
EVA: An Efficient System for Exploratory Video Analysis
Ziqiang Feng

Carnegie Mellon University
zf@cs.cmu.edu

Junjue Wang
Carnegie Mellon University

junjuew@cs.cmu.edu

Jan Harkes
Carnegie Mellon University

jaharkes@cs.cmu.edu

Padmanabhan Pillai
Intel Labs

padmanabhan.s.pillai@intel.com

Mahadev Satyanarayanan
Carnegie Mellon University

satya@cs.cmu.edu

1 INTRODUCTION
An ever-increasing number of high-resolution, continuously-on
camera systems are being deployed around the world today. Videos
captured by nearly-ubiquitous cameras can provide great value
for retrospective video analysis tasks such as crime investigations
and scientific research. These tasks are often both interactive and
exploratory in nature, meaning that the best query to find the desired
results is unknown in the beginning, but is itself discovered and
refined in an iterative process of exploring the data. For example,
suppose a police investigator is searching for a suspect in a large
collection of recent surveillance footage. Initially, she has very
little information, so starts with just a HOG-based face recognition
query. As positive results roll in, she finds a particular car to be
associated with the incident. Using the found footage, she trains
a Faster R-CNN [5] car instance detector and reruns the search
with both face recognition and car detection. The new query may
find additional scenes of interest that were previously missed, e.g.,
due to obstructed or profile views of the face. Furthermore, the car
instance detector may be retrained as more footage of the car is
collected, improving its accuracy for the next iteration of search.

In this paper, we present EVA: an efficient system for Exploratory
Video Analysis. EVA aims to provide a usable and efficient end-to-
end system for domain experts with little machine learning training.
EVA lets the user rapidly search not only the data space, but also
the query space. The latter involves iteratively trying queries to
find better parameters and features to use. Such features may be
explicit ones, like color histograms, HOG or SIFT features, or can
be implicit ones defined by a neural network. EVA provides a GUI
for specifying queries through examples, setting parameters, and
for refining pre-trained DNN models based on collected results.

EVA is intended for interactive use, and must return results
quickly, saving the domain expert’s precious time and attention.
However, it is generally infeasible to build an index of the video data
to handle queries in EVA. One cannot anticipate all potential queries
and index all possible features, or continually rebuild indices in the
face of ever-changing and rapidly emerging analysis algorithms.
The video cameras are always on, collecting new data that would
not have had time to be indexed. As a result, EVA will have to
execute video analysis quickly and on demand.

In a sense, EVA is a rapid-prototyping system for iteratively
improving and running effective video queries. It complements
other emerging video monitoring systems such as NoScope [4] and
VideoStorm [8], which try to optimize one or a set of long-lived
queries. These assume the right queries are known for a given task.
EVA serves as a means of finding the right queries to run.

2 CHARACTERISTICS OF EVA QUERIES
EVA queries have the following unique properties, that greatly
influence the architecture and operation of our system:

(1) EVA queries apply over extended durations of captured video,
so our system is optimized for scanning through a large
amount of video data. In contrast, prediction serving systems
like TensorFlow Serving [2] and Clipper [1] are optimized
for evaluating a prediction model on a single data point.

(2) It is common to abort and restart query execution in EVA,
as the user interactively refines the query in response to
partial results, unlike traditional big data systems like Spark
[7] where queries typically run to completion. This charac-
teristic motivates our choice of fine-grained caching over
traditional per-query result caching (Section 4).

(3) EVA queries may need to use newly-developed vision algo-
rithms. Our flexible system allows use of new analytics built
on arbitrary frameworks, languages, and libraries. Efficient
support for and convenient use of them motivate our filter
abstraction and a narrow waist protocol (Section 3).

(4) Although the query space is unbounded, EVA queries will
likely exhibit temporal similarity. Due to iterative explo-
ration and refinement of queries, the system will see se-
quences of semantically-correlated queries, using similar
features, parameters, or algorithms. We exploit this charac-
teristic judiciously to improve EVA’s performance.

3 SYSTEM ARCHITECTURE
EVA has two main components: an atomizer that splits video into
items and a query processing engine that executes filters on items.

