
BLAS-on-flash: an alternative for training large ML models?

Suhas Jayaram Subramanya
Microsoft Research India
t-sujs@microsoft.com

Srajan Garg
IIT Bombay

srajan.garg@gmail.com

Harsha Vardhan Simhadri
Microsoft Research India
harshasi@microsoft.com

ABSTRACT

Many ML training tasks admit learning algorithms that can
be composed with linear algebra. On large datasets, the
working set of these algorithms overflows the memory. For
such scenarios, we propose a library that supports BLAS
and sparseBLAS subroutines on large matrices resident on
inexpensive non-volatile memory. We demonstrate that such
libraries can achieve near in-memory performance and be
used for fast implementations of complex algorithms such as
eigen-solvers. We believe that this approach could be a cost-
effective alternative to expensive big-data compute systems.

1 INTRODUCTION

Data analysis pipelines, such as those that arise in scientific
computing as well as ranking and relevance, rely on learning
from datasets that are 100s of GB to a few TB in size. Many
algorithms for the learning tasks involved in these pipelines,
such as topic modeling [4], matrix factorizations [22], spectral
clustering [21], extreme multi-label learning [32], are memory
limited as opposed to being limited by the compute. That is,
on large datasets, a training algorithm that requires a few
hours of compute on a multi-core workstation would run out
of DRAM for its working set.

This forces users to move the training algorithm to big-
data platforms such as Spark [42] or Parameter Servers [25,
38], incurring three costs: (1) the cost of porting code to a
distributed framework, (2) cost of purchasing and maintaining
a cluster nodes or non-availability in certain environments,
and (3) inefficiencies of the platform in using the hardware.
Training on these platforms can require dozens of nodes
for moderate speedups over single threaded code for non-
trivial algorithms [16, 26]. This could be due to the platform
overheads as well as the mismatch between the structure of
the algorithm and the platform’s programming model [7, 13,
40], resulting in low processor utilization.

Several light-weight frameworks on single node/workstations
demonstrate that this inefficiency is unnecessary for many
classes of algorithms that admit multi-threaded implementa-
tions that are order(s) of magnitude more efficient [12, 23, 34,
35]. In similar spirit, it is widely observed that many machine
learning problems admit models with training algorithms that
are essentially compositions of linear algebra operations on
sparse and dense matrices. High performance training code
for these algorithms is typically written as a main thread con-
sisting of glue code that invokes linear algebra calls through
standard APIs such as BLAS [8] and sparseBLAS [15]. High
performance implementations for these standard APIs are
provided by hardware vendors [19, 20, 28, 29].

Linear algebra kernels offer plenty of locality, so much so
that bandwidth required for supporting multiprocessor sys-
tems can be provided by a PCIe or SATA bus [3, 39]. Further,
recent developments in hardware and software eco-system
position non-volatile memory as an inexpensive alternative
to DRAM [2, 11, 14, 33]. Hardware technology and interfaces
for non-volatile memories have increasingly lower end-to-end
latency (few 𝜇s) [18] and higher bandwidth: from 4-8 GT/s in
PCIe3.0 to 16GT/s in PCIe4.0 [31] and 32GT/s in PCIe5.0.
Hardware manufactures are packaging non-volatile memory
with processing units, e.g. Radeon PRO SSG [1].

These observations point to a cost-effective solution for
scaling linear algebra based algorithms to large datasets in
many scenarios. Use inexpensive PCIe-connected SSDs to
store large matrices corresponding to the data and the model,
and exploit the locality of linear algebra to develop a libraries
of routines that can operate on these matrices with a limited
amount of DRAM. By conforming to standard APIs, the
library could be a replacement for code that would have
linked to Intel MKL or OpenBLAS [41].

We present preliminary empirical evidence that this ap-
proach can be practical, easy, and fast by developing a library
which provides near in-memory speeds on NVM-resident data
for subroutines on dense matrices and sparse matrices. These
can be easily used to write equally fast implementations for
algorithms such as k-means clustering. To illustrate that this
approach is not limited to simple kernels, we built a gen-
eral purpose eigen-solver which is critical to dimensionality
reduction and spectral methods. Specifically, we provide a
implementation of block Krylov-Schur [43] algorithm which
achieves near in-memory speed as compared to the IRAM
algorithm [37] in ARPACK [24]. On a large bag-of-words data
set (˜100GB), our implementation, running on a multi-core
workstation with a small DRAM, outperforms Spark MLlib’s
computeSVD [27] deployed on hundreds of workers.

