
SysML 2018 Submission #4 – Extended Abstract

A SIMD-MIMD Acceleration with Access-Execute Decoupling for

Generative Adversarial Networks

Amir Yazdanbakhsh
Georgia Institute of Technology

a.yazdanbakhsh@gatech.edu

Kambiz Samadi
Qualcomm

ksamadi@qti.qualcomm.com

Hadi Esmaeilzadeh
University of California-San Diego

hadi@eng.ucsd.edu

Nam Sung Kim
University of Illinois at Urbana-Champaign

nskim@illinois.edu

ABSTRACT
Generative Adversarial Networks (GANs) leverage a new opera-
tor, called transposed convolution, that exposes new challenges
for hardware acceleration. This operator first inserts zeros within
the multidimensional input and then convolves a kernel over this
expanded array to add information to the embedded zeros. The
inserted zeros lead to underutilization of the compute resources
when a traditional convolution accelerator is used. To alleviate the
underutilization of the compute resources, we propose X-GAN,
the first GAN accelerator design. Evaluations with seven GAN
models shows, on average, 3.5× speedup and 3.1× energy savings
over EYERISS without compromising the efficiency of traditional
convolution at the cost of merely 7.8% area increase. These results
suggest that X-GAN is an effective initial step that paves the way
for accelerating next generation deep models.

1 INTRODUCTION
While GANs are set to push the frontier across various domains [1–
15], there is a lack of hardware accelerators that address their com-
putational needs. This paper sets out to explore this new dimension
from the hardware acceleration perspective. Given the abundance of
the accelerators for conventional DNNs [16–43], designing an accel-
erator for GANs will only be attractive if they pose new challenges
in architecture design. Studying the structure of emerging GAN
models [5–12], we observe that they use a fundamentally new type
of mathematical operator in their generative model called transpose
convolution (TConv). Transposed convolution aims to extrapolate
new information from the input feature map. This contrasts with
convolution that aims to interpolate the most relevant information
from the input. As such, the transposed convolution operator first
inserts zeros within the multidimensional input and then convolves
a kernel over this expanded input to add information to the inserted
zeros. The transposed convolution in GANs fundamentally differs
from the operators in the backward pass of training conventional
DNNs as these do not insert zeros. Moreover, although there is a
convolution stage in the GAN operator, the inserted zeros cause
underutilization of the computing resources available compared to
if a traditional convolution accelerator were used. The following
highlights the sources of these inefficiencies and outlines the contri-
butions of this paper that alleviates these sources of underutilization,
making the first GAN accelerator design possible.
(1) Performing multiply-accumulate on the inserted zeros is in-

consequential. Unlike conventional convolution, the accelerator
should skip over the zeros as they constitute almost 60% of all
the operands (Figure 1). Skipping the zeros creates irregular
dataflow in the following convolution and diminishes data reuse
if not handled adequately in the microarchitecture. To address
this challenge, we propose a reording of the output computations
that allocates computing rows with similar patterns of zeros to
adjacent processing engines. This forced adjacency reclaims
data reuse across these neighboring computational units.

(2) Reordering computation is necessary but breaks the SIMD
execution model. The inserted zeroes even with the reorder-
ing creates different patterns of computation when sliding the
convolution window. As such, the same sequence of operations
cannot be repeated across all the processing engines, breaking

3D-GAN
ArtG

AN
DCGAN

DiscoGAN

GP-GAN
MAGAN

Average
0%

20%

40%

60%

80%

100%

Pe
rc

en
ta

ge
of

Ze
ro

s
in

TC
on

v
La

ye
rs

(a)

3D-GAN
ArtG

AN
DCGAN

DiscoGAN

GP-GAN
MAGAN

Average
0%

20%

40%

60%

80%

100%

Pe
rc

en
ta

ge
of

In
ef

fe
ct

ua
l

O
pe

ra
tio

ns
in

TC
on

v
La

ye
rs

(b)
Figure 1: (a) Fraction of input data that are zeros due to zero-

insertion in TConv layers and (b) fraction of operations in TConv

layers that are ineectual.

the full SIMD execution model. Therefore, we propose a MIMD-
SIMD accelerator architecture that exploits repeated patterns in
the computation to create different microprograms that execute
concurrently in SIMD mode. To maximize benefits from both
levels of parallelism, we propose an architecture, called X-GAN,
that supports interleaving MIMD and SIMD operations at the
granularity of a single instruction.

