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Executive Summary

The back-propagation (BP)algorithm is popularly usedin training deep learning (DL) 
models and implemented in manyDL frameworks (e.g., PyTorchand TensorFlow).
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Problem:BP imposes a strong sequential dependencyalong layers during the 
gradient computations.
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Executive Summary

The back-propagation (BP)algorithm is popularly usedin training deep learning (DL) 
models and implemented in manyDL frameworks (e.g., PyTorchand TensorFlow).

2

Problem:BP imposes a strong sequential dependencyalong layers during the 
gradient computations.

Key idea:We propose scaling BPby Parallel Scan Algorithm (BPPSA):
ÅReformulate BP into a scanoperation.
ÅScaled by a customized parallel algorithm.

Key Results:Θ(log n) vs. Θ(n) steps on parallel systems.

Up to 108×ōŀŎƪǿŀǊŘ Ǉŀǎǎ ǎǇŜŜŘǳǇ όҦ 2.17×overall speedup).



Back-propagation1 (BP) Everywhere
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1
wǳƳŜƭƘŀǊǘ Ŝǘ ŀƭΦ ά[ŜŀǊƴƛƴƎ ǊŜǇǊŜǎŜƴǘŀǘƛƻƴǎ ōȅ ōŀŎƪ-propagating 
ŜǊǊƻǊǎΦέΣ bŀǘǳǊŜ όмфусύ 



BP’s Strong Sequential Dependency
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Data Parallel Training

5

Conceptually simple, widely used. 

Effectively increases the batch size:
ÅGeneralization gap1

ÅBatch size scaling limit2

1YŜǎƪŀǊΣ bƛǘƛǎƘ {ƘƛǊƛǎƘ Ŝǘ ŀƭΦ άhƴ [ŀǊƎŜ-.ŀǘŎƘ ¢ǊŀƛƴƛƴƎ ŦƻǊ 5ŜŜǇ [ŜŀǊƴƛƴƎΥ DŜƴŜǊŀƭƛȊŀǘƛƻƴ DŀǇ ŀƴŘ {ƘŀǊǇ aƛƴƛƳŀΦέ L/[w όнлмтύ
2{ƘŀƭƭǳŜΣ /ƘǊƛǎǘƻǇƘŜǊ WΦ Ŝǘ ŀƭΦ άaŜŀǎǳǊƛƴƎ ǘƘŜ 9ŦŦŜŎǘǎ ƻŦ 5ŀǘŀ tŀǊŀƭƭŜƭƛǎƳ ƻƴ bŜǳǊŀƭ bŜǘǿƻǊƪ ¢ǊŀƛƴƛƴƎΦέ WƻǳǊƴŀƭ ƻŦ aŀŎƘƛƴŜ [Ŝŀrning Research 20 (2019)

Constraint:The model must fit in 
one device.

wŜǎǇŜŎǘǎ .tΩǎ ǎǘǊƻƴƎ ǎŜǉǳŜƴǘƛŀƭ 
dependency.
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Model Parallel Training
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Used when the model cannot fit in one device.

1IŀǊƭŀǇΣ !ŀǊƻƴ Ŝǘ ŀƭΦ άPipeDreamΥ Cŀǎǘ ŀƴŘ 9ŦŦƛŎƛŜƴǘ tƛǇŜƭƛƴŜ tŀǊŀƭƭŜƭ 5bb ¢ǊŀƛƴƛƴƎΦέ {h{t όнлмфύ
2Huang, YanpingŜǘ ŀƭΦ άGPipeΥ 9ŦŦƛŎƛŜƴǘ ¢ǊŀƛƴƛƴƎ ƻŦ Dƛŀƴǘ bŜǳǊŀƭ bŜǘǿƻǊƪǎ ǳǎƛƴƎ tƛǇŜƭƛƴŜ tŀǊŀƭƭŜƭƛǎƳΦέ NeurIPS(2019)

Prior works on pipeline parallel training1,2 to mitigate such problem, 
but have their own limitations: 
ÅLinearper-device space complexity.
ÅTrade-ƻŦŦ ōŜǘǿŜŜƴ άbubble of idlenessέ ǾǎΦ ǇƻǘŜƴǘƛŀƭ convergence affect.

Conv Conv Linear

.tΩǎ ǎǘǊƻƴƎ ǎŜǉǳŜƴǘƛŀƭ ŘŜǇŜƴŘŜƴŎȅ limits scalability. 

♩░ ■ ♩░ ■ ♩░■ ♩░ ■



Rethinking BP from an Algorithm Perspective
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Rethinking BP from an Algorithm Perspective
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ÅProblems with strong sequential dependency were studied in the past 
όулΩύΣ ōǳǘ ƛƴ ŀ ƳǳŎƘ ǎƛƳǇƭŜǊ ŎƻƴǘŜȄǘΦ

ÅWe propose scaling Back-Propagation by Parallel Scan Algorithm (BPPSA):
ÅReformulate BP as a scanoperation.
ÅScale BP by a customized BlellochScanalgorithm.
ÅLeverage sparsityin the Jacobians.



What is a Scan1 Operation?

Input sequence:

Binary, associativeoperator: +

Exclusive scan:

1 2 3 4 5 6 7 8

0 1 3

8

6 10 15 21 28

Compute partial reductions at each step of the sequence.

