
Ternary Residual Networks
Extended Abstract

Abhisek Kundu, Kunal Banerjee, Naveen Mellempudi, Dheevatsa Mudigere, Dipankar Das,
Bharat Kaul, Pradeep Dubey*

{abhisek.kundu,kunal.banerjee,naveen.k.mellempudi,dheevatsa.mudigere,dipankar.das,bharat.kaul,pradeep.dubey}
@intel.com

ABSTRACT
Sub-8-bit representation of DNNs incur some discernible loss of
accuracy despite rigorous (re)training at low-precision. Such loss
of accuracy essentially makes them equivalent to much shallower
counterparts, diminishing the power of being deep networks. To
address this problem of accuracy drop, we introduce the notion of
residual edges, where we add more low-precision edges to sensitive
branches of the sub-8-bit network to compensate for the lost accuracy
(loss ∼ 1% of FP32 baseline). We present a perturbation theory
to identify such sensitive edges. Moreover, for varying accuracy
requirements in a dynamic environment, the deployed model can
be upgraded/downgraded on-the-fly by partially enabling/disabling
residual edges. Finally, all the ternary edges are sparse in nature, and
the ternary residual conversion can be done in a resource-constraint
setting with no low-precision (re)training. Experiments are shown on
ResNet-101, GoogLeNet v3, and AlexNet pre-trained on ImageNet.

1 INTRODUCTION
There is a growing need to make deep neural networks (DNNs)
resource-friendly via a compact and/or reduced-precision represen-
tation for both mobile devices and data servers. One approach is to
reduce the number of parameters in the network (e.g., SqueezeNet
[12], MobileNet [10], SEP-Nets [16]) to have a very small size (∼
5 MB) typically targeting mobile devices. However, it is not sur-
prising that their overall accuracy is limited on complex dataset
ImageNet [4], e.g., SEP-Net Top-1 accuracy is ∼ 10% off from that
of ResNet-50. Deploying them on sensitive applications, e.g., au-
tonomous cars and robots, might be impractical. The other approach
is concerned with the reduction in size of parameter representa-
tion. Well-known methods of this kind are pruning [5, 23, 26],
quantization [6, 11, 17, 19, 22, 27], binarization [3], ternarization
[1, 8, 15, 18, 29], hashing [2], Huffman coding [7] and others
[20, 28]. Such low-precision representation demands for specialized
low-precision arithmetic [18, 24, 25] and hardware design. Google’s
TPU [13] sets a trend for a low-precision inference pipeline (8-bit ac-
tivations, 8-bit weights). Here we are mainly focused on the trade-off
between sub-8-bit representation ([11, 18, 20, 28]) and accuracy of
deeper networks, keeping an eye on the power-performance factors.
In reality, sub-8-bit models for deep networks incur some noticeable
drop in accuracy, despite rigorous low-precision (re)-training . This
loss severely undermines the purpose of deploying a deep (sub-8-bit)
network, as we may find an equivalent shallower 8-bit network. We
seek to answer: Can a sub-8-bit model achieve similar accuracy as
FP-32 model with better model size and power-performance num-
bers comparing to 8-8?

*Pradeep Dubey is at Intel Parallel Computing Labs, Santa Clara, USA. Other authors
are at Intel Parallel Computing Labs, Bangalore, India.

• Contributions: (1) We introduce the notion of residual edges,
where we add more low-precision edges to sensitive branches of
a DNN, and this is guided by a perturbation theory, (2) Unlike ex-
isting sub-8-bit models, we show how to achieve extremely high
accuracy (∼ 1% off from FP32), (3) Existing models cannot be al-
tered once they are deployed (‘fixed-accuracy-fixed-power’ mode).
However, our model can be upgraded/downgraded on-the-fly by
partially enabling/disabling some of the residual edges in a dynamic
environment, depending on the varying accuracy/power require-
ments. For example, when autonomous cars or robots are in a less
eventful environment where less number of objects are involved,
the classification problem becomes considerably simpler (sufficient
to distinguish among distinct objects, such as humans, dogs, vehi-
cles, trees, etc. rather than discriminating among multiple breeds of
dogs), and by disabling many edges we can downgrade the model in
terms of compute, power, etc., yet maintain very high accuracy for
those (less number of) classes. Drawing an analogy between human
attention and precision, and also an analogy between stress due to
attention and power consumption, it is natural for us to be selectively
attentive to certain tasks that requires processing more information.
Such upgrade/downgrade of low-precision DNNs mimics a more
real-world scenario that other existing models are unable to imitate.