(3) MIMD is inevitable but its overhead needs to be amortized.
These modifications in the dataflow and the computation or-
der, necessitate irregular accesses to multiple different memory
structures while the operations are still the same. That is, the
compute part can be SIMD but the access patterns prevent the
execution model. For X-GAN, we propose to decouple data
accesses from data processing. The decoupling leads to breaking
each processing engine to an access micro-engine and an execute
micro-engine. The proposed architecture extends the concept of
access-execute architecture [44–46] to the finest granularity of
computation for each individual operand.

Although X-GAN addresses these challenges to enable efficient exe-
cution of transposed convolution operator, it does not impose extra
overhead on the execution of traditional convolution, but instead
offers the same level of performance and efficiency.

2 ARCHITECTURE DESIGN FOR X-GAN
Figure 2 illustrates the high-level diagram of the X-GAN architec-
ture, which is comprised of a set of identical processing engines
(PE) and a memory hierarchy. The PEs are organized in a 2D array
and connected through a dedicated network. Each PE is equipped
with a local scratchpad register file and a simple arithmetic unit.
The memory hierarchy is comprised of an off-chip DRAM and two
separate on-chip global buffers, one for data and one for instruction,
which are shared across all the PEs. Using a memory hierarchy
facilitates the data reuse in the architecture. In this architecture, each
PE operates on one row of filter and one row of input and generates
one row of partial sum values. The partial sum values are further
accumulated together across multiple PEs horizontally to generate
the final output value.
Unified SIMD-MIMD architecture. Using a SIMD model for
transposed convolution operation leads to resource underutilization.
The PEs that perform the computation for sliding windows with
fewer number of operations remains idle, wasting computational
resources. The simple solution is to replace the SIMD model with a
fully MIMD computing model. However, a MIMD execution model
requires augmenting each processing engine with an instruction
buffer. To prevent the large area overhead of adding an instruction
buffer to each PE, we design X-GAN architecture upon this observa-
tion that PEs in the same row perform same operations for a large
period of time. To enable a low-overhead SIMD/MIMD model of



Local
µOp

Buffer

Global Data Buffer

PV
0

PV
1

PV
2

PV
i-1

PE0

PE0 PE1 PE2

PE1 PE2 PEj-1

PEj-1

PE0 PE1 PE2 PEj-1

PE0 PE1 PE2 PEj-1

Global Inst. Buffer

Off-Chip DRAMOff-Chip DRAM

G
lo

ba
l µ

O
p 

Bu
ffe

r
µO

p 
Se

qu
en

ce
r

Local
µOp

Buffer

Local
µOp

Buffer

Local
µOp

Buffer

Execute
µEngine

Access
µEngine

Execute
µEngine

Access
µEngine

Execute
µEngine

Access
µEngine

Execute
µEngine

Access
µEngine

Execute
µEngine

Access
µEngine

Execute
µEngine

Access
µEngine

Execute
µEngine

Access
µEngine

Execute
µEngine

Access
µEngine

Execute
µEngine

Access
µEngine

Execute
µEngine

Access
µEngine

Execute
µEngine

Access
µEngine

Execute
µEngine

Access
µEngine

Execute
µEngine

Access
µEngine

Execute
µEngine

Access
µEngine

Execute
µEngine

Access
µEngine

Execute
µEngine

Access
µEngine

Figure 2: Top-level block diagram of X-GAN architecture.

Input Buffer

Weight Buffer

Output Buffer

Input Address
FIFO

Weight Address
FIFO

Output Address
FIFO

Input Strided 
µIndex Generator

Weight Strided 
µIndex Generator

Output Strided 
µIndex Generator

Ac
ce

ss
µE

ng
in

e

AL
U

Ex
ec

ut
e

µE
ng

in
e

µO
p

FI
FO

Figure 3: Organization of decoupled Access-Execute architecture.

