
DeepThin: A Self-Compressing Library for Deep Neural
Networks

Matthew Sotoudeh∗
Intel Labs/UC Davis

masotoudeh@ucdavis.edu

Sara S. Baghsorkhi
Intel Labs

sara.s.baghsorkhi@intel.com

1 Introduction and Motivation
As the industry finds more uses for deep learning algorithms in
consumer-facing devices, it is becoming clear that running such
expensive algorithms on what are usually portable, low-power de-
vices is often infeasible due to the significant storage, performance,
and energy limitations involved. This issue has motivated much
recent research into machine learning compression methods.

Existing compression methods, however, either struggle to com-
press models to sizes significantly less than 1

50 their original size [6,
7], introduce significant storage or computational overhead [3, 6,
8, 15], produce unpredictable compression rates [8], or require
significant engineering to implement and tune important hyperpa-
rameters [5, 12].

Our work builds on existing research in the area of low rank
factorization [4, 10, 11, 14]. We develop a new compression method
and library, DeepThin, that:

1. Solves the fundamental scaled-symmetry issuewith extremely
low-rank matrix factorization of deep learning model param-
eters

2. Is integrated (along with previous-work techniques for com-
parison) with the TensorFlow framework

3. Consistently results in up to 60% better accuracy than previ-
ous methods

4. Empirically demonstrates inference speed-ups from 2X to
14X

2 DeepThin Architecture
Rank factorization compression algorithms approximate a given
weight matrix,WQ×R, with the matrix product of two smaller ma-
trices [4, 10, 11, 14].

Rank-1 factorization of a weight matrix is extremely appealing
from both a storage and computational efficiency standpoint, but,
as the rank decreases, rows/columns of the reconstructed weight
matrix begin to resemble each other - a limitation we have found
to significantly impact the learning capacity and accuracy of a
network.

To prevent this, DeepThin first applies rank approximation to
an auxiliary matrix, Waux, of (semi-arbitrary) size m × n:

Waux ≈ Xf .Wf (1)

where now Xf is a m × r matrix andWf is an r × n matrix.
Finally, rows ofWaux are “spread" along columns ofWQ×R, as

demonstrated in Figure 1, such that the artificial symmetry is bro-
ken.

Nevertheless, the above reshape function may still result in pat-
terns in WQ×R, in the form of blocks (of columns) scaled slightly
differently. To mitigate this, our library picks an n dimension that

∗Work completed while at Intel

is prime relative to R. Our library computes and handles all other
constraints necessary to achieve a given compression rate.

The Xf and Wf factors can then be backpropagated to and com-
pletely learned during training.

3 DeepThin Library Implementation
We implement both DeepThin and previously proposed compres-
sion methods as part of a library module integrated with the open-
source TensorFlow [1] framework.

Instead of calling the standard TensorFlow methods to declare a
learnable variable, the user calls our library, which creates a separate
sub-graph to generate each variable and returns a “tensor" that can
be used as a regular variable in TensorFlow. The contents of each
sub-graph depend on the compression method and size requested.
To the programmer, the process is completely transparent and
controllable with a single configuration file.

We alsowrote a fusedmatrix-multiplication operation for DeepThin-
compressed networks directly in C++ with MKL [9]. We used two
major optimizations unique to the DeepThin method as demon-
strated in Figure 1.

4 Results
We compare the accuracy of two state-of-the-art speech recognition
models compressed with DeepThin for the same compression rate
against previous deep compression techniques, which include:

• HashedNet: A small set of possible weight values are dis-
tributed into a larger weight matrix according to a (compu-
tationally expensive) hashing function [3].

• Pruning: Matrices are iteratively pruned and the resultant
sparse matrices stored with CSR format until the overall size
is achieved [7].

• Same-Size Networks: Manually lowering the number of hid-
den units in a network until the desired size is reached

• Rank Factorization: Factoring weight matrices into smaller,
lower-rank factors [4, 14].

We also compare against DeepThin-Shuffled – aDeepThin-compressed
network where the weight values are randomly distributed through-
out the final weight matrix (as opposed to our re-layout operation).