3.1 Atomizer
The atomizer scans through long video streams and emits small
data units called items, which are then processed in the query
execution engine. The granularity of an item depends on the query,
e.g., individual frames for object detection, or short overlapping
video clips for activity inference. Queries can also set the scope
of the atomizer, selecting which video data is used, e.g., by time,
location, etc. Unlike stream analytics, where each item is processed
once, iterative refinement of EVA queries may involve revisiting
items, so the atomizer aggressively caches generated items.

3.2 Query Processing Engine
The query processing engine evaluates the query independently
on each item from the atomizer, exploiting the available data par-
allelism. A query consists of an acyclic graph of filters. Each filter,

1



SysML’18, February 15–16, 2018, Stanford, CA Z. Feng, et al.

Query Filter 1 Filter 2 (varied) Intention
Q1 SIFT extraction SIFT matching Object detection
Q2 MobileNet SVM Image classification

Table 1: Experiment query templates

which can be an arbitrary, user-supplied program, implements an
image processing or analytics primitive. A filter communicates to
the system and other filters through a narrow waist protocol, based
on setting key-value pairs called attributes that can be attached to
items.

All data and results are communicated using get-attribute and
set-attribute calls. For example, a JPEG decoding filter may get
the raw item data using the special null key. It then sets an attribute
containing the decoded RGB array using the key ‘rgb’. A computer
vision filter can then get the ‘rgb’ attribute, execute a face detector,
and create an attribute containing the list of bounding boxes of
faces with the key ‘faces’. This mechanism is general enough for
inter-filter communications, is flexible, and can be readily adapted
to work in diverse languages, libraries, and frameworks used to
implement query filters.

Finally, a set-score call allows a filter to specify a floating point
“score” to an item. This score is then thresholded by the system to
decide which items to ultimately present to the user.

4 OPTIMIZATIONS
4.1 Filter Container
EVA encapsulates all filters in Docker containers, efficiently sup-
porting arbitrary run-time environments and libraries, while pro-
viding execution isolation. Filter containers are given access to
multi-core CPUs as well as specialized hardware (e.g., GPUs). To re-
duce overheads, EVA reuses running containers whenever possible,
e.g., when the same filter is used in multiple queries. To facilitate
filter development, we implement Docker base images of different
OSes with the logic needed to interface with EVA. They include a
TCP server that waits for connections from the query processing
engine and launches a filter process in the container. They also
support the narrow, high-level attribute API outlined above.

4.2 Fine-grained Caching
EVA uses a per-item, per-filter approach to caching, as opposed to
coarse-grained, per-query result caching. This allows partial results
to be reused in subsequent queries using some of the same filters.
When a filter is evaluated against an item, EVA records the hash
digests of all attributes accessed or written by the filter. These hash
digests, along with the score, are kept in a Redis database, indexed
by the tuple of filter id and item id. EVA also stores a mapping from
the hash digest of an output attribute to its actual value in Redis.

For future queries, as EVA traverses the filter graph, it retrieves
database entries indexed by filter id and item id. It then tries to
validate those entries. A cache entry is deemed valid if and only
if all hash digests of its input attributes match the hash digests
of the output attributes of another validated entry, or a newly-
executed filter. If a valid entry is found, cached results are used;
otherwise, the filter is re-executed. This approach avoids duplicated
execution, ensures correctness of cached results, and minimizes
recomputations of hash digests. It is a form of just-in-time indexing

Query No cache Refined query Identical query
Q1 23 69 1535
Q2 172 793 1924

Table 2: End-to-end throughput (frames per second).

as described in [6] that helps reduce computation when subsequent
queries are modified, but still share some filters, a very common
occurrence in the iterative EVA usage model.

4.3 Adaptive Batching
We are currently extending EVA to support adaptive batching of
items in order to exploit the efficient batch processing implementa-
tions in many deep learning frameworks such as TensorFlow. We
omit the details here due to space limit.