computing, we introduce a two-level µop buffer (Figure 2). Each
horizontal group of PEs, called processing vector (PV), shares a
local µop. However, the global µop buffer is shared across all the
PVs. The global µop buffer is connected to a global instruction
buffer. The accelerator does not execute the instruction from the
global instruction buffer. Instead, each instruction is translated to a
series of µops in the global µop buffers. The translation from the
instruction to µops occurs in the µop sequencer. The accelerator can
operate in two modes: SIMD mode and SIMD-MIMD mode. Since
all the sliding windows in the convolution have the same number of
operations, we use SIMD mode. In the SIMD mode the global µop
buffer bypasses the local µop and broadcasts the µop to all the PEs.
On the other hand, since the number of operations varies from one
sliding window to another in transposed convolution, the accelerator
works in hybrid SIMD-MIMD mode. In the hybrid SIMD-MIMD
mode, the global µop buffer sends distinct indices to each local µop
buffer. Upon receiving the index, each local µop buffer reads a µop
and broadcasts it to all the underlying PEs.
Decoupled access-execute µengines. Although the data access pat-
terns in the transposed convolution operation are irregular, they are
still structured. Furthermore, the data access patterns are repetitive
across the sliding windows. Leveraging this observation, we devise
a microarchitecture that decouples data access from from execution.
Figure 3 illustrates the organization of our proposed decoupled
access-execute architecture. The decoupled access-execute archi-
tecture consists of two microarchitectural units, one for address
generation (access µengine) and one for performing the operations
(execute µengine). The µops of these two units are entirely segre-
gated. However, the access and execute µengines work cooperatively
to carry out an operation. The µops for access µengine handle
the configuration of address generator units and calculating the
memory addresses. The µops for execute µengine only specify the
type of operation to be performed on the fetched data. As such,
the execute µops do not need to include any fields for specifying
the source/destination operands. Every cycle, the access µengine
calculates the addresses for source and destination operands based on
its preconfigured parameters. Then, the execute µengine performs
the specified operation on the source operands. The result of the
operation is stored in the location that is defined by the access
µengine. Having two segregated µengines for accessing the data
and executing the operations has a paramount benefit of re-using
execute µops. Since there is no address field in the execute µop, we
can re-use the same execute µop on different data over and over

3D-GAN
ArtG

AN
DCGAN

DiscoGAN

GP-GAN
MAGAN

Geomean
0×
1×
2×
3×
4×
5×
6×
7×

S
pe

ed
up

(a) Speedup

3D-GAN
ArtG

AN
DCGAN

DiscoGAN

GP-GAN
MAGAN

Geomean
0×
1×
2×
3×
4×
5×

E
ne

rg
y

R
ed

uc
tio

n

(b) Energy Reduction
Figure 4: Speedup and energy reduction of TConv layers compared

to Eyeriss [19].

3D-GAN
ArtG

AN
DCGAN

DiscoGAN

GP-GAN
MAGAN

Average
0%

20%

40%

60%

80%

100%

N
or

m
al

iz
ed

R
un

tim
e

E
ye

ris
s

E
ye

ris
s

E
ye

ris
s

E
ye

ris
s

E
ye

ris
s

E
ye

ris
s

E
ye

ris
s

G
A

N
A

X

G
A

N
A

X

G
A

N
A

X

G
A

N
A

X

G
A

N
A

X

G
A

N
A

X

G
A

N
A

X

Discriminative Generative

(a) Runtime

3D-GAN
ArtG

AN
DCGAN

DiscoGAN

GP-GAN
MAGAN

Average
0%

20%

40%

60%

80%

100%

N
or

m
al

iz
ed

E
ne

rg
y

E
ye

ris
s

E
ye

ris
s

E
ye

ris
s

E
ye

ris
s

E
ye

ris
s

E
ye

ris
s

E
ye

ris
s

G
A

N
A

X

G
A

N
A

X

G
A

N
A

X

G
A

N
A

X

G
A

N
A

X

G
A

N
A

X

G
A

N
A

X

Discriminative Generative

(b) Energy
Figure 5: Breakdown of (a) runtime and (b) energy consumption be-

tweendiscriminative andgenerativemodels normalized to runtime

and energy consumption of Eyeriss, respectively. For each network,

the first (second) bar show the normalized value when the applica-

tion is executed on Eyeriss (X-GAN).

again without the need to change any fields in the µops. Re-using
the same µop on different data significantly reduces the size of µop
buffers.

