
Compressing Deep Neural Networks
with Probabilistic Data Structures

Brandon Reagen
Harvard University

Udit Gupta
Harvard University

Robert Adolf
Harvard University

Michael M. Mitzenmacher
Harvard University

Alexander M. Rush
Harvard University

Gu-Yeon Wei
Harvard University

David Brooks
Harvard University/Facebook

ABSTRACT
This paper presents a lossy weight encoding method which com-
plements conventional compression techniques including weight
pruning and clustering. The encoding is based on the Bloomier fil-
ter, a probabilistic data structure that can save space at the expense
of introducing random errors in the weights. Leveraging the ability
of DNNs to tolerate these imperfections and by re-training around
them, the proposed technique can compress DNN weights by up
to 496× (a 1.51× improvement over the state-of-the-art) without
sacrificing model accuracy.

1 INTRODUCTION
The continued success of deep neural networks (DNNs) comes
with increasing demands on compute, memory, and networking
resources. Moreover, the correlation between model size and accu-
racy suggests that tomorrow’s networks will only grow larger. This
growth presents a challenge for resource-constrained platforms
such as mobile phones and wireless sensors. As new hardware now
enables executing DNN inference on edge devices [1, 10], a prac-
tical issue is distributing the latest models, especially in regions
not equipped with high-bandwidth networks. For instance, it is
estimated that, globally, 800 million users will still use 2G networks
in 2020 [4], which can take up to 30 minutes to download 20MB of
data. Today’s DNNs are on the order of tens to hundreds of MBs,
making them difficult to distribute even on high-speed connec-
tions. In order to support state-of-the-art deep learning methods on
edge devices, techniques to reduce the size of DNN models without
sacrificing model accuracy are needed.

Model compression is a popular solution for this problem. A
variety of compression algorithms have been proposed in recent
years, and many exploit the intrinsic redundancy in model weights.
The majority of this work has focused on ways of simplifying
or eliminating weight values (e.g., through weight pruning and
quantization), while comparatively little effort has been spent on
devising techniques for encoding and compressing.

In this paper we present Weightless [11]: a novel lossy encoding
method based on Bloomier filters, a probabilistic data structure [3].
Bloomier filters inexactly store a function map, and by adjusting
the filter parameter, we can elect to use less space at the cost of
erroneous values.

We use this data structure to compactly encode the weights of
a DNN, exploiting redundancy in the weights to tolerate some er-
rors. In conjunction with existing weight simplification techniques,

namely pruning and clustering, our approach dramatically reduces
memory and bandwidth requirements for over-the-wire transmis-
sion of DNNs. Weightless demonstrates compression rates of up
to 496× without loss of accuracy, improving on the state of the art
by up to 1.51×.

2 WEIGHTLESS
2.1 The Bloomier filter
A Bloomier filter generalizes the idea of a Bloom filter [2]. Given a
subset S of a universeU , a Bloom filter answers queries of the form,
“Isv ∈ S?”. Ifv is in S , the answer is always yes; ifv is not in S , there
is some probability of a false positive. By allowing false positives,
Bloom filters can dramatically reduce the space needed to represent
the set. A Bloomier filter [3] is a similar data structure but instead
encodes a function. For each v in a domain S , the function has an
associated value f (v) in the range R = [0, 2r). Given an input v , a
Bloomier filter always returns f (v) when v is in S . When v is not
in S , the Bloomier filter returns a null value ⊥, except that some
fraction of the time there is a “false positive”, and the Bloomier
filter returns an incorrect, non-null value in the range R.

Decoding Let S be the subset of values inU to store, with |S | = n.
A Bloomier filter uses a small number of hash functions (typically
four), and a hash table X ofm = cn cells for some constant c (1.25 in
this paper), each holding t > r bits. For hash functions H0,H1,H2,
HM , let H0,1,2(v) → [0,m) and HM (v) → [0, 2r), for any v ∈ U .
The table X is set up such that for every v ∈ S ,

XH0(v) ⊕ XH1(v) ⊕ XH2(v) ⊕ HM (v) = f (v).

Hence, to find the value of f (v), hash v four times, perform three
table lookups, and exclusive-or together the four values. Like the
Bloom filter, querying a Bloomier filter runs inO(1) time. For u < S ,
the result, XH0(u) ⊕XH1(u) ⊕XH2(u) ⊕HM (u), will be uniform over
all t-bit values. If this result is not in [0, 2r), then ⊥ is returned, and
if it happens to land in [0, 2r), a false positive occurs and a non-
⊥ result is (incorrectly) returned. An incorrect value is therefore
returned with probability 2r−t .

2.2 Weight encoding with Bloomier filters
We propose using the Bloomier filter to compactly store weights
in a DNN. The function f encodes the mapping between indices
of nonzero weights to their corresponding values. Given a weight

Please use [11] to reference Weightless.