We focus on ternary 8-2 DNNs due to their computational benefits
(minimal number of multiplications and very small size). For a
vector x ∈ Rn , we denote the (element-wise) Frobenius norm as

‖x‖F =
√∑n

i=1 |xi |2 (can be extended to matrices/tensors).

2 PERTURBATION IN PRE-TRAINED DNN
A DNN is a composition of parametric functions fi where (locally)
optimal values of parameters W(i) are achieved via network training.
We interpret quantization and/or sparsification as adding a noise to
W(i) to produce sub-optimal W̃(i). We want to quantify the effect
of W̃(i) on the final outcome, e.g., classification scores (Top-1 ac-
curacy). For this, let us assume that our DNN has ` layers and let
y ∈ Rd (d is the number of classes) be the output vector of layer `
such that its i-th component yi contains the classification score for
i-th class, for a given input x. Let ŷ ∈ Rd denote the perturbed vector
y due to added noise. Then, the largest component of y should re-
main the largest in ŷ for no loss of accuracy. Practically, we want to
first derive an upper bound on ‖y − ŷ‖F /‖y‖F in terms of layer-wise
perturbation of the pre-trained network, and then we want to control
such perturbations to keep the final accumulated noise small. Let the
set of functions be fdnn = { Convolution with Batch Normalization,
Matrix Multiplication, ReLU, Pooling }. Functions in fdnn can be
linear or non-linear, parametric or non-parametric, convex or non-
convex, smooth or non-smooth. DNN: f = f` f`−1... f1 : D0 → D` ,
where each fi ∈ fdnn , fi : Di−1 → Di with parameters W(i), and

each Di is an arbitrary metric space where ‖ · ‖ denotes a distance
metric on set Di (for simplicity, we focus on normed space only).
For all X(0) ∈ D0, we define X(i) ∈ Di and X̃(i) ∈ Di as follows.
For i = 1, ..., `, X(i) = fi (X(i−1);W(i)), X̃(i) = fi (X̃(i−1); W̃(i)),
where X̃(i) and W̃(i) are perturbed versions of X(i) and W(i), respec-
tively. We want to measure how the outcome of f gets perturbed
in presence of X̃(i) and W̃(i), i.e., ‖X(i) − X̃(i)‖/‖X(i)‖. We note
that input to a layer might be perturbed due to perturbation in ear-
lier layers and/or perturbation in the present layer (e.g., activation
quantization) before it is applied to the layer function. For this
we use separate notations as follows. For i-th layer, let X̃(i−1) de-
note the perturbed input, X̂(i−1) denote the perturbed activation,
and W̃(i) denote the perturbed weights. Let us first define the fol-
lowing relative perturbations. ∆i = ‖X(i) − X̃(i)‖F /‖X(i)‖F ,γi =
‖X̃(i) − X̂(i)‖F /‖X(i)‖F , εi = ‖W(i) − W̃(i)‖F /‖W(i)‖F . We derive
the following to bound the relative change in the output of a layer.

THEOREM 2.1. Using the above notations, the relative change
in output of i-th layer of DNN, can be bounded as
∆i ≤ (

∏i
k=1O(1 + εk))∆0 +

∑i
k=1(

∏i
j=k+1≤i O(1 + εj)) O(γk−1) +∑i

k=1(
∏i

j=k+1≤i O(1 + εj))O(1 + γk−1)O(εk).

The theorem can be proved using triangle inequality, recursion
in ∆i , and with the assumption that locally optimal parameters are
not orthogonal to the signal (inner product is not close to zero). The
result suggests that at i-th layer of DNN, perturbations of parameters
and activations of all the previous stages accumulate nonlinearly in
a weighted manner (indicating higher sensitivity of earlier layers).
We want this error to be small to keep the perturbed solution in a
neighborhood of the local optima. Simplifying for small noise:

THEOREM 2.2. Using the above notations, assuming ∆0 = 0
and ‖X̂(i−1)‖F ≤ τi−1‖X(i−1)‖F , where τi−1 > 0 are constants, we
derive the following for constants c j > 0.
∆i ≤

∑i
k=1(

∏i
j=k+1≤i c j)(O(γk−1) +O(εk)).