3 EVALUATION AND METHODOLOGY
Experimental setup. We evaluate the performance and energy ben-
efits of X-GAN across a variety of GAN models with our cycle-level
simulator and a combination of logic synthesis and detailed energy
modeling. For the baseline accelerator, we use EYERISS [19], one
of the most recent and efficient proposals for CNN acceleration.
We implement the X-GAN microarchitectural units in Verilog and
synthesize using TSMC 45nm standard-cell library. To measure the
area and read/write access energy of the register files, SRAMs, and
local/global buffers, we use CACTI-P [47]. The same frequency (500
MHz) is used for both EYERISS and X-GAN in all of the experiments.
Under this setting, X-GAN architecture has an area overhead of 7.8%
compared to EYERISS.
Experimental results. Figure 4a shows the speedup of the genera-
tive models with X-GAN over Eyeriss [19]. On average, X-GAN
yields 3.5× speedup improvement over the baseline CNN accelerator
(EYERISS [19]). The GAN models with a larger fraction of inserted
zeros in the input data and larger number of ineffectual operations in
transposed convolution layers enjoy a higher speedup with X-GAN.
Figure 4b shows the energy reductions achieved by X-GAN normal-
ized to EYERISS [19]. On average, X-GAN effectively reduces the
energy consumption by 3.1× over EYERISS accelerator. Figure 5
shows the normalized runtime and energy breakdown between dis-
criminative and generative models. The first (second) bar shows
the normalized runtime (energy) for EYERISS (X-GAN). As the
results show, while X-GAN significantly reduces both the runtime
and energy consumption of generative models, it delivers the same
level of efficiency for discriminative models. These results show that
our proposed architecture is efficient in addressing the main sources
of inefficiencies in generative models.

4 CONCLUSION
X-GAN is a unified architecture that brings together both SIMD
and MIMD execution models to maximize the efficiency of the
accelerator for both generative and discriminative models. To support
this mixed mode, each computational unit offers a decoupled micro
access-execute paradigm in the finest granularity of its computation
micro engines. The evaluation results across a variety of GAN
models shows that X-GAN delivers significant performance gains
for the generative without sacrificing the execution efficiency of the
conventional DNNs.

2



REFERENCES
[1] Dong Nie, Roger Trullo, Jun Lian, Caroline Petitjean, Su Ruan, Qian Wang,

and Dinggang Shen. Medical Image Synthesis with Context-aware Generative
Adversarial Networks. In International Conference on Medical Image Computing
and Computer-Assisted Intervention, 2017.

[2] Pedro Costa, Adrian Galdran, Maria Ines Meyer, Meindert Niemeijer, Michael
Abràmoff, Ana Maria Mendonça, and Aurélio Campilho. End-to-end Adversarial
Retinal Image Synthesis. IEEE Transactions on Medical Imaging, 2017.

[3] Jonathan Ho and Stefano Ermon. Generative Adversarial Imitation Learning. In
D. D. Lee, M. Sugiyama, U. V. Luxburg, I. Guyon, and R. Garnett, editors, NIPS.
2016.

[4] Arna Ghosh, Biswarup Bhattacharya, and Somnath Basu Roy Chowdhury. SAD-
GAN: Synthetic Autonomous Driving using Generative Adversarial Networks.
arXiv preprint arXiv:1611.08788, 2016.

[5] Alec Radford, Luke Metz, and Soumith Chintala. Unsupervised Representation
Learning with Deep Convolutional Generative Adversarial Networks. arXiv
preprint arXiv:1511.06434, 2015.

[6] Jiajun Wu, Chengkai Zhang, Tianfan Xue, William T Freeman, and Joshua B
Tenenbaum. Learning a Probabilistic Latent Space of Object Shapes via 3D
Generative-Adversarial Modeling. In NIPS, 2016.

[7] Ruohan Wang, Antoine Cully, Hyung Jin Chang, and Yiannis Demiris. MAGAN:
Margin Adaptation for Generative Adversarial Networks. CoRR, 2017.

[8] Ian Goodfellow, Jean Pouget-Abadie, Mehdi Mirza, Bing Xu, David Warde-Farley,
Sherjil Ozair, Aaron Courville, and Yoshua Bengio. Generative adversarial nets.
In NIPS, 2014.

[9] Dong Nie, Roger Trullo, Caroline Petitjean, Su Ruan, and Dinggang Shen. Medical
Image Synthesis with Context-Aware Generative Adversarial Networks. CoRR,
2016.

[10] Wei Ren Tan, Chee Seng Chan, Hernan Aguirre, and Kiyoshi Tanaka. Art-
GAN: Artwork Synthesis with Conditional Categorial GANs. arXiv preprint
arXiv:1702.03410, 2017.

[11] Taeksoo Kim, Moonsu Cha, Hyunsoo Kim, Jung Kwon Lee, and Jiwon Kim.
Learning to Discover Cross-Domain Relations with Generative Adversarial Net-
works. CoRR, 2017.

[12] Huikai Wu, Shuai Zheng, Junge Zhang, and Kaiqi Huang. GP-GAN: Towards
Realistic High-Resolution Image Blending. arXiv preprint arXiv:1703.07195,
2017.