SysML’18, Feb 2018, Stanford, CA, USA B. Reagen et al.

matrix W, define the domain S to be the set of indices {i, j | wi, j ,

0}. Likewise, the range R is [−2a−1, 2a−1) − {0} for a such that
all values of W fall within the interval. To enable weight value
clustering (see below) this range is remapped to [0, 2r) and encodes
the cluster indices. A null filter response means the weight value is
zero.

Once f is encoded in a filter, an approximationW′ of the original
weight matrix is reconstructed by querying all indices. The original
nonzero elements of W are preserved in the approximation, as are
most of the zero elements. A small subset of zero-valued weights in
W′ will take on nonzero values as a result of random collisions in
X, possibly changing the model’s output. As DNNs are well known
to be robust to weight errors (e.g., [12]), we suspected the resulting
false positives would not significantly impact model accuracy. The
relationship between false positives and accuracy is given in [11].

Complementing Bloomier filters with simplification Be-
cause the space used by a Bloomier filter is O(nt), they are espe-
cially useful under two conditions: (1) The stored function is sparse
(small n, with respect to |U |), and (2) It has a restricted range of
output values (small r , since t > r). To improve overall compression,
we pair approximate encoding with weight transformations.

Pruning networks to enforce sparsity (condition 1) has been stud-
ied extensively [7, 8]. Weightless considers two different pruning
techniques. Magnitude pruning with retraining is straightforward
to use and offers good results. DNS [5] is a more aggressive tech-
nique proposed recently that prunes the network during training.
We were able to acquire two sets of models, LeNet-300-100 and
LeNet5, that were pruned using DNS and include them in our eval-
uation (VGG-16 is not available). Improving sparsity reduces the
overall encoding size linearly with the number of non-zeros with
no effect on the false positive rate (which depends only on r and t).
We use two methods to demonstrate the benefits of Weightless as
networks increase in sparsity, since the DNS networks are notably
more sparse than the same magnitude pruned networks.

Reducing r (condition 2) amounts to minimizing the number of
bits required to represent weight values. While many solutions to
discretize weights exist, we use k-means clustering. After clustering
the weights, the k centroids are saved into an auxiliary table and the
elements ofW are replaced with indices into this table. This style
of indirect encoding is especially well-suited to Bloomier filters, as
these indices come from a small, contiguous set of integers.

Tuning the t hyperparameter Bloomier filters introduce an
additional hyperparameter t (the number of bits per cell). t trades
off the Bloomier filter’s size and the false positive rate which effects
model accuracy. While t needs to be tuned, we find it far easier
to reason about than most other DNN hyperparameters. Because
we encode k clusters, t must be greater than ⌈log2 k⌉, and each
additional t bit reduces the number of false positives by a factor of
2. This limits the number of reasonable values for t : networks expe-
rience substantial accuracy loss when t is too low, but high values
of t are wasteful because DNNs have enough implicit resilience to
handle some errors. Experimentally we find that t typically falls in
the range of 6 to 9 for our models.

Retraining to mitigate the effects of false positivesWe en-
code each layer’s weights sequentially. Because the weights are
fixed, the Bloomier filter’s false positives are deterministic. This

Table 1: Weightless results on the largest layers of common
models used to evaluate compression. Results are compared
to the current state-of-the-art method [6] (Huffman below).
The improvement (Improve) column shows Weightless of-
fers up to a 1.51× improvement over [6].

Model Pruning Layer Compression Factor
Method Huffman Weightless Improve

LeNet-FC
Magnitude FC-0 59.1× 60.1× 1.02×

FC-1 56.0× 64.3× 1.15×

DNS FC-0 153× 174× 1.13×
FC-1 129× 195× 1.51×

LeNet5
Magnitude CNN-1 42.8× 51.6× 1.21×

FC-0 59.1× 74.2× 1.25×

DNS CNN-1 89.5× 114.4× 1.28×
FC-0 333× 496× 1.49×

VGG-16 Magnitude FC-0 119× 157× 1.31×
FC-1 88.4× 85.8× 0.97×

allows for the retraining of deeper network layers to compensate
for errors. It is important to note that encoded layers are not re-
trained. If an encoded layer were retrained, a new encoding would
have to be constructed (because S changes) and the indices of false
positives would differ after every iteration of retraining. Instead, we
find retraining all subsequent layers to be sufficient and effective,
typically allowing us to reduce t by one or two bits.

Compressing Bloomier filters When sending weight matri-
ces over a network, it is not necessary to retain the ability to access
weight values as they are being sent, so it is advantageous to add
another layer of compression for transmission. We use arithmetic
coding, an entropy-optimal stream code which exploits the distri-
bution of values in the table [9].

