Factorized Deep Retrieval and Distributed TensorFlow Serving

Xinyang Yi, Yi-Fan Chen, Sukriti Ramesh, Vinu Rajashekhar, Lichan Hong, Noah Fiedel,

Nandini Seshadri, Lukasz Heldt, Xiang Wu, Ed H. Chi
Google Inc.
{xinyang,yifanchen,sukritiramesh,vinuraja,lichan,nfiedel,nands,heldt, wuxiang,edchi}@google.com

ABSTRACT

Many systems need to retrieve and score items from a huge catalog,
such as recommender and search ranking systems. We call this the
deep retrieval problem. In this paper, we focus on the design and
implementation of a large-scale deep retrieval system for catalogs
with hundreds of millions of items, utilizing three critical compo-
nents: (1) distributed matrix factorization trainer, (2) approximate
dot-products with hashing techniques, and (3) distributed serving
in TensorFlow. This factorized deep retrieval system has been pro-
ductionized at Google for a terabyte-byte-sized model, and is highly
scalable, low-lantency, and adapts to long-tail and fresh content.
Furthermore, the distributed serving capability is general and can
serve other large-scale models in the future.

1 INTRODUCTION

Large scale machine-learned information retrieval, a.k.a., deep re-
trieval, systems have been widely used to support applications
involved with query and item matching problems, e.g., search rank-
ing and recommender systems. In production applications, these
systems are typically required to serve real-time retrieval of hun-
dreds of millions of items, and meanwhile, provide a good scoring
function that can perform well not only for head items but also
long-tail and fresh items. Matrix factorization (MF) is one of the
most widely adopted machine-learning techniques for production
retrieval systems. The output of MF consists of a large number of
embeddings for query and items. Learning large sets of embeddings
commonly suffers from folding [13], where spurious discoveries
happen due to the subspace interleaving of unrelated items be-
cause of the scarcity of explicit negatives. The learning algorithm
thus needs to be efficient in terms of training speed and effective
in terms of addressing implicit feedback. The last modeling chal-
lenge, which is acute for applications where fresh content arrives
in streaming fashion, is cold-starting queries and items without
observed interactions.

Building a production-scale, efficient machine-learning serving
system is non-trivial, and it becomes more challenging in the case
of serving large embedding factors. The standard practice to host
a model on a single machine is not scalable. For example, one of
our production recommenders requires over 1TB RAM to load over
700 million embeddings. Solving this requires distributed model
serving including complex capabilities such as serving-specific
model conversion, auto-scaling, etc., as discussed in Section 4.

In this paper, by bridging together modeling and system think-
ing, we present a TensorFlow [1] based factorized deep retrieval
platform. We developed this platform to generally serve produc-
tion class deep retrieval. Our contributions are: 1) We extended the
classic WALS factorization [6] to a hybrid approach where features
and items are co-embedded into the same low-dimensional space,

for addressing cold-start issues; 2) We developed a TensorFlow dis-
tributed WALS factorization trainer that can efficiently factorize a
matrix with more than a billion rows and columns; 3) We designed
and implemented a distributed serving system based on TensorFlow
Serving [8]. We deployed the resulting 1.2 TB factorization model
as a new candidate generator in a large-scale production recommen-
dation system, improving the main platform metric significantly,
while serving the first distributed (and largest to date) model with
TensorFlow Serving.

2 PROBLEM AND MODELING

We consider a standard setup for retrieval problems where we
have N queries and M items. Let Q € [N] X M be a set of query-
item pairs observed, and l(,-,j) be the observed labels for (i, j) € Q.
Let P € RV*M be the sparse matrix containing [;, j- By matrix
factorization, we aim to compute d-dimensional query and item
embeddings U € RN*4 v ¢ RM*d gych that UVT ~ P. To address
the aforementioned cold-start issues, we also consider the content
features of both queries and items, which are represented by matri-
ces® € {0, 1}Nfo, ¥ e {0, 1}MXMf 1, Similarly, let Q1, Q2 denote
the sets of the non-zero in ®, ¥. We aim to learn U, V together with
feature embeddings Uf e RNr Xd, Vf € RMrxd by the loss 2,

LW.V.Up.Vp) = |UVT = Plallf + IUU] = @)q, I} + I(VV] = ¥)o, I}
+0 (IOVDaell2 + IOUDas I + IV g 12

The o is a hyper-parameter used to capture the impact of all
implicit negatives, and thus avoid folding. The concatenations

U 14 P @
+ + _ + _
Uﬁ[Vf]’Vfo]’Pf[‘PT of

then allow us to solve L(U*, V) by applying Algorithm 1 directly.