Keeping both γi and εi small implies overall small perturbation.
Also, for earlier layers εk should be kept much smaller than those
in later layers to have an overall small perturbation. Our empirical
evaluation on quantized DNNs corroborates this theory.

2.1 Low-Precision DNN
Constraining activations and weights to 8 bits appears to induce only
small perturbation, resulting in typically < 1% loss in accuracy. This
can be explained by the theoretical bounds presented above, where
εk and γk are small. More challenging cases are sub-8-bit DNNs,
e.g., 8-bit activations and ternary weights.
• Ternary Conversion of Pre-trained DNN : We convert FP32
weights W to ternary values {−α , 0,+α }, α ≥ 0, without re-training,
via a simple threshold (T > 0) based approach similar to [15, 18]. Let
Ŵ denote a ternary weight, such that, i-th element Ŵi = siдn(Wi),
if |Wi | > T , and 0 otherwise. The goal is to minimize element-wise
error E(α ,T) = ‖W − αŴ‖2F . For better accuracy, [18] introduced
FGQ by dividing the weight tensors into disjoint sub-tensors of size
N , and then ternarize such sub-tensors independently. Each sub-
tensor requires only one multiplication during inference. Smaller
N leads to better accuracy but with more multiplications. k disjoint
ternary sub-tensors can represent 2k + 1 distinct values, i.e., model

Table 1: Ternary Residual Networks using FGQ. # sub-tensors
and compute for FGQ ternary is 1×. Loss is w.r.t FP32.

N = 64 Loss ∼ 1% Loss ∼ 2%
sub-tensors comp # sub-tensors comp

ResNet-101 2.3× 2.5× 2× 2.2×
GoogLeNet v3 2.5× 2.5× 2.4× 2.2×

AlexNet 2.9× 2.9× 2.9× 2.5×

capacity increases linearly in number of such sub-tensors. Sub-8-bit
representation of sensitive parameters may have a ‘blurring’ effect
on later activations for very deep networks; consequently, extremely
high accuracy results might be elusive in 8-2 model.
• Ternary Residual Edges: Neither all the sub-tensors are ap-
proximated well in ternary, nor are they equally sensitive. For a
poorly approximated sub-tensor, we ternarize the residual sub-tensor
(difference between the FP32 one and the ternary one) and accu-
mulate the output this ternary residual sub-tensor during inference.
We might need multiple such residuals for a sub-tensor if all the
earlier residuals are, as a whole, not good enough. Let the j-th
layer weight tensor W(j) be partitioned into k disjoint sub-tensors
W(j)(i) (W̃(j)(i) being the perturbed version), i = 1, ...,k. Then, sen-

sitivity ε
(j)
i of i-th sub-tensor in j-th layer is defined as follows.

ε
(j)
i = ‖W

(j)
(i) − W̃

(j)
(i) ‖F /‖W

(j)‖F . Note that,
∑k
i=1(ε

(j)
i)

2 = ε2j (de-
fined earlier in Section 2. This suggests, for a given perturbation of
weights of a layer, various sub-tensors may require different number
of residuals. Let, i-th sub-tensor requires ri number of residuals.
Then, there is total

∑k
i=1(ri + 1) multiplications, model capacity is∑

i 3(ri+1) − k + 1, and model size (in bits) is (8 + 2n
k)

∑k
i=1(ri + 1),

for k number of sub-tensors and tensor size n.
• Power-Performance Estimate: LetX be the power-performance
gain for ternary 8-2 operations over 8-8. Then, power-performance
for residual method with C× compute using FGQ sub-tensor size N
can be shown as X/(C(X/N + 1)).

