84.15

geometric median 401.49 419.65 506.53
Speedup gain 4.77× 4.99× 6.02×

Table 1: Time and Speedups to reach 88% Accuracy

REFERENCES

[1] M. Abadi et al. TensorFlow: A System for Large-Scale Machine Learning. In
OSDI, 2016.

[2] P. Blanchard et al. Machine learning with adversaries: Byzantine tolerant gradient
descent. In NIPS, 2017.

[3] K. Bonawitz et al. Practical secure aggregation for federated learning on user-held
data. In NIPS Workshop on Private Multi-Party Machine Learning, 2016.

[4] L. Bottou, F. E. Curtis, and J. Nocedal. Optimization methods for large-scale
machine learning. CoRR, abs/1606.04838, 2016.

[5] J. Chen et al. Revisiting distributed synchronous SGD. In CoRR, 2016.
[6] Y. Chen et al. Distributed statistical machine learning in adversarial settings:

Byzantine gradient descent. In SIGMETRICS, 2018.
[7] J. Duchi et al. Distributed dual averaging in networks. In NIPS, 2010.
[8] J. Konecny et al. Federated learning: Strategies for improving communication

efficiency. In NIPS Workshop on Private Multi-Party Machine Learning, 2016.
[9] M. Li et al. Scaling distributed machine learning with the parameter server. In

OSDI, 2014.
[10] F. Niu et al. Hogwild!: A lock-free approach to parallelizing stochastic gradient

descent. In NIPS, 2012.
[11] J. Nocedal and S. J. Wright. Numerical Optimization. Springer, New York, 2006.
[12] S. Zhang et al. Deep learning with elastic averaging sgd. In NIPS, 2015.


	1 Introduction
	2 Problem Statement
	2.1 Related Work

	3 Draco: Robust Distributed Training via Algorithmic Redundancy
	4 Preliminary Experiments
	References

