
A Comparison of Bottom-Up Approaches to Grounding for
Templated Markov Random Fields

Eriq Augustine

UC Santa Cruz

eaugusti@ucsc.edu

Lise Getoor

UC Santa Cruz

getoor@soe.ucsc.edu

1 Introduction
Markov Random Fields (MRFs) have been shown to be a flexible

and powerful tool in modeling complex problems [5]. Templating

languages like Markov Logic Networks (MLN) [2] and Probabilistic
Soft Logic (PSL) [1] have emerged to help construct MRFs. They

are particularly well-suited to constructing MRFs over richly struc-

tured domains, because they provide a logical formalism for de-

scribing entities and their relationships, and a compact mechanism

for describing the parameters of the Markov Random Field. These

languages define weighted rules using a first order logic-like syntax.
The rules act as templates for real-valued feature functions called

potentials. These templates are then combined with data to form

ground rules in a process called grounding. Together, the ground
rules define the probability distribution of an MRF. More formally:

Definition 1.1. Let x = (x1, ...,xm) be a vector of known vari-

ables, y = (y1, ...,yn) be a vector of unknown random variables,

R = (R1, ...,Rl) be a set of rules, w = (w1, ...,wl) be a set of real-

valued weights each corresponding to a rule, and ϕ = (ϕ1, ...,ϕl)
be a set of potentials where each potential corresponds to a rule

and ϕR (xr ,yr) assigns the variables of this ground instance r of
rule R a real-valued score. Then, a templated Markov Random Field

is a probability distribution of the form:

P(y |x) ∝ exp
(∑
R∈R

∑
r ∈R

wRϕR (xr ,yr)
)

2 Grounding Templated MRFs
Grounding, the process of instantiating each rule in the tem-

plated MRF, is a key step in performing inference. Grounding is

a difficult problem and can be the limiting factor on inference in

templated MRFs [6, 9–11].

Consider a simple link prediction rule: Link(R1,R2) ∧Sim(R2,R3) →

Link(R1,R3) or a simple transitive equality rule from the entity reso-

lution domain: SameRef(R1,R2) ∧ SameRef(R2,R3) → SameRef(R1,R3).

These rules seem simple, but the number of groundings is poten-

tially cubic in number of entity references in the input data. Rules

like these allow our MRF to be expressive, but present a significant

systems challenge to efficiently ground.

Grounding is generally approached in two ways: top-down and

bottom-up. Top-down grounding starts with the rules and employs

nested loops to perform replacements over all the variables. It is

simple and easy to implement, but slow. Alternatively, bottom-up

grounding expresses the grounding for each rule as a database

query. As a result, grounding leverages the huge amount of query

optimization work done by the RDBMS community. Bottom-up

grounding has shown significant improvements over top-down

grounding, but comes at the cost of more complex systems [9].

There are several key design decisions that need to be made

when building a bottom-up grounding system.

Defining Inference Targets & Scoping: Inference in MRFs

involves assigning values to unknown random variables (inference
targets), conditioned on known variables (evidence). There are two
common ways of defining inference targets: implicitly through

variable types and populations [6, 9] and explicitly [1]. Implicit

definition first requires that types are assigned to each variable used

in the rules. Populations (domains) are built up for each type using

the provided data. Inference targets are then defined by the cross

product of the involved type populations. Some systems further

provide scoping rules to help define targets and avoid costly cross

products. MLN-based systems such as Tuffy [9] and Alchemy [4]

implicitly define inference targets. Explicitly defining targets force

the user to pre-define all targets. This pushes additional work onto

the modeler, but also allows the user to specify exactly what needs

to be inferred. PSL uses explicitly defined inference targets.

Trivial Potential Removal: During grounding, it is possible

for potentials to be generated that are already fully satisfied or

dissatisfied. That is, observed values in the data cause some po-

tentials to have a known value regardless of the value assigned

to any unobserved random variables; i.e. ∀yr ϕR (xr ,yr) = c . We

refer to these fixed-value potentials as trivial. To reduce the size of

the MRF and make downstream inference faster, trivial potentials

should be removed in the grounding process. The two common

places to remove trivial potentials are at the database level as part

of the grounding query, or in the application level right after the

grounding query. Removing trivial potentials at the database level

reduces the number of potentials that are materialized out of the

database. However, constructing a grounding query that removes

trivial potentials typically involves a disjunctive query. The dis-

junction is over variables that have a non-trivial fixed value or
variables that are inference targets. Disjunctions are notoriously

difficult for query optimization and can severely degrade perfor-

mance [3]. In contrast, removing trivial potentials at the application

layer requires materializing larger result sets from the database,

since trivial potentials are included. However the grounding query

does not require any disjunctions, resulting in a faster query. In

addition, checking for trivial potentials can be done in parallel at

the application level.