Rank Prune SSNN Hash
TFKaldi 60.08% 56.96% 23.40% 6.12%

DeepSpeech 28.09% 27.21% 20.45% 12.16%
Table 1. Average relative accuracy improvement of DeepThin com-
pared to four other compression methods. Different compression
methods tend to perform better on different datasets, however
DeepThin consistently achieves better accuracy results than all
other compression methods tested.

1



SysML, 2018, Submission #33 Matthew Sotoudeh and Sara S. Baghsorkhi

stride  n

Q

Wf
0

Xf
0

Xf
1

Xf
2

Xf
3

Xf
4

Xf
5

Wf
1 Wf

2

Xf
0W

f
0 Xf

0Wf
1 Xf

0Wf
2

Xf
1W

f
0 Xf

1Wf
1 Xf

1Wf
2

Xf
2W

f
0 Xf

2Wf
1 Xf

2Wf
2

Xf
3W

f
0 Xf

3Wf
1 Xf

3Wf
2

Xf
4W

f
0 Xf

4Wf
1 Xf

4Wf
2

Xf
5W

f
0 Xf

5Wf
1 Xf

5Wf
2

Xf
6

Xf
7

Xf
6W

f
0 Xf

6Wf
1 Xf

6Wf
2

Xf
7W

f
0 Xf

7Wf
1 Xf

7Wf
2

Xf
0Wf

0

Xf
0Wf

1

Xf
0Wf

2

Xf
1Wf

0

Xf
1Wf

1

Xf
1Wf

2

Xf
2Wf

0

Xf
2Wf

1

Xf
2Wf

2

Xf
3Wf

0

Xf
3Wf

1

Xf
3Wf

2

Xf
4Wf

0

Xf
4Wf

1

Xf
4Wf

2

Xf
5Wf

0

Xf
5Wf

1

Xf
5Wf

2

Xf
6Wf

0

Xf
6Wf

1

Xf
6W

f
2

Xf
7W

f
0

Xf
7W

f
1

Xf
7W

f
2

X0 X1 X2 X3

n

Weight Matrix WQxR

Waux

Layer’s Input X:

Y
= 

X
.W

Q
xR

With Q and n being relatively prime, after LCM(n, Q) = n*Q entries – every nth column of WQxR will be a scaled version 
of  the other. We can exploit this redundancy by factoring out the scale operations – multiplication by Xf elements.

Y0= X0*Xf
0*Wf

0+ X1*Xf
0*Wf

1+ X2*Xf
0*Wf

2+ X3*Xf
1*Wf

0

Y3= X0*Xf
4*Wf

0+ X1*Xf
4*Wf

1+ X2*Xf
4*Wf

2+ X3*Xf
5*Wf

0

P0= X0*Wf
0+ X1*Wf

1+ X2*Wf
2

P1=  X3*Wf
0

Y0= Xf
0*P0+ Xf

1*P1

Y3= Xf
4*P0+ Xf

5*P1

1) Conventional Compute Algorithm:

2) DeepThin Optimized Algorithm:

6 FLOPS Shared by 
columns n stride part 

3 Extra FLOPS per 
Column 

11 FLOPS per Column – 22 FLOPS Total

12 FLOPS Total

Figure 1. Exploiting redundancy generated by our DeepThin compression method to optimize computation of Y = X.WQxR.

Figure 2. Test word error rate comparison for the TFKaldi model.
DeepThin results in lower WERs at all compression rates except
for the very smallest configuration (for which HashedNet achieves
a lower WER at the cost of significant computational overhead).

We do not report results for CNN models because the unusually
large input/output buffers modern CNNs require would prevent
inference models from fitting on the target devices even if the
weights were completely removed (although there is no fundamen-
tal limitation of our method). However, preliminary results show
that DeepThin accuracy is on par with or better than competing
methods on state-of-the-art ResNet models.

Figure 2 and Figure 3 compare the test error for each compression
method on the TFKaldi [13] (a feed-forward network) and Deep-
Speech [2] models (a combination of convolutional, feed-forward,
and recurrent layers) respectively. DeepThin networks show bet-
ter results at practically all tested compression rates. The average
relative accuracy improvement is summarized in Table 1.