This suggests that for complicated numerical routines,
our approach is capable of running fast on a large datasets
while providing significant benefits in hardware efficiency as
compared to general-purpose big-data systems. Further, we
envision our library being useful in the following scenarios: (1)
Environments without multi-node support for MPI, Spark
etc., (2) Laptops and workstations or VMs in cloud with
limited RAM but equipped with large non-volatile memories,
(3) Batch mode periodic retraining of large scale models
in production data analysis pipelines, (4) Extending the
capabilities of legacy single-node ML training code.

2 IMPLEMENTATION DETAILS

Our library implements pipelined external memory parallel al-
gorithms by composing existing math libraries on in-memory

SysML’18, Feb 2018, Stanford, CA USA Suhas J.S. et al.

blocks with prefetching via a standard Linux asynchronous
I/O syscall, io submit. The I/O layer uses NVMe block dri-
vers to access the SSD. I/O queues are packed with many
asynchonous requests to extract maximum bandwidth. Intel
MKL is used for in-memory computation, but could be easily
replaced with other vendor libraries. The size of matrices
that the library can handle is limited by the size of the SSD.

Prefetch block sizes for BLAS level 3 routines (e.g.gemm)
as well as SparseBLAS level 2 and 3 routines on Compressed
Sparse Row/Column matrices such (e.g. csrgemv, csrmm,

cscmm) are tuned to the smallest size that provides sufficient
locality for the computation to not be bottleneck by I/O. A
maximum of 32GB RAM is used for the runs reported here.
We use the fact that BLAS and sparseBLAS computations can
be tiled so that they write the output to disk just once [5, 10],
thus saving on write bandwidth. We also implemented some
utility functions such as transpose and sort [9] for format
conversions (e.g. csrcsc).

Our library can be linked to native code with a few modifi-
cation. We require that large blocks of memory be allocated
with the library’s allocator rather than the standard allocator.
float *mat = (float *)malloc(len); // Replace with

flash ptr<float> mat = flash::malloc<float>(big len);

The flash ptr<T> type supports pointer arithmetic and
can be cast and used as a normal pointer through memory
mapping where necessary (e.g. for functionality not supported
by the library). A call to a matrix operation invoked with a
flash ptr type rather than a normal type is linked to our
library. We allow the user to compile code with a flag that
disables the library by treating flash ptr<Type> as a normal
pointer of type Type*. The next section presents performance
of a kernel we linked to this library: Lloyd’s EM iteration for
k-means, written entirely in linear algebra.

Using these subroutines, we built a general-purpose eigen-
solver, as opposed to sketching based approaches that approx-
imate the spectrum for large data sets [17, 30]. Most eigen-
solvers, including ARPACK, are iterative and use repeated
matrix-vector products for constructing Krylov subspaces.
On large sparse matrices, such as those that arise in bag-
of-words representation, repeated matrix-vector products on
out-of-memory matrix is the rate-limiting step. We address
this by using block methods that grow the Krylov subspace
many columns at a time using matrix-matrix products, thus
reducing the number of iterations to completion. We find
that block Krylov-Schur [43] method reduces the number of
iterations to convergence for datasets such as bag-of-words
where extremal eigenvalues are not pathologically clustered.

3 EXPERIMENTAL SETUP AND
RESULTS

We compare the performance of our library’s subroutines with
the corresponding in-memory version on two Linux machines:
(1) a 28 core bare-metal Sandbox with dual Xeon(R) E5-2690
v4 CPUs and 3.2TB Samsung PM1725a SSD on PCIe3.0x8
bus which provides 3GB/s sustained read and 0.5GB/s sus-
tained write, (2) a 32 core Azure VM with dual Xeon(R)
E5-2698Bv3 CPUs and a virtual SSD that supports 40k IOps.