3 EXPERIMENTS
We use pre-trained FP-32 GoogleNetv3 [21], ResNet-101 [9], and
AlexNet [14] models for ImageNet classification task. For 8-bit
quantization, we have used the low-precision dynamic fixed point
technique mentioned in [18]. Results of ternary residual networks
are shown in Table 1. For power-performance gain, we estimate
X ∼ 5.5 for N = 64, which leads to an estimated power-performance
gain of ∼ 2× over 8-8 for accuracy 1% off from FP32 results. For
comparison, we mention a few results of other sub-8-bit networks on
ImageNet using AlexNet. (1) Binarized weights and activations of
[20] incurred a loss of ∼ 12%, (2) the loss of binary weights and 2-bit
activations of [28] was ∼ 6% from FP-32, and (3) [11] with binary
weight and 2-bit activations reduced the loss to ∼ 5.5% from FP-32,
(4) using FGQ with N = 4 (75% elimination of multiplications), [18]
achieved ∼ 7.8% loss from FP-32 using ternary weights and 4-bit
activations without any low-precision re-training. Note, however,
that (1) and (2) used FP-32 weights and activations for the first and
last layers. A detailed analysis on power-performance for various
methods is beyond the scope of this paper.

2

REFERENCES
[1] Mitsuru Ambai, Takuya Matsumoto, Takayoshi Yamashita, and Hironobu Fu-

jiyoshi. 2017. Ternary Weight Decomposition and Binary Activation Encoding for
Fast and Compact Neural Networks. https://openreview.net/pdf?id=ByOK0rwlx
(2017).

[2] Wenlin Chen, James T. Wilson, Stephen Tyree, Kilian Q. Weinberger, and Yixin
Chen. 2015. Compressing neural networks with the hashing trick. In ICML.

[3] Matthieu Courbariaux, Itay Hubara, Daniel Soudry, Ran El-Yaniv, and Yoshua
Bengio. 2016. Binarized neural networks: Training deep neural networks with
weights and activations constrained to + 1 or -1. arXiv preprint arXiv:1602.02830
(2016).

[4] Jia Deng, Wei Dong, Richard Socher, Li-Jia Li, Kai Li, and Li Fei-Fei. 2009.
Imagenet: A large-scale hierarchical image database. In Computer Vision and
Pattern Recognition, 2009. CVPR 2009. IEEE Conference on. IEEE, 248–255.

[5] Yiwen Guo, Anbang Yao, and Yurong Chen. 2016. Dynamic Network Surgery
for Efficient DNNs. In Advances in Neural Information Processing Systems.

[6] Suyog Gupta, Ankur Agrawal, Kailash Gopalakrishnan, and Pritish Narayanan.
2015. Deep Learning with Limited Numerical Precision. In ICML. 1737–1746.

[7] Song Han, Huizi Mao, and William J. Dally. 2016. Deep compression: Compress-
ing deep neural networks with pruning, trained quantization and huffman coding.
In ICLR.

[8] Song Han, Jeff Pool, John Tran, and William J. Dally. 2015. Learning both
weights and connections for efficient neural network. In Advances in Neural
Information Processing Systems. 1135–1143.

[9] Kaiming He, Xiangyu Zhang, Shaoqing Ren, and Jian Sun. 2016. Deep resid-
ual learning for image recognition. In Proceedings of the IEEE Conference on
Computer Vision and Pattern Recognition. 770–778.

[10] Andrew G. Howard, Menglong Zhu, Bo Chen, Dmitry Kalenichenko, Weijun
Wang, Tobias Weyand, Marco Andreetto, and Hartwid Adam. 2017. Mobilenets:
Efficient convolutional neural networks for mobile vision applications. arXiv
preprint arXiv:1704.04861 (2017).

[11] Itay Hubara, Matthieu Courbariaux, Daniel Soudry, Ran El-Yaniv, and Yoshua
Bengio. 2016. Quantized neural networks: Training neural networks with low
precision weights and activations. arXiv preprint arXiv:1609.07061 (2016).

[12] Forrest N. Iandola, Song Han, Matthew W. Moskewicz, Khalid Ashraf, William. J.
Dally, and Kurt Keutzer. 2016. SqueezeNet: Alexnet-level accuracy with 50x
fewer parameters and 0.5 mb model size. arXiv preprint arXiv:1602.07360
(2016).