3 RESULTS AND FUTURE DIRECTIONS
We evaluateWeightless using three models commonly used in DNN
compression papers: LeNet-300-100 (LeNet-FC here), LeNet5, and
VGG-16. Table 1 shows the results of applying Weightless to the
largest layers of these models. Hyperparameter settings for the
results can be found in [11]. The table includes compression ratios
relative to 32-bit, non-pruned models. Compared to this baseline,
Weightless is able to reduce thememory footprint by up to 496×. We
also compare results to the current accepted weight compression
method [6]. Weightless offers up to a 1.51× improvement over this
aggressive baseline (CSR and Huffman encoding).

Looking forwards, we see avenues for continuing this line of
research. First, as better mechanisms for pruning model weights
are discovered, end-to-end compression with Weightless will im-
prove commensurately. Weightless also scales much better with
sparsity than existing methods [11]. Second, the theory community
has already developed more advanced—albeit more complicated—
construction algorithms for Bloomier filters, which promise asymp-
totically better space utilization compared to the method used in
this paper. Finally, by demonstrating the opportunity for using
lossy encoding schemes for model compression, we hope we have
opened the door for more research on encoding algorithms and
novel uses of probabilistic data structures.

Compressing Deep Neural Networks
with Probabilistic Data Structures SysML’18, Feb 2018, Stanford, CA, USA

REFERENCES
[1] Apple. 2017. The future is here: iPhone X. https://www.apple.com/newsroom/

2017/09/the-future-is-here-iphone-x/. (2017).
[2] Burton H. Bloom. 1970. Space/time trade-offs in hash coding with allowable

errors. Commun. ACM 13, 7 (1970), 422–426.
[3] Bernard Chazelle, Joe Kilian, Ronitt Rubinfeld, and Ayellet Tal. 2004. The Bloomier

filter: an efficient data structure for static support lookup tables. In Proceedings
of the fifteenth annual ACM-SIAM symposium on Discrete algorithms.

[4] GSMA. 2014. Half of theWorldâĂŹs Population Connected to the Mobile Internet
by 2020, According to New GSMA Figures. https://www.gsma.com/newsroom/
press-release/. (Novemeber 2014).

[5] Yiwen Guo, Anbang Yao, and Yurong Chen. 2016. Dynamic Network Surgery for
Efficient DNNs. In Advances in Neural Information Processing Systems 29.

[6] Song Han, Huizi Mao, and Bill Dally. 2016. Deep Compression: Compressing
Deep Neural Networks with Pruning, Trained Quantization and Huffman Coding.
In 4th International Conference on Learning Representations.

[7] Babak Hassibi and David G Stork. 1993. Second order derivatives for network
pruning: Optimal brain surgeon. In Advances in Neural Information Processing
Systems 6.

[8] Yann LeCun, John S. Denker, and Sara A. Solla. 1989. Optimal Brain Damage. In
Advances in Neural Information Processing Systems 2.

[9] David J.C. MacKay. 2005. Information Theory, Inference, and Learning Algorithms
(fourth printing ed.). Cambridge University Press.

[10] Qualcomm. 2017. Snapdragon Neural Processing Engine Now Available on
Qualcomm Developer Network. https://www.qualcomm.com/news/releases/
2017/07/25/snapdragon-neural-processing-engine-now-available-qualcomm-
developer/. (2017).

[11] Brandon Reagen, Udit Gupta, Robert Adolf, Michael M. Mitzenmacher, Alexan-
der M. Rush, Gu-Yeon Wei, and David M. Brooks. 2017. Weightless: Lossy Weight
Encoding For Deep Neural Network Compression. CoRR abs/1711.04686 (2017).
arXiv:1711.04686 http://arxiv.org/abs/1711.04686

[12] Brandon Reagen, Paul Whatmough, Robert Adolf, Saketh Rama, Hyunkwang Lee,
Sae Kyu Lee, José Miguel Hernández-Lobato, Gu-Yeon Wei, and David Brooks.
2016. Minerva: Enabling Low-Power, Highly-Accurate Deep Neural Network
Accelerators. In Proceedings of the 43rd International Symposium on Computer
Architecture.

https://www.apple.com/newsroom/2017/09/the-future-is-here-iphone-x/
https://www.apple.com/newsroom/2017/09/the-future-is-here-iphone-x/
https://www.gsma.com/newsroom/press-release/
https://www.gsma.com/newsroom/press-release/
https://www.qualcomm.com/news/releases/2017/07/25/snapdragon-neural-processing-engine-now-available-qualcomm-developer/
https://www.qualcomm.com/news/releases/2017/07/25/snapdragon-neural-processing-engine-now-available-qualcomm-developer/
https://www.qualcomm.com/news/releases/2017/07/25/snapdragon-neural-processing-engine-now-available-qualcomm-developer/
http://arxiv.org/abs/1711.04686
http://arxiv.org/abs/1711.04686

	Abstract
	1 Introduction
	2 Weightless
	2.1 The Bloomier filter
	2.2 Weight encoding with Bloomier filters

	3 Results and future directions
	References