0

0.2

0.4

0.6

0.8

1

1.2

1.4

Sandbox Azure Sandbox Azure Sandbox Azure Sandbox Azure Sandbox Azure Sandbox Azure

6M*4K*4K 32K*32K*32K 22M*1.5M*1K 8M*140K*1K 1M pts*4K dims,
#ctrs=8K

1M pts*8K dims,
#ctrs=8K

gemm csrmm kmeans

FL
A

SH
-L

IB
R

A
R

Y
 T

IM
E

A
S

FR
A

C
TI

O
N

 O
F

IN
-M

EM
O

R
Y

 T
IM

E

Figure 1: Fraction of in-memory performance
achieved by flash-based algorithms.

We measure the time taken to completion for some subrou-
tines and problem sizes, and report the relative slowdown of
the flash-based subroutines compared to the corresponding
in-memory version in the Figure above. The time for flash-
based subroutines is measured from the beginning of the first
read from SSD to the last write to SSD. The two instances
of csrmm reported in figure are performed on matrices with
sparsity 10−4 and 10−3 respectively. We notice that the pe-
formance ratio is just under one in most cases except one –
csrmm on Sandbox – where our library outperforms MKL. We
suspect that this instance is poorly tuned in MKL, and our
tiling was better. Not surprisingly, the bare-metal sandbox
with a high-end SSD narrowly outperforms the Azure VM.

We compare the time required by the block Krylov-Schur
solver with that of Spark MLlib’s computeSVD for finding
the top 500 singular values of a large sparse matrix (100GB)
corresponding to a text data-set represented as bag of words
(tolerance: 10−4). Both algorithms require the multiplication
of the given matrix 𝐴 (or 𝐴𝑇𝐴 in the case of non-symmetric
matrices) with a vector. For large instances, we store the
matrix in the SSD while Spark distributes it across workers.
The Spark job is deployed through yarn to workers with 1
core and 8GB memory each on a cluster with Xeon(R) E5-
2450L CPUs and 10Gb Ethernet. Across runs, our library is
faster than Spark job with 128 cores, and we do not see any
benefit from more Spark workers.

Platform Cores/Workers Time

Sandbox 28 52min
Spark 128 250min
Spark 256 405min
Spark 512 425min

Table 1: Time to compute 500 singular values of bag
of words data (22M docs, 1.5M vocabulary, 6B nnzs).

4 DISCUSSION AND FUTURE WORK

Preliminary results suggests that libraries that utilize fast
non-volatile memories could provide an alternative to big-data
systems for training large machine learning models, and could
offer more hardware efficiency. Our library can also support
GPU and other PCIe storage devices like Optane. We are
linking our library with large scale applications: SVD-based
topic models [4, 36] and extreme multi-label learning tasks
for datasets with about 100M points and 50M labels [6, 32].

BLAS-on-flash: an alternative for training large ML models? SysML’18, Feb 2018, Stanford, CA USA

ACKNOWLEDGMENTS

The authors would like to thank Anirudh Badam and Muthian
Sivathanu for their useful comments and advice.

REFERENCES
[1] AMD. 2018. Radeon� Pro SSG. (2018). https://pro.radeon.com/

en/product/pro-series/radeon-pro-ssg/
[2] Joy Arulraj and Andrew Pavlo. 2017. How to Build a Non-

Volatile Memory Database Management System. In Proceedings
of the 2017 ACM International Conference on Management of
Data (SIGMOD ’17). ACM, New York, NY, USA, 1753–1758.
https://doi.org/10.1145/3035918.3054780

[3] Grey Ballard, James Demmel, Olga Holtz, and Oded Schwartz.
2011. Minimizing Communication in Numerical Linear Algebra.
SIAM J. Matrix Anal. Appl. 32, 3 (2011), 866–901. https://doi.
org/10.1137/090769156 arXiv:https://doi.org/10.1137/090769156

[4] Trapit Bansal, C. Bhattacharyya, and Ravindran Kannan. 2014. A
Provable SVD-based Algorithm for Learning Topics in Dominant
Admixture Corpus. In Proceedings of the 27th International
Conference on Neural Information Processing Systems - Volume
2 (NIPS’14). MIT Press, Cambridge, MA, USA, 1997–2005. http:
//dl.acm.org/citation.cfm?id=2969033.2969050