[13] Li-Chia Yang Yi-Hsuan Yang Hao-Wen Dong, Wen-Yi Hsiao. Musegan: Symbolic-
domain music generation and accompaniment with multi-track sequential genera-
tive adversarial networks. 2017.

[14] Li-Chia Yang, Szu-Yu Chou, and Yi-Hsuan Yang. MidiNet: A Convolutional
Generative Adversarial Network for Symbolic-domain Music Generation using
1D and 2D Conditions. arXiv preprint arXiv:1703.10847, 2017.

[15] Hao-Wen Dong, Wen-Yi Hsiao, Li-Chia Yang, and Yi-Hsuan Yang. MuseGAN:
Symbolic-domain Music Generation and Accompaniment with Multi-track Se-
quential Generative Adversarial Networks. 2017.

[16] Tianshi Chen, Zidong Du, Ninghui Sun, Jia Wang, Chengyong Wu, Yunji Chen,
and Olivier Temam. DianNao: A Small-footprint High-throughput Accelerator for
Ubiquitous Machine-learning. In ASPLOS, 2014.

[17] Z. Du, R. Fasthuber, T. Chen, P. Ienne, L. Li, T. Luo, X. Feng, Y. Chen, and
O. Temam. ShiDianNao: Shifting Vision Processing Closer to the Sensor. In
ISCA, 2015.

[18] Yu-Hsin Chen, Tushar Krishna, Joel S Emer, and Vivienne Sze. Eyeriss: An
Energy-efficient Reconfigurable Accelerator for Deep Convolutional Neural Net-
works. JSSC, 2017.

[19] Yu-Hsin Chen, Joel Emer, and Vivienne Sze. Eyeriss: A Spatial Architecture for
Energy-Efficient Dataflow for Convolutional Neural Networks. In ISCA, 2016.

[20] Mingyu Gao, Jing Pu, Xuan Yang, Mark Horowitz, and Christos Kozyrakis.
TETRIS: Scalable and Efficient Neural Network Acceleration with 3D Memory.
2017.

[21] S. Zhang, Z. Du, L. Zhang, H. Lan, S. Liu, L. Li, Q. Guo, T. Chen, and Y. Chen.
Cambricon-X: An Accelerator for Sparse Neural Networks. In MICRO, 2016.

[22] Angshuman Parashar, Minsoo Rhu, Anurag Mukkara, Antonio Puglielli, Ranghara-
jan Venkatesan, Brucek Khailany, Joel Emer, Stephen W Keckler, and William J
Dally. SCNN: An Accelerator for Compressed-sparse Convolutional Neural
Networks. In ISCA, 2017.

[23] Bilel Belhadj, Antoine Joubert, Zheng Li, Rodolphe Héliot, and Olivier Temam.
Continuous Real-World Inputs Can Open Up Alternative Accelerator Designs. In
ISCA, 2013.

[24] Song Han, Xingyu Liu, Huizi Mao, Jing Pu, Ardavan Pedram, Mark A. Horowitz,
and William J. Dally. EIE: Efficient Inference Engine on Compressed Deep Neural
Network. In ISCA, 2016.

[25] Steven K. Esser, Paul A. Merolla, John V. Arthur, Andrew S. Cassidy, Rathinaku-
mar Appuswamy, Alexander Andreopoulos, David J. Berg, Jeffrey L. McKinstry,
Timothy Melano, Davis R. Barch, Carmelo di Nolfo, Pallab Datta, Arnon Amir,
Brian Taba, Myron D. Flickner, and Dharmendra S. Modha. Convolutional
Networks for Fast, Energy-Efficient Neuromorphic Computing. CoRR, 2016.

[26] Schuyler Eldridge, Amos Waterland, Margo Seltzer, Jonathan Appavoo, and Ajay
Joshi. Towards General-Purpose Neural Network Computing. In PACT, 2015.

[27] Hadi Esmaeilzadeh, Adrian Sampson, Luis Ceze, and Doug Burger. Neural
Acceleration for General-Purpose Approximate Programs. In MICRO, 2012.

[28] Amir Yazdanbakhsh, Jongse Park, Hardik Sharma, Pejman Lotfi-Kamran, and
Hadi Esmaeilzadeh. Neural Acceleration for GPU Throughput Processors. In
MICRO, 2015.

[29] J. Albericio, P. Judd, T. Hetherington, T. Aamodt, N. E. Jerger, and A. Moshovos.
Cnvlutin: Ineffectual-Neuron-Free Deep Neural Network Computing. In ISCA,
2016.