Table 2 demonstrates the impressive performance gains realiz-
able with DeepThin, reaching speeds of up to 14X faster than the
uncompressed model. This effect is more pronounced on smaller-
cache machines that more closely match a real-world client device,
though we also find large performance benefits on even the most
capable machine. Performance gains come from a combination

Figure 3. Test loss for the DeepSpeech model. DeepThin signifi-
cantly outperforms all other compression methods.

TFKaldi DeepSpeech
~Size CONF1 CONF2 CONF3 CONF1 CONF2 CONF3

0.0195 3.80X 2.51X 2.46X 7.66X 2.24X 2.08X
0.0129 5.64X 3.16X 3.51X 10.66X 3.09X 2.77X
0.0099 6.47X 3.88X 4.09X 12.12X 3.50X 3.09X
0.0057 8.12X 4.21X 4.84X 13.69X 3.89X 3.67X
0.0040 8.53X 5.69X 5.32X 13.72X 3.86X 3.70X
0.0027 8.22X 5.22X 5.42X 13.04X 3.65X 3.46X
0.0020 7.43X 4.56X 4.58X 11.68X 3.36X 3.22X
0.0014 4.44X 4.12X 2.44X 8.72X 2.57X 2.42X

Table 2. Execution speed-ups (“X faster" than uncompressed) of
DeepThin models. CONF1: 1 memory channel/6 MB L3, CONF2:
8 channels/25 MB L3, CONF3: 16 channels/45 MB L3. Most of our
performance gains come from fitting the model into L3 cache. The
trend starts to reverse for extremely small models due to a reduction
in the amount of reuse possible (demonstrated in Figure 1).

of smaller memory footprints that can fit the entire model in the
caches, the inhererently simple operations required by DeepThin,
and finally DeepThin’s capability to re-use partial compututations.

2



SysML, 2018, Submission #33

References
[1] Martín Abadi, Ashish Agarwal, Paul Barham, Eugene Brevdo, Zhifeng Chen,

Craig Citro, Greg S. Corrado, Andy Davis, Jeffrey Dean, Matthieu Devin, San-
jay Ghemawat, Ian Goodfellow, Andrew Harp, Geoffrey Irving, Michael Isard,
Yangqing Jia, Rafal Jozefowicz, Lukasz Kaiser, Manjunath Kudlur, Josh Leven-
berg, Dan Mané, Rajat Monga, Sherry Moore, Derek Murray, Chris Olah, Mike
Schuster, Jonathon Shlens, Benoit Steiner, Ilya Sutskever, Kunal Talwar, Paul
Tucker, Vincent Vanhoucke, Vijay Vasudevan, Fernanda Viégas, Oriol Vinyals,
Pete Warden, Martin Wattenberg, Martin Wicke, Yuan Yu, and Xiaoqiang Zheng.
2015. TensorFlow: Large-Scale Machine Learning on Heterogeneous Systems.
(2015). https://www.tensorflow.org/ Software available from tensorflow.org.

[2] Dario Amodei, SundaramAnanthanarayanan, Rishita Anubhai, Jingliang Bai, Eric
Battenberg, Carl Case, Jared Casper, Bryan Catanzaro, Qiang Cheng, Guoliang
Chen, Jie Chen, Jingdong Chen, Zhijie Chen, Mike Chrzanowski, Adam Coates,
Greg Diamos, Ke Ding, Niandong Du, Erich Elsen, Jesse Engel, Weiwei Fang,
Linxi Fan, Christopher Fougner, Liang Gao, Caixia Gong, Awni Hannun, Tony
Han, Lappi Johannes, Bing Jiang, Cai Ju, Billy Jun, Patrick LeGresley, Libby Lin,
Junjie Liu, Yang Liu, Weigao Li, Xiangang Li, Dongpeng Ma, Sharan Narang,
Andrew Ng, Sherjil Ozair, Yiping Peng, Ryan Prenger, Sheng Qian, Zongfeng
Quan, Jonathan Raiman, Vinay Rao, Sanjeev Satheesh, David Seetapun, Shubho
Sengupta, Kavya Srinet, Anuroop Sriram, Haiyuan Tang, Liliang Tang, Chong
Wang, JidongWang, Kaifu Wang, Yi Wang, Zhijian Wang, Zhiqian Wang, Shuang
Wu, Likai Wei, Bo Xiao, Wen Xie, Yan Xie, Dani Yogatama, Bin Yuan, Jun Zhan,
and Zhenyao Zhu. 2016. Deep Speech 2 : End-to-End Speech Recognition in
English and Mandarin. In Proceedings of The 33rd International Conference on
Machine Learning (Proceedings of Machine Learning Research), Maria Florina
Balcan and Kilian Q. Weinberger (Eds.), Vol. 48. PMLR, New York, New York,
USA, 173–182. http://proceedings.mlr.press/v48/amodei16.html