[5] Naama Ben-David, Guy E. Blelloch, Jeremy T. Fineman, Phillip B.
Gibbons, Yan Gu, Charles McGuffey, and Julian Shun. 2016. Par-
allel Algorithms for Asymmetric Read-Write Costs. In Proceedings
of the 28th ACM Symposium on Parallelism in Algorithms and
Architectures (SPAA ’16). ACM, New York, NY, USA, 145–156.
https://doi.org/10.1145/2935764.2935767

[6] Kush Bhatia, Kunal Dahiya, Himanshu Jain, Yashoteja Prabhu,
and Manik Varma. [n. d.]. The Extreme Classification Repository:
Multi-label Datasets and Code. ([n. d.]). http://manikvarma.
org/downloads/XC/XMLRepository.html

[7] Mikhail Bilenko, Tom Finley, Shon Katzenberger, Sebastian
Kochman, Dhruv Mahajan, Shravan Narayanamurthy, Julia Wang,
Shizhen Wang, and Markus Weimer. 2016. Salmon: Towards
Production-Grade, Platform-Independent Distributed ML. In The
ML Systems Workshop at ICML.

[8] L. Susan Blackford, James Demmel, Jack Dongarra, Iain Duff,
Sven Hammarling, Greg Henry, Michael Heroux, Linda Kaufman,
Andrew Lumsdaine, Antoine Petiet, Roldan Pozo, Karin Reming-
ton, and R. Clint Whaley. 2002. An Updated Set of Basic Linear
Algebra Subprograms (BLAS). ACM Trans. Math. Softw. 28, 2
(June 2002), 135–151. https://doi.org/10.1145/567806.567807

[9] Guy E. Blelloch, Phillip B. Gibbons, and Harsha Vardhan
Simhadri. 2010. Low Depth Cache-oblivious Algorithms. In Pro-
ceedings of the Twenty-second Annual ACM Symposium on
Parallelism in Algorithms and Architectures (SPAA ’10). ACM,
New York, NY, USA, 189–199. https://doi.org/10.1145/1810479.
1810519

[10] Erin Carson, James Demmel, Laura Grigori, Nicholas Knight,
Penporn Koanantakool, Oded Schwartz, and Harsha Vardhan
Simhadri. 2016. Write-Avoiding Algorithms. In 2016 IEEE
International Parallel and Distributed Processing Symposium
(IPDPS). 648–658. https://doi.org/10.1109/IPDPS.2016.114

[11] Dask Development Team. 2016. Dask: Library for dynamic task
scheduling. http://dask.pydata.org

[12] Laxman Dhulipala, Guy Blelloch, and Julian Shun. 2017. Julienne:
A Framework for Parallel Graph Algorithms Using Work-efficient
Bucketing. In Proceedings of the 29th ACM Symposium on Par-
allelism in Algorithms and Architectures (SPAA ’17). ACM,
New York, NY, USA, 293–304. https://doi.org/10.1145/3087556.
3087580

[13] David Dinh, Harsha Vardhan Simhadri, and Yuan Tang. 2016.
Extending the Nested Parallel Model to the Nested Dataflow
Model with Provably Efficient Schedulers. In Proceedings of
the 28th ACM Symposium on Parallelism in Algorithms and
Architectures (SPAA ’16). ACM, New York, NY, USA, 49–60.
https://doi.org/10.1145/2935764.2935797

[14] Aleksandar Dragojevic, Dushyanth Narayanan, Miguel Castro,
and Orion Hodson. 2014. FaRM: Fast Remote Memory, In 11th
USENIX Symposium on Networked Systems Design and Implemen-
tation (NSDI 2014). https://www.microsoft.com/en-us/research/
publication/farm-fast-remote-memory/

[15] Iain S. Duff, Michael A. Heroux, and Roldan Pozo. 2002. An
Overview of the Sparse Basic Linear Algebra Subprograms: The

New Standard from the BLAS Technical Forum. ACM Trans.
Math. Softw. 28, 2 (June 2002), 239–267. https://doi.org/10.
1145/567806.567810