Blocking: As previously mentioned, the number of potentials in

a MRF can quickly grow prohibitively large. To limit the number of

potentials, blocks [8] or canopies [7] are often constructed. Blocks

and canopies use problem specific heuristics to eliminate infeasible

groundings. In templated MRF languages, blocking structures can

be constructed by treating block definitions as data and including

them in the rules. In this case, potentials with components outside

of the block are trivial and removed during the grounding phase.

Another approach is to explicitly define blocking structures within

Figure 1: Scoping Figure 2: Trivial Potential Removal Figure 3: End-to-End Performance Figure 4: Tuffy Timings Figure 5: PSL Timings

Similarity Symmetry Transitivity
Result

Size

Max

Node Size

Query

Time (ms)

Result

Size

Max

Node Size

Query

Time (ms)

Result

Size

Max

Node Size

Query

Time (ms)

No Blocking 999,000 999,000 211 999,000 999,000 385 997,002,000 997,002,000 266,313

Implicit Blocking 100,204 999,000 599 100,204 999,000 709 10,064,832 11,063,313 8,385

Explicit Blocking 100,204 100,204 49 100,204 100,204 50 10,064,832 10,064,832 2,809

Table 1: Execution results of queries using different blocking methods.

the language. If blocking information is explicitly known, then

grounding queries can be written to reflect the blocking structure.

This has the potential to greatly reduce the size of intermittent

operations performed by the database as well as the number of

joins required by the database for grounding queries.

3 Experiments1

3.1 Defining Inference Targets & Scoping
The work of defining explicit targets is done outside of the

grounding system. Therefore, it would be unfair to compare the

time to generate targets between implicit and explicit target defini-

tion system. Instead, we look at how scoping can effect grounding

time in Tuffy, a system that implicitly defines targets. Scoping is

a cost-efficient way for methods that implicitly define targets to

limit the target set. Figure 1 shows the grounding time for the same

program with and without scoping. Using scoping reduced the

grounding time by on average more than 30%.

3.2 Trivial Potential Removal
Next we investigate the impact of where trivial potentials are

removed. We ground a MRF with a single rule:

Similar(P1, P2) → Friends(P1, P2)

on datasets which vary the percentage of trivial potentials from 0%

to 100%.

In all cases, the full size of the MRF (including trivial potentials)

is around 160K potentials. We compare Tuffy, which removes trivial

potentials at the database level, with PSL, which removes trivial

potentials at the application level. Figure 2 shows the grounding

time of Tuffy and PSLwith a varying number of threads.When there

are fewer trivially satisfied rules, the database removal performance

is very poor. It becomesmore competitive as more potentials require

removal. However, it is only at the 80% trivial mark that we see

a crossover where database removal outperforms single-threaded

application removal. At the 100% trivial mark, database removal

outperforms all shown methods
2
. Because application removal

requires testing all materialized potentials, it runs in constant time

regardless of the percentage of trivial potentials.

3.3 Blocking
Next, we investigate the impact of blocking for three rules:

• Similarity – Similar(P1, P2) → Friends(P1, P2)

• Symmetry – Friends(P1, P2) → Friends(P2, P1)

1
All experiments were run on a machine with a 12 core (24 thread) 2.2 GHz CPU, 384

GB of RAM, and PostgreSQL v9.5.10. All data for experiments came from a synthetically

generated dataset with variable size.

2
Using all available threads on the machine (24), application removal performed best.

• Transitivity – Friends(P1, P2)∧Friends(P2, P3) → Friends(P1, P3)

We compare three different blocking methods:

• No Blocking – Results in a larger result set, but there is no

blocking overhead.

• Implicit Blocking – Blocking structures are defined as data.

This generates a reduced result set, but suffers overhead from

a larger grounding query.

• Explicit Blocking – System is given explicit knowledge about

the desired blocking structures. An optimal query is con-

structed that minimizes the result set and number of joins.

The results are summarized in table 1. Max Node Size is the

largest number of rows involved in a single operation in the query’s

execution plan. We see that for the Similarity and Symmetry
queries, implicit blocking actually takes longer to run than without

blocking. To understand this counterintuitive result, notice that the

Max Node Size for implicit blocking and the Result Size for no

blocking are the same. So, both queries examine the entire cross

product. However in the more complex Transitivity query, we
see implicit blocking outperforming no blocking by two orders of

magnitude. In all queries, explicit blocking performs the fastest and

generates execution plans with smaller nodes, while producing the

same minimal result set as implicit blocking

3.4 End-to-End Performance
So far, we have focused on the decisions made when grounding

and the impact of those decisions. However, it is important to also

understand grounding in the context of the end-to-end inference

over an MRF. Figure 3 shows the full run times of Tuffy and PSL for

varying problem sizes. Figures 4 and 5 further show the breakdown

of howmuch time is spent for each major task. In PSL, no single task

dominates the run time. In Tuffy, however, we see that inference

tends to dominate and as the result sets becomes large, the time

spent grounding also jumps up.