5 PRELIMINARY EXPERIMENTS
We perform some initial experiments to demonstrate that (1) EVA
supports a variety of video analysis queries; and (2) our approach to
caching can improve end-to-end search speed. Using a small dataset
containing 10 videos, we execute queries based on the templates in
Table 1. Each query consists of two main filters. Q1 detects object
of interest by first running a filter to extract SIFT key points from
the frames, and then running a second filter to compare the SIFT
features with those of the desired object. Frames with sufficiently
close matches are presented as query results. Q2 classifies each
frame by first applying a MobileNet-v1[3] DNN filter to extract a
1024-dimensional feature vector, and then feeding this vector to
an SVM filter to classify the frame. To test effects of caching, we
repeat the queries, keeping the first filter fixed, and modifying the
parameters of the second filter, akin to refining the query.

Table 2 reports EVA’s end-to-end throughput (processed frames
per second) for both query templates. The “No cache” column re-
ports throughput for the initial execution of a query, when no
cached results are available. “Refined query” corresponds to a re-
fined query with a modified filter 2, where the cached attributes of
filter 1 can be reused. “Identical query” corresponds to rerunning
the exact same query, where whole-query result caching is achieved
by reusing results for all filters.

When running a refined query, with partial results reuse, both
query templates see substantial improvements of 3X (Q1) and nearly
5X (Q2). Q2 shows such great improvement due to the very high
cost of extracting MobileNet features, relative to just running SVM
on cached values. When cached results are reused for both filters in
the queries, both query types see more than an order of magnitude
increase in throughput.

6 CONCLUSIONS
We have introduced the concept of exploratory video analytics, and
explained how it varies from traditional analytics. Based on the
unique characteristics of this style of data search, we have designed
and built an efficient system to allow users to iteratively explore a
video dataset with incrementally refined queries.We have optimized
our system to the EVA usage model, and have demonstrated how
our approach to fine-grained caching can help accelerate a sequence
of iteratively refined queries.

2



EVA: An Efficient System for Exploratory Video Analysis SysML’18, February 15–16, 2018, Stanford, CA

REFERENCES
[1] Daniel Crankshaw, Xin Wang, Guilio Zhou, Michael J Franklin, Joseph E Gonzalez,

and Ion Stoica. 2017. Clipper: A Low-Latency Online Prediction Serving System..
In NSDI. 613–627.

[2] Google. 2017. TensorFlow Serving. https://www.tensorflow.org/serving/. (2017).
[3] Andrew G Howard, Menglong Zhu, Bo Chen, Dmitry Kalenichenko, WeijunWang,

Tobias Weyand, Marco Andreetto, and Hartwig Adam. 2017. Mobilenets: Efficient
convolutional neural networks for mobile vision applications. arXiv preprint
arXiv:1704.04861 (2017).

[4] Daniel Kang, John Emmons, Firas Abuzaid, Peter Bailis, and Matei Zaharia. 2017.
NoScope: optimizing neural network queries over video at scale. Proceedings of
the VLDB Endowment 10, 11 (2017), 1586–1597.

[5] Shaoqing Ren, Kaiming He, Ross Girshick, and Jian Sun. 2015. Faster R-CNN:
Towards Real-Time Object Detection with Region Proposal Networks. In Advances
in Neural Information Processing Systems (NIPS).

[6] Mahadev Satyanarayanan, Phillip B Gibbons, Lily Mummert, Padmanabhan Pillai,
Pieter Simoens, and Rahul Sukthankar. 2017. Cloudlet-based Just-in-Time indexing
of IoT video. In Global IoT summit. 1–8.

[7] Matei Zaharia, Mosharaf Chowdhury, Michael J Franklin, Scott Shenker, and Ion
Stoica. 2010. Spark: Cluster computing with working sets. HotCloud 10, 10-10
(2010), 95.

[8] Haoyu Zhang, Ganesh Ananthanarayanan, Peter Bodik, Matthai Philipose,
Paramvir Bahl, and Michael J Freedman. 2017. Live Video Analytics at Scale
with Approximation and Delay-Tolerance.. In NSDI. 377–392.

3

https://www.tensorflow.org/serving/

	1 Introduction
	2 Characteristics of EVA Queries
	3 System Architecture
	3.1 Atomizer
	3.2 Query Processing Engine

	4 Optimizations
	4.1 Filter Container
	4.2 Fine-grained Caching
	4.3 Adaptive Batching

	5 Preliminary Experiments
	6 Conclusions
	References