[16] A. Gittens, A. Devarakonda, E. Racah, M. Ringenburg, L. Ger-
hardt, J. Kottalam, J. Liu, K. Maschhoff, S. Canon, J. Chhugani,
P. Sharma, J. Yang, J. Demmel, J. Harrell, V. Krishnamurthy,
M. W. Mahoney, and Prabhat. 2016. Matrix Factorization at
Scale: a Comparison of Scientific Data Analytics in Spark and
C+MPI Using Three Case Studies. ArXiv e-prints (July 2016).
arXiv:cs.DC/1607.01335

[17] N. Halko, P. G. Martinsson, and J. A. Tropp. 2011. Find-
ing Structure with Randomness: Probabilistic Algorithms for
Constructing Approximate Matrix Decompositions. SIAM Rev.
53, 2 (2011), 217–288. https://doi.org/10.1137/090771806
arXiv:https://doi.org/10.1137/090771806

[18] Intel®. 2017. Optane� Memory. (2017). https://www.
intel.com/content/www/us/en/architecture-and-technology/
optane-memory.html

[19] Intel®. 2018. Math Kernel Library Sparse BLAS level 2 and 3
routines. (2018). https://software.intel.com/en-us/mkl

[20] Intel®. 2018. Math Kernel Library Sparse BLAS level 2
and 3 routines. (2018). https://software.intel.com/en-us/
mkl-developer-reference-c-sparse-blas-level-2-and-level-3-routines

[21] Ravi Kannan, Santosh Vempala, and Adrian Vetta. 2004. On
Clusterings: Good, Bad and Spectral. J. ACM 51, 3 (May 2004),
497–515. https://doi.org/10.1145/990308.990313

[22] Abhishek Kumar, Vikas Sindhwani, and Prabhanjan Kambadur.
2013. Fast Conical Hull Algorithms for Near-separable Non-
negative Matrix Factorization. In Proceedings of the 30th In-
ternational Conference on International Conference on Ma-
chine Learning - Volume 28 (ICML’13). JMLR.org, I–231–I–239.
http://dl.acm.org/citation.cfm?id=3042817.3042845

[23] Aapo Kyrola, Guy Blelloch, and Carlos Guestrin. 2012. GraphChi:
Large-scale Graph Computation on Just a PC. In Proceedings
of the 10th USENIX Conference on Operating Systems Design
and Implementation (OSDI’12). USENIX Association, Berkeley,
CA, USA, 31–46. http://dl.acm.org/citation.cfm?id=2387880.
2387884

[24] Rich Lehoucq, Kristi Maschhoff, Danny Sorensen, and Chao Yang.
[n. d.]. ARPACK Software. ([n. d.]).

[25] Mu Li, David G. Andersen, Jun Woo Park, Alexander J. Smola,
Amr Ahmed, Vanja Josifovski, James Long, Eugene J. Shekita,
and Bor-Yiing Su. 2014. Scaling Distributed Machine Learning
with the Parameter Server. In Proceedings of the 11th USENIX
Conference on Operating Systems Design and Implementation
(OSDI’14). USENIX Association, Berkeley, CA, USA, 583–598.
http://dl.acm.org/citation.cfm?id=2685048.2685095

[26] Frank McSherry, Michael Isard, and Derek G. Murray. 2015.
Scalability! But at What Cost?. In Proceedings of the 15th
USENIX Conference on Hot Topics in Operating Systems
(HOTOS’15). USENIX Association, Berkeley, CA, USA, 14–14.
http://dl.acm.org/citation.cfm?id=2831090.2831104

[27] Xiangrui Meng, Joseph Bradley, Burak Yavuz, Evan Sparks, Shiv-
aram Venkataraman, Davies Liu, Jeremy Freeman, DB Tsai,
Manish Amde, Sean Owen, Doris Xin, Reynold Xin, Michael J.
Franklin, Reza Zadeh, Matei Zaharia, and Ameet Talwalkar. 2016.
MLlib: Machine Learning in Apache Spark. J. Mach. Learn. Res.
17, 1 (Jan. 2016), 1235–1241. http://dl.acm.org/citation.cfm?
id=2946645.2946679