[30] Divya Mahajan, Jongse Park, Emmanuel Amaro, Hardik Sharma, Amir Yazdan-
bakhsh, Joon Kyung Kim, and Hadi Esmaeilzadeh. Tabla: A Unified Template-
based Framework for Accelerating Statistical Machine Learning. In HPCA, 2016.

[31] H. Sharma, J. Park, D. Mahajan, E. Amaro, J. K. Kim, C. Shao, A. Mishra, and
H. Esmaeilzadeh. From High-Level Deep Neural Models to FPGAs. In MICRO,
2016.

[32] Thierry Moreau, Mark Wyse, Jacob Nelson, Adrian Sampson, Hadi Esmaeilzadeh,
Luis Ceze, and Mark Oskin. SNNAP: Approximate Computing on Programmable
SoCs via Neural Acceleration. In HPCA, 2015.

[33] C. Farabet, B. Martini, B. Corda, P. Akselrod, E. Culurciello, and Y. LeCun.
NeuFlow: A Runtime Reconfigurable Dataflow Processor for Vision. In CVPR
Workshops, 2011.

[34] Chen Zhang, Peng Li, Guangyu Sun, Yijin Guan, Bingjun Xiao, and Jason Cong.
Optimizing FPGA-based Accelerator Design for Deep Convolutional Neural
Networks. In FPGA, 2015.

[35] Renée St Amant, Amir Yazdanbakhsh, Jongse Park, Bradley Thwaites, Hadi
Esmaeilzadeh, Arjang Hassibi, Luis Ceze, and Doug Burger. General-Purpose
Code Acceleration with Limited-Precision Analog Computation. In ISCA, 2014.

[36] Ali Shafiee, Anirban Nag, Naveen Muralimanohar, Rajeev Balasubramonian,
John Paul Strachan, Miao Hu, R Stanley Williams, and Vivek Srikumar. ISAAC:
A Convolutional Neural Network Accelerator with In-situ Analog Arithmetic in
Crossbars. In ISCA, 2016.

[37] Ping Chi, Shuangchen Li, Cong Xu, Tao Zhang, Jishen Zhao, Yongpan Liu,
Yu Wang, and Yuan Xie. Prime: A Novel Processing-in-memory Architecture for
Neural Network Computation in ReRAM-based Main Memory. In ISCA, 2016.

[38] Yufei Ma, Yu Cao, Sarma Vrudhula, and Jae-sun Seo. Optimizing Loop Operation
and Dataflow in FPGA Acceleration of Deep Convolutional Neural Networks. In
FPGA, 2017.

[39] Song Han, Huizi Mao, and William J. Dally. Deep Compression: Compressing
Deep Neural Networks with Pruning, Trained Quantization, and Huffman Coding.
In ICLR, 2016.

[40] Wenyan Lu, Guihai Yan, Jiajun Li, Shijun Gong, Yinhe Han, and Xiaowei Li.
FlexFlow: A Flexible Dataflow Accelerator Architecture for Convolutional Neural
Networks. In HPCA, 2017.

[41] Linghao Song, Xuehai Qian, Hai Li, and Yiran Chen. PipeLayer: A Pipelined
ReRAM-based Accelerator for Deep Learning. In HPCA, 2017.

[42] Beayna Grigorian and Glenn Reinman. Accelerating Divergent Applications on
SIMD Architectures using Neural Networks. In ICCD, 2014.

[43] Xuan Yang, Jing Pu, Blaine Burton Rister, Nikhil Bhagdikar, Stephen Richardson,
Shahar Kvatinsky, Jonathan Ragan-Kelley, Ardavan Pedram, and Mark Horowitz.
A Systematic Approach to Blocking Convolutional Neural Networks. CoRR, 2016.

[44] Decoupled Access/Execute Computer Architectures, author=Smith, James E,
booktitle=ACM SIGARCH Computer Architecture News, year=1982,.

[45] Kai Wang and Calvin Lin. Decoupled Affine Computation for SIMT GPUs. In
ISCA, 2017.

[46] Efficient Data Supply for Hardware Accelerators with Prefetching and Access/Ex-
ecute Decoupling.

[47] S. Li, K. Chen, J. H. Ahn, J. B. Brockman, and N. P. Jouppi. CACTI-P:
Architecture-level Modeling for SRAM-based Structures with Advanced Leakage
Reduction Techniques. In ICCAD, 2011.

3


	Abstract
	1 Introduction
	2 Architecture Design for X-GAN
	3 Evaluation and Methodology
	4 Conclusion
	References