[3] Wenlin Chen, James T. Wilson, Stephen Tyree, Kilian Q. Weinberger, and Yixin
Chen. 2015. Compressing Neural Networks with the Hashing Trick. In Proceedings
of the 32Nd International Conference on International Conference on Machine
Learning - Volume 37 (ICML’15). JMLR.org, 2285–2294. http://dl.acm.org/citation.

cfm?id=3045118.3045361
[4] Misha Denil, Babak Shakibi, Laurent Dinh, Marc' Aurelio Ranzato, and Nando

de Freitas. 2013. Predicting Parameters in Deep Learning. In Advances in Neu-
ral Information Processing Systems 26, C. J. C. Burges, L. Bottou, M. Welling,
Z. Ghahramani, and K. Q. Weinberger (Eds.). Curran Associates, Inc., 2148–2156.
http://papers.nips.cc/paper/5025-predicting-parameters-in-deep-learning.pdf

[5] David Ha, Andrew Dai, and Quoc Le. 2016. HyperNetworks.
[6] SongHan, Huizi Mao, andWilliam J Dally. 2016. Deep Compression: Compressing

Deep Neural Networks with Pruning, Trained Quantization and Huffman Coding.
International Conference on Learning Representations (ICLR) (2016).

[7] Song Han, Jeff Pool, John Tran, and William Dally. 2015. Learning both Weights
and Connections for Efficient Neural Network. In Advances in Neural Information
Processing Systems (NIPS). 1135–1143.

[8] David A. Huffman. 1952. A Method for the Construction of Minimum-
Redundancy Codes. Proceedings of the IRE 40, 9 (1952), 1098–1101.

[9] Intel. 2017. Intel Math Kernel Library. (2017). https://software.intel.com/en-us/
mkl

[10] Max Jaderberg, Andrea Vedaldi, and Andrew Zisserman. 2014. Speeding up
Convolutional Neural Networks with Low Rank Expansions.. In British Machine
Vision Conference 2014.

[11] Zhiyun Lu, Vikas Sindhwani, and Tara N. Sainath. 2016. Learning compact
recurrent neural networks. In 2016 IEEE International Conference on Acoustics,
Speech and Signal Processing (ICASSP). 5960–5964.

[12] Russell Reed. 1993. Pruning algorithms-a survey. IEEE Transactions on Neural
Networks 4, 5 (1993), 740–747.

[13] Vincent Renkens. May 2017. Train a tensorflow neural net with kaldi alignments
as targets. (May 2017). https://github.com/vrenkens/tfkaldi

[14] Tara N. Sainath, Brian Kingsbury, Vikas Sindhwani, Ebru Arisoy, and Bhuvana
Ramabhadran. 2013. Low-rank matrix factorization for Deep Neural Network
training with high-dimensional output targets. 2013 IEEE International Conference
on Acoustics, Speech and Signal Processing (2013), 6655–6659.

[15] R.A. Snay. 1976. Reducing the profile of sparse symmetric matrices. Bull. Geode-
sique (1976).

3

https://www.tensorflow.org/
http://proceedings.mlr.press/v48/amodei16.html
http://dl.acm.org/citation.cfm?id=3045118.3045361
http://dl.acm.org/citation.cfm?id=3045118.3045361
http://papers.nips.cc/paper/5025-predicting-parameters-in-deep-learning.pdf
https://software.intel.com/en-us/mkl
https://software.intel.com/en-us/mkl
https://github.com/vrenkens/tfkaldi

	1 Introduction and Motivation
	2 DeepThin Architecture
	3 DeepThin Library Implementation
	4 Results
	References