[28] John Nickolls, Ian Buck, Michael Garland, and Kevin Skadron.
2008. Scalable Parallel Programming with CUDA. Queue 6, 2
(March 2008), 40–53. https://doi.org/10.1145/1365490.1365500

[29] NVIDIA. 2017. cuSPARSE library. (2017). http://docs.nvidia.
com/cuda/cusparse/index.html

[30] Daisuke Okanohara. [n. d.]. redsvd: C++ library for solving
several matrix decompositions. ([n. d.]). https://code.google.
com/archive/p/redsvd/

[31] PCI-SIG. 2017. PCI Express Base Specification Revision 4.0,
Version 1.0. (October 2017). https://members.pcisig.com/wg/
PCI-SIG/document/10912?downloadRevision=active

[32] Yashoteja Prabhu and Manik Varma. 2014. FastXML: A Fast,
Accurate and Stable Tree-classifier for Extreme Multi-label Learn-
ing. In Proceedings of the 20th ACM SIGKDD International
Conference on Knowledge Discovery and Data Mining (KDD
’14). ACM, New York, NY, USA, 263–272. https://doi.org/10.
1145/2623330.2623651

[33] ScaleMP�. 2018. vSMP Foundation Flash Expansion. (2018).
http://www.scalemp.com/products/flx/

https://pro.radeon.com/en/product/pro-series/radeon-pro-ssg/
https://pro.radeon.com/en/product/pro-series/radeon-pro-ssg/
https://doi.org/10.1145/3035918.3054780
https://doi.org/10.1137/090769156
https://doi.org/10.1137/090769156
http://arxiv.org/abs/https://doi.org/10.1137/090769156
http://dl.acm.org/citation.cfm?id=2969033.2969050
http://dl.acm.org/citation.cfm?id=2969033.2969050
https://doi.org/10.1145/2935764.2935767
http://manikvarma.org/downloads/XC/XMLRepository.html
http://manikvarma.org/downloads/XC/XMLRepository.html
https://doi.org/10.1145/567806.567807
https://doi.org/10.1145/1810479.1810519
https://doi.org/10.1145/1810479.1810519
https://doi.org/10.1109/IPDPS.2016.114
http://dask.pydata.org
https://doi.org/10.1145/3087556.3087580
https://doi.org/10.1145/3087556.3087580
https://doi.org/10.1145/2935764.2935797
https://www.microsoft.com/en-us/research/publication/farm-fast-remote-memory/
https://www.microsoft.com/en-us/research/publication/farm-fast-remote-memory/
https://doi.org/10.1145/567806.567810
https://doi.org/10.1145/567806.567810
http://arxiv.org/abs/cs.DC/1607.01335
https://doi.org/10.1137/090771806
http://arxiv.org/abs/https://doi.org/10.1137/090771806
https://www.intel.com/content/www/us/en/architecture-and-technology/optane-memory.html
https://www.intel.com/content/www/us/en/architecture-and-technology/optane-memory.html
https://www.intel.com/content/www/us/en/architecture-and-technology/optane-memory.html
https://software.intel.com/en-us/mkl
https://software.intel.com/en-us/mkl-developer-reference-c-sparse-blas-level-2-and-level-3-routines
https://software.intel.com/en-us/mkl-developer-reference-c-sparse-blas-level-2-and-level-3-routines
https://doi.org/10.1145/990308.990313
http://dl.acm.org/citation.cfm?id=3042817.3042845
http://dl.acm.org/citation.cfm?id=2387880.2387884
http://dl.acm.org/citation.cfm?id=2387880.2387884
http://dl.acm.org/citation.cfm?id=2685048.2685095
http://dl.acm.org/citation.cfm?id=2831090.2831104
http://dl.acm.org/citation.cfm?id=2946645.2946679
http://dl.acm.org/citation.cfm?id=2946645.2946679
https://doi.org/10.1145/1365490.1365500
http://docs.nvidia.com/cuda/cusparse/index.html
http://docs.nvidia.com/cuda/cusparse/index.html
https://code.google.com/archive/p/redsvd/
https://code.google.com/archive/p/redsvd/
https://members.pcisig.com/wg/PCI-SIG/document/10912?downloadRevision=active
https://members.pcisig.com/wg/PCI-SIG/document/10912?downloadRevision=active
https://doi.org/10.1145/2623330.2623651
https://doi.org/10.1145/2623330.2623651
http://www.scalemp.com/products/flx/

SysML’18, Feb 2018, Stanford, CA USA Suhas J.S. et al.