Algorithm 1 WALS factorization

1: Input: Sparse matrix P € RV*M with support Q, element-wise
weight matrix with W € RN*M with support Q, unobserverd
weight o, regularization A, number of iterations T.

2 Loss: LW, V) = |IlW o UVT = P)all3 + ollUVT)gellf + AUIIE + V13-

3: Fort=0,1,...,T

U — argming L(U, v=D) y() argminy, LUO,v), (1)

WALS projection. A critical step in inference, for solving the
cold-start issue, is projection that maps new queries and items into
embeddings by using the content features and labels, if any. The
projection is done by applying one step of WALS iteration on either
rows or columns shown in (1).

1We assume all features have discrete values. Hence Nf, Mf denote the overall
cardinalities. We set ®; ;. = 1, if query i has the k’th feature.

2To ease notation, we omit the element-wise weights on observed entries, and the £,
regularization on embeddings. See Algorithm 1 for a full WALS loss.



Fast similarity search. Low-latency online retrieval is based on
a highly efficient similarity search system built on hashing tech-
niques, e.g., [2, 4, 7, 9], for approximate maximum inner product
search (MIPS) problems. Specifically, compact representation of
high dimensional embeddings are built through quantization [5]
and end-to-end learning of coarse and product quantizers [12].

3 DISTRIBUTED FACTORIZATION

We developed a WALS factorization training framework on Ten-
sorFlow (CPU based) [3] capable of factorizing large matrices with
scale orders of magnitude greater than those reported in previ-
ous works [10, 11]. In one case, a 500M X 500M matrix with 125
Billion observed entries were factorized, using 10 iterations, to
500-dimensional embeddings within 24 hours>.

The training framework is designed to be highly scalable, strictly
synchronized (to facilitate the alternating minimization procedure
in WALS) and fault tolerant (facilitating the use of batch resources).
The synchronization and recovery mechanisms can potentially
serve other learning algorithms requiring strict synchronization.

Strict Synchronization Control. To implement the ALS algorithm
exactly, the strict orchestration of switching of the sides of operation
is needed. A synchronization control mechanism was developed
on TensorFlow using simple communicating protocols between
chief and workers to coordinate. The chief is responsible for ob-
serving the overall work progress and communicating with work-
ers through the possession of run-tokens. Run-tokens determine
whether a worker can process work or has halted. The global state
is maintained using TensorFlow variables on parameter servers.
The state consistency is complicated by the requirement of fault
tolerance but we were able to achieve this entirely using existing
TensorFlow components.

Fault Tolerance. It is important to allow training to recover from
a previous state, if interrupted. The state variables used for strict
synchronization mentioned previously require consistency, while
native TensorFlow checkpointing is nonatomic and variable up-
dating is nontransactional. We have designed the framework to
orchestrate the synchronization of all workers before checkpointing
models, and address these special challenges effectively to guaran-
tee consistent checkpointed state.

Factorization Operations. We perform the factor updates by col-
lecting alternating side factors on-the-fly. There are no constraints
on the ordering in which the factors are updated. This allows PS
tasks to be dynamically updated by workers where the sparse matrix
rows/columns are streamed in. The efficient asynchronous reading
of inputs and variables between parameter servers and workers
yields high CPU utilization on factorization kernels.

4 DISTRIBUTED TENSORFLOW SERVING

To serve the factorization model in Section 1 requiring 1.2 TB peak
memory in production, we rely on TensorFlow Serving [8], a flexible,
high-performance serving system for machine-learning models,
designed for production environments.

30ur trainer used 400 workers (each with 16 CPUs and 35 GB RAM) and 100 parameter
servers (PS, each with 10 CPU and 80 GB RAM) running on batch resources where
some workers are allowed to be preempted during training.

4.1 Remote SessionRun TensorFlow Op

TensorFlow graphs are executed by running a session, providing
inputs and fetching specific outputs. To coordinate execution across
TensorFlow graphs at serving time, we built a TensorFlow op called
the Remote SessionRun Op (RSO), that can make remote calls to
execute a TensorFlow graph hosted on other server(s). This is func-
tionally equivalent to inlining one graph into another, but the actual
computation is performed remotely.