4 Conclusion
From our experiments, we see several takeaways to consider

when designing bottom-up grounding for templated MRFs. If using

implicit target definition, be sure to include scoping. Removing

trivial groundings at the database level is typically not worth the

query overhead. In contrast, removing groundings in the application

layer allows systems to exploit parallelism. Explicitly knowing the

blocking structure can provide a huge boost to performance both

in terms of memory usage and run time. However, there is still

much more to be understood, when optimizing overall system

performance. Acknowledgements: This work was supported by

NSF CCF-1740850, NSF IIS-1703331, AFRL, and DARPA.

2

References
[1] Stephen H. Bach, Matthias Broecheler, Bert Huang, and Lise Getoor. 2017. Hinge-

Loss Markov Random Fields and Probabilistic Soft Logic. Journal of Machine
Learning Research (JMLR) 18 (2017), 1–67.

[2] Pedro Domingos and Daniel Lowd. 2009. Markov Logic: An Interface Layer for
Artificial Intelligence (1st ed.). Morgan and Claypool Publishers, San Rafael, CA,

USA.

[3] Fisnik Kastrati and GuidoMoerkotte. 2017. Optimization of Disjunctive Predicates

for Main Memory Column Stores. In Proceedings of the 2017 ACM International
Conference on Management of Data (SIGMOD ’17). ACM, New York, NY, USA,

731–744. https://doi.org/10.1145/3035918.3064022

[4] Stanley Kok, Parag Singla, Matthew Richardson, Pedro Domingos, Marc Sumner,

and Hoifung Poon. 2010. The alchemy system for statistical relational ai: User

manual. BIBLIOGRAPHY. (2010).

[5] Daphne Koller and Nir Friedman. 2009. Probabilistic Graphical Models: Principles
and Techniques - Adaptive Computation and Machine Learning. The MIT Press,

Cambridge, MA, USA.

[6] Sara Magliacane, Philip Stutz, Paul Groth, and Abraham Bernstein. 2015. foxPSL:

A Fast, Optimized and eXtended PSL implementation. International Journal of
Approximate Reasoning 67, Supplement C (2015), 111 – 121. https://doi.org/10.

1016/j.ijar.2015.05.012

[7] Andrew McCallum, Kamal Nigam, and Lyle H. Ungar. 2000. Efficient Cluster-

ing of High-dimensional Data Sets with Application to Reference Matching.

In Proceedings of the Sixth ACM SIGKDD International Conference on Knowl-
edge Discovery and Data Mining (KDD ’00). ACM, New York, NY, USA, 169–178.

https://doi.org/10.1145/347090.347123

[8] Howard B. Newcombe and James M. Kennedy. 1962. Record Linkage: Making

Maximum Use of the Discriminating Power of Identifying Information. Commun.
ACM 5, 11 (Nov. 1962), 563–566. https://doi.org/10.1145/368996.369026

[9] Feng Niu, Christopher Ré, AnHai Doan, and Jude Shavlik. 2011. Tuffy: Scaling

Up Statistical Inference in Markov Logic Networks Using an RDBMS. PVLDB 4,

6 (March 2011), 373–384. https://doi.org/10.14778/1978665.1978669

[10] Jay Pujara. 2016. Probabilistic Models for Scalable Knowledge Graph Construction.
phd. University of Maryland, College Park.

[11] Sebastian Riedel. 2008. Improving the Accuracy and Efficiency of MAP Inference

for Markov Logic. In Proceedings of the Twenty-Fourth Conference on Uncertainty
in Artificial Intelligence (UAI’08). AUAI Press, Arlington, Virginia, United States,

468–475. http://dl.acm.org/citation.cfm?id=3023476.3023532

3

https://doi.org/10.1145/3035918.3064022
https://doi.org/10.1016/j.ijar.2015.05.012
https://doi.org/10.1016/j.ijar.2015.05.012
https://doi.org/10.1145/347090.347123
https://doi.org/10.1145/368996.369026
https://doi.org/10.14778/1978665.1978669
http://dl.acm.org/citation.cfm?id=3023476.3023532

	1 Introduction
	2 Grounding Templated MRFs
	3 Experiments All experiments were run on a machine with a 12 core (24 thread) 2.2 GHz CPU, 384 GB of RAM, and PostgreSQL v9.5.10. All data for experiments came from a synthetically generated dataset with variable size.
	3.1 Defining Inference Targets & Scoping
	3.2 Trivial Potential Removal
	3.3 Blocking
	3.4 End-to-End Performance

	4 Conclusion
	References