[13] Norm Jouppi. 2016. Google supercharges machine learning tasks with TPU
custom chip. Google Blog, May 18 (2016).

[14] Alex Krizhevsky, Ilya Sutskever, and Geoffrey E Hinton. 2012. Imagenet classifi-
cation with deep convolutional neural networks. In Advances in neural information
processing systems. 1097–1105.

[15] Fengfu Li, Bo Zhang, and Bin Liu. 2016. Ternary weight networks. arXiv preprint
arXiv:1605.04711 (2016).

[16] Zhe Li, Xiaoyu Wang, Xutao Lv, and Tianbao Yang. 2017. SEP-Nets: Small and
Effective Pattern Networks. arXiv preprint arXiv:1706.03912 (2017).

[17] Zhouhan Lin, Matthieu Courbariaux, Roland Memisevic, and Yoshua Ben-
gio. 2016. Neural Networks with Few Multiplications. arXiv preprint
arXiv:1609.07061 (2016).

[18] Naveen Mellempudi, Abhisek Kundu, Dheevatsa Mudigere, Dipankar Das, Bharat
Kaul, and Pradeep Dubey. 2017. Ternary Neural Networks with Fine-Grained
Quantization. https://arxiv.org/abs/1705.01462 (2017).

[19] Daisuke Miyashita, Edward H Lee, and Boris Murmann. 2016. Convolu-
tional neural networks using logarithmic data representation. arXiv preprint
arXiv:1603.01025 (2016).

[20] Mohammad Rastegari, Vicente Ordonez, Joseph Redmon, and Ali Farhadi. 2016.
XNOR-Net: ImageNet Classification Using Binary Convolutional Neural Net-
works. In ECCV.

[21] Christian Szegedy, Vincent Vanhoucke, Sergey Ioffe, Jonathon Shlens, and Zbig-
niew Wojna. 2015. Rethinking the Inception Architecture for Computer Vision.
arXiv preprint arXiv:1512.00567 (2015).

[22] Yaman Umuroglu, Nicholas J Fraser, Giulio Gambardella, Michaela Blott, Philip
Leong, Magnus Jahre, and Kees Vissers. 2016. FINN: A Framework for Fast,
Scalable Binarized Neural Network Inference. arXiv preprint arXiv:1612.07119
(2016).

[23] Wei Wen, Chunpeng Wu, Yandan Wang, Yiran Chen, and Li Hai. 2016. Learning
Structured Sparsity in Deep Neural Networks. In Advances in Neural Information
Processing Systems.

[24] Darrell Williamson. 1991. Dynamically scaled fixed point arithmetic. In Commu-
nications, Computers and Signal Processing, 1991., IEEE Pacific Rim Conference
on. IEEE, 315–318.

[25] D Williamson, S Sridharan, and P McCrea. 1985. A new approach for block
floating-point arithmetic in recursive filters. IEEE transactions on circuits and
systems 32, 7 (1985), 719–722.

[26] Tien-Ju Yang, Yu-Hsin Chen, and Vivienne Sze. 2017. Designing Energy-Efficient
Convolutional Neural Networks using Energy-aware Pruning. In CVPR.

[27] Aojun Zhou, Anbang Yao, Yiwen Guo, Lin Xu, and Yurong Chen. 2017. In-
cremental Network Quantization: Towards Lossless CNNs with Low-Precision
Weights. poster at International Conference on Learning Representations (2017).

[28] Shuchang Zhou, Yuxin Wu, Zekun Ni, Xinyu Zhou, He Wen, and Yuheng Zou.
2016. DoReFa-Net: Training low bitwidth convolutional neural networks with
low bitwidth gradients. arXiv preprint arXiv:1606.06160 (2016).

[29] Chenzhuo Zhu, Song Han, Huizi Mao, and William J Dally. 2016. Trained Ternary
Quantization. arXiv preprint arXiv:1612.01064 (2016).

3

https://openreview.net/pdf?id=ByOK0rwlx
 https://arxiv.org/abs/1705.01462

	Abstract
	1 Introduction
	2 Perturbation in Pre-Trained DNN
	2.1 Low-Precision DNN

	3 Experiments
	References