Each instantiation of the op can be configured with relevant
attributes, inputs and outputs. Op attributes are specified statically
at model definition and export time, and include target address of
the remote server, RPC failure handling semantics, etc. Op inputs
include model-name, details about input tensors and output tensor
names. Op outputs include the output tensors and the status, for
error propagation, if needed.

Building the Export. The model-export is saved as a TensorFlow
SavedModel. The WALS projection and assembling of sharded near-
est items is saved as a single root model that includes RSO in-
stantiations. The shards for fast embedding search are saved as n
sub-models. To manage the multiple SavedModels atomically, the
export code relies on a versioned directory structure with a specific
sub-directory naming convention for the shards.

4.2 Serving System

The serving system is set up such that multiple servers load one or
more sub-models of the distributed model. Communication between
servers is performed using RSO instances (Section 4.1) that spawn
RPC calls to TensorFlow graphs hosted on different servers.

Orchestration. An orchestrator job is set up to coordinate loading
and availability management for the multiple sub-models, including
first loading n sub-models, followed by the root model. Once the
root model is available, the distributed model can begin receiving
requests. Upon receiving a query, the root model execution begins,
resulting in RPC calls to n sub-models, each of which respond with
the set of candidates. The root model then performs the aggrega-
tion and returns the RPC response to the client. For the safe and
deterministic execution of a distributed model, it is required that
the model has a single point of entry for user queries — in this
case, the root graph, which processes the queries, spawns RPC
calls as needed, aggregates responses, and enforces error handling
semantics based on the use-case.

Context Propagation. For distributed serving, it is imperative
to propagate context relevant to the remote execution. For the
instantiated RSOs, this is done through the TensorFlow runtime.
Examples of context, include RPC deadlines to prevent infinite
cycles and application IDs for ACLs and quotas, which are available
as part of the original user query.

Accounting and Access Control. The distributed model described
in Section 1 runs in a multi-tenant environment. To facilitate re-
source sharing, while isolating users from being adversely impacted
by other user models at inference-time, the serving system could use
RPC request originator or model-owner details for accounting. Such
contextual information is propagated through the aforementioned
context system. Similarly, with a simple access control configu-
ration, the model-owner can control which users are allowed to
manage and query the distributed model.



REFERENCES

[1] Martin Abadi, Ashish Agarwal, Paul Barham, Eugene Brevdo, Zhifeng Chen,

[12]

[13

Craig Citro, Greg S. Corrado, Andy Davis, Jeffrey Dean, Matthieu Devin, San-
jay Ghemawat, Ian Goodfellow, Andrew Harp, Geoffrey Irving, Michael Isard,
Yanggqing Jia, Rafal Jozefowicz, Lukasz Kaiser, Manjunath Kudlur, Josh Leven-
berg, Dan Mané, Rajat Monga, Sherry Moore, Derek Murray, Chris Olah, Mike
Schuster, Jonathon Shlens, Benoit Steiner, Ilya Sutskever, Kunal Talwar, Paul
Tucker, Vincent Vanhoucke, Vijay Vasudevan, Fernanda Viégas, Oriol Vinyals,
Pete Warden, Martin Wattenberg, Martin Wicke, Yuan Yu, and Xiaogiang Zheng.
2015. TensorFlow: Large-Scale Machine Learning on Heterogeneous Systems.
(2015). https://www.tensorflow.org/ Software available from tensorflow.org.
Alexandr Andoni and Piotr Indyk. 2008. Near-optimal Hashing Algorithms for
Approximate Nearest Neighbor in High Dimensions. Commun. ACM 51, 1 (Jan.
2008), 117-122.  https://doi.org/10.1145/1327452.1327494

Yi-Fan Chen, Ashish Agarwal, Rasmus Larsen, Walid Krichene, Karthik Lak-
shmanan, Chris Colby, Ahmed Taei, and John Anderson. 2016. Distributed
TensorFlow WALS Trainer: Google Internal Design Report. (2016).