[34] Julian Shun and Guy E. Blelloch. 2013. Ligra: A Lightweight
Graph Processing Framework for Shared Memory. In Proceedings
of the 18th ACM SIGPLAN Symposium on Principles and
Practice of Parallel Programming (PPoPP ’13). ACM, New York,
NY, USA, 135–146. https://doi.org/10.1145/2442516.2442530

[35] Julian Shun, Farbod Roosta-Khorasani, Kimon Fountoulakis, and
Michael W. Mahoney. 2016. Parallel Local Graph Clustering.
Proc. VLDB Endow. 9, 12 (Aug. 2016), 1041–1052. https:
//doi.org/10.14778/2994509.2994522

[36] Harsha Vardhan Simhadri. 2017. SVD and Importance sampling-
based algorithms for large scale topic modeling. https://github.
com/Microsoft/ISLE. (2017).

[37] D. C. Sorensen. 1992. Implicit Application of Polynomial Fil-
ters in a k-Step Arnoldi Method. SIAM J. Matrix Anal.
Appl. 13, 1 (1992), 357–385. https://doi.org/10.1137/0613025
arXiv:https://doi.org/10.1137/0613025

[38] DMTK Team. [n. d.]. Multiverso: Parameter Server for Distributed
Machine Learning. ([n. d.]). https://github.com/Microsoft/
Multiverso

[39] Jeffrey Scott Vitter. 2001. External Memory Algorithms and Data
Structures: Dealing with Massive Data. ACM Comput. Surv. 33,
2 (June 2001), 209–271. https://doi.org/10.1145/384192.384193

[40] Markus Weimer, Yingda Chen, Byung-Gon Chun, Tyson Condie,
Carlo Curino, Chris Douglas, Yunseong Lee, Tony Majestro,
Dahlia Malkhi, Sergiy Matusevych, et al. 2015. REEF: Retain-
able Evaluator Execution Framework. In Proceedings of the 2015
ACM SIGMOD International Conference on Management of
Data. ACM, 1343–1355.

[41] Zhang Xianyi. 2017. OpenBLAS. (2017). http://www.openblas.
net/

[42] Matei Zaharia, Mosharaf Chowdhury, Michael J. Franklin, Scott
Shenker, and Ion Stoica. 2010. Spark: Cluster Computing with
Working Sets. In Proceedings of the 2Nd USENIX Conference
on Hot Topics in Cloud Computing (HotCloud’10). USENIX As-
sociation, Berkeley, CA, USA, 10–10. http://dl.acm.org/citation.
cfm?id=1863103.1863113

[43] Yunkai Zhou and Yousef Saad. 2008. Block Krylov–Schur method
for large symmetric eigenvalue problems. Numerical Algo-
rithms 47, 4 (01 Apr 2008), 341–359. https://doi.org/10.1007/
s11075-008-9192-9

https://doi.org/10.1145/2442516.2442530
https://doi.org/10.14778/2994509.2994522
https://doi.org/10.14778/2994509.2994522
https://github.com/Microsoft/ISLE
https://github.com/Microsoft/ISLE
https://doi.org/10.1137/0613025
http://arxiv.org/abs/https://doi.org/10.1137/0613025
https://github.com/Microsoft/Multiverso
https://github.com/Microsoft/Multiverso
https://doi.org/10.1145/384192.384193
http://www.openblas.net/
http://www.openblas.net/
http://dl.acm.org/citation.cfm?id=1863103.1863113
http://dl.acm.org/citation.cfm?id=1863103.1863113
https://doi.org/10.1007/s11075-008-9192-9
https://doi.org/10.1007/s11075-008-9192-9

	Abstract
	1 Introduction
	2 Implementation details
	3 Experimental setup and Results
	4 Discussion and Future Work
	Acknowledgments
	References