Edith Cohen and David D. Lewis. 1997. Approximating Matrix Multiplication
for Pattern Recognition Tasks. In Proceedings of the Eighth Annual ACM-SIAM
Symposium on Discrete Algorithms (SODA ’97). Society for Industrial and Applied
Mathematics, Philadelphia, PA, USA, 682-691. http://dl.acm.org/citation.cfm?
id=314161.314415

Ruigi Guo, Sanjiv Kumar, Krzysztof Choromanski, and David Simcha. 2016. Quan-
tization based Fast Inner Product Search. In Proceedings of the 19th International
Conference on Artificial Intelligence and Statistics (Proceedings of Machine Learning
Research), Arthur Gretton and Christian C. Robert (Eds.), Vol. 51. PMLR, Cadiz,
Spain, 482-490. http://proceedings.mlr.press/v51/guol6a.html

Y. Hu, Y. Koren, and C. Volinsky. 2008. Collaborative Filtering for Implicit
Feedback Datasets. In 2008 Eighth IEEE International Conference on Data Mining.
263-272. https://doi.org/10.1109/ICDM.2008.22

Noam Koenigstein, Parikshit Ram, and Yuval Shavitt. 2012. Efficient Retrieval of
Recommendations in a Matrix Factorization Framework. In Proceedings of the 21st
ACM International Conference on Information and Knowledge Management (CIKM
’12). ACM, New York, NY, USA, 535-544. https://doi.org/10.1145/2396761.2396831
C. Olston, N. Fiedel, K. Gorovoy, J. Harmsen, L. Lao, F. Li, V. Rajashekhar, S.
Ramesh, and J. Soyke. 2017. TensorFlow-Serving: Flexible, High-Performance
ML Serving. ArXiv e-prints (Dec. 2017). arXiv:cs.DC/1712.06139

Parikshit Ram and Alexander G. Gray. 2012. Maximum Inner-product Search Us-
ing Cone Trees. In Proceedings of the 18th ACM SIGKDD International Conference
on Knowledge Discovery and Data Mining (KDD ’12). ACM, New York, NY, USA,
931-939. https://doi.org/10.1145/2339530.2339677

Sebastian Schelter, Venu Satuluri, and Reza Zadeh. 2014. Factorbird - a Parameter
Server Approach to Distributed Matrix Factorization. CoRR abs/1411.0602 (2014).
arXiv:1411.0602 http://arxiv.org/abs/1411.0602

Wei Tan, Liangliang Cao, and Liana Fong. 2016. Faster and Cheaper: Parallelizing
Large-Scale Matrix Factorization on GPUs. In Proceedings of the 25th ACM Interna-
tional Symposium on High-Performance Parallel and Distributed Computing (HPDC
’16). ACM, New York, NY, USA, 219-230. https://doi.org/10.1145/2907294.2907297
Xiang Wu, Ruigi Guo, Ananda Theertha Suresh, Sanjiv Kumar, Daniel N
Holtmann-Rice, David Simcha, and Felix X Yu. 2017. Multiscale Quantization
for Fast Similarity Search. In Advances in Neural Information Processing Systems
30, I. Guyon, U. V. Luxburg, S. Bengio, H. Wallach, R. Fergus, S. Vishwanathan,
and R. Garnett (Eds.). Curran Associates, Inc., 5749-5757. http://papers.nips.cc/
paper/7157-multiscale- quantization-for- fast- similarity-search.pdf

Doris Xin, Nicolas Mayoraz, Hubert Pham, Karthik Lakshmanan, and John R.
Anderson. 2017. Folding: Why Good Models Sometimes Make Spurious Rec-
ommendations. In Proceedings of the Eleventh ACM Conference on Recommender
Systems (RecSys '17). ACM, New York, NY, USA, 201-209. https://doi.org/10.
1145/3109859.3109911


https://www.tensorflow.org/
https://doi.org/10.1145/1327452.1327494
http://dl.acm.org/citation.cfm?id=314161.314415
http://dl.acm.org/citation.cfm?id=314161.314415
http://proceedings.mlr.press/v51/guo16a.html
https://doi.org/10.1109/ICDM.2008.22
https://doi.org/10.1145/2396761.2396831
http://arxiv.org/abs/cs.DC/1712.06139
https://doi.org/10.1145/2339530.2339677
http://arxiv.org/abs/1411.0602
http://arxiv.org/abs/1411.0602
https://doi.org/10.1145/2907294.2907297
http://papers.nips.cc/paper/7157-multiscale-quantization-for-fast-similarity-search.pdf
http://papers.nips.cc/paper/7157-multiscale-quantization-for-fast-similarity-search.pdf
https://doi.org/10.1145/3109859.3109911
https://doi.org/10.1145/3109859.3109911

	Abstract
	1 Introduction
	2 Problem and Modeling
	3 Distributed Factorization
	4 Distributed TensorFlow Serving
	4.1 Remote SessionRun TensorFlow Op
	4.2 Serving System

	References