Identity: 0

1Blelloch, Guy E.έtǊŜŦƛȄ ǎǳƳǎ ŀƴŘ ǘƘŜƛǊ ŀǇǇƭƛŎŀǘƛƻƴǎέΦ ¢ŜŎƘƴƛŎŀƭ wŜǇƻǊǘ όмффлύ
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Linear Scan

9

1 2 3 4 5 6 7

3

6

10

15

21

28

On a single worker:perform scan 
linearly; takes n steps. 

Worker (p): an instance of execution; 
e.g., a core in a multi-core CPU 

Number of Elements (n)

With more workers:Can we achieve 
sublinearsteps?

T
im

e

n

Step:executing the 
operator once.



Blelloch Scan: ① Up-sweep Phase

10

1 2 3 4 5 6 7 8

3 7 11 15

10 26A B
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Up-sweep

Compute partial sums 
via a reduction tree.
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Blelloch Scan: ② Down-sweep Phase
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Down-sweep

Combine partial sums
across branches.

T
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Parallel
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Blelloch Scan: Efficiency
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2logn
Logarithmic
steps along the 
critical path.
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1 2 3 4 5 6 7 8

Reformulate BP as a Scan Operation

Input sequence:

Binary, associativeoperator:

Exclusive scan:

13

Key Insight: matrix multiplication in BPis also binary & associative!

+ Identity: 



I G7 G6 G5 G4 G3 G2 G1

G7 J7 J6 J5 J4 J3 J2 J1

Reformulate BP as a Scan Operation

Input sequence:

Binary, associativeoperator:

Exclusive scan:

13

A ◊B = BA

Gi = ♩●░■

Ji+1 =
⸗●░

⸗●░

╣

Key Insight: matrix multiplication in BPis also binary & associative!

Identity: I



Scale BP by 
Blelloch Scan

2logn
Logarithmic
steps along the 
critical path!
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Scale BP by 
Blelloch Scan

2logn
Logarithmic
steps along the 
critical path!
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Reconstructs the Original BP Exactly

Training LeNet-5 on CIFAR-10 (baseline: PyTorchAutograd)

15

Our method produces gradients mathematically equivalentto BP.

The Jacobians are multiplied in a different order Ҧnumerical differences.

Empirically show that such differences do not effect convergence.



Jacobians are Memory & Compute Hungry

A full Jacobian can be prohibitively expensive to handle.
Åe.g., 1st convolution in VGG-11 on CIFAR-10 images occupy 768 MB of memory.
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Jacobians are Memory & Compute Hungry

A full Jacobian can be prohibitively expensive to handle.
Åe.g., 1st convolution in VGG-11 on CIFAR-10 images occupy 768 MB of memory.
ÅGenerated one row at a time by passing basis vectors into Op_Grad() (the VJP 

function).
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Jacobians are Memory & Compute Hungry

A full Jacobian can be prohibitively expensive to handle.
Åe.g., 1st convolution in VGG-11 on CIFAR-10 images occupy 768 MB of memory.
ÅGenerated one row at a time by passing basis vectors into Op_Grad() (the VJP 

function).
Conventional ML algorithms avoid using Jacobians directly (including BP).
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The Jacobians of Many Operators are Sparse
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Guaranteed ZerosPossible ZerosNon-zeros

Conv2d ReLU MaxPool2D

First three ops of VGG-11 on CIFAR-10 Convolution ReLU Max Pooling

Sparsity 0.99157 0.99998 0.99994

Deterministic pattern.

Potentiallybetter SpGEMM
performance.

Guaranteed zeros:

Known ahead of training time.



Fast Sparse Jacobians Generation

Therefore, instead of calculating the Jacobians row-wise,

generate directly into Compressed Sparse Row(CSR):

1 2 0 3

0 1 2 2 4

Conv2d, W

data

indices

indptr

First three ops of VGG-11 on CIFAR-10 Convolution ReLU Max Pooling

Jacobian Calculation Speedup 8.3×103 x 1.2×106 x 1.5×105 x

18
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Complexity Analysis

19

ɸ(log n) CBP ɸ(n)vs. 

BPPSA BP

Per-step Complexity (C): runtime of each step.

CBPPSA

Runtime:



Complexity Analysis

Performance benefits:
1. Large n: deep network, long sequential dependency.
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Complexity Analysis

Performance benefits:
1. Large n: deep network, long sequential dependency.
2. Reducing per-step complexity: SpGEMM.
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Complexity Analysis

Performance benefits:
1. Large n: deep network, long sequential dependency.
2. Reducing per-step complexity: SpGEMM.

19

Constant per-device space complexity!

ɸ(log n) CBP ɸ(n)vs. 

BPPSA BP

A B

BA

Up-sweep

A

B

B

AB

Down-sweep

In-place

Per-step Complexity (C): runtime of each step.

CBPPSA

Runtime:



Methodology: Benchmark

Task:Bitstream Classification

20

Model:RNN

V100

Ὤ ÔÁÎÈὡ ὼ ὦ ὡ Ὤ ὦ

0 1 0 0 1 0 0 1 1 0

C=4

ὼ ͯὄὩὶὲέόὰὰὭπȢπυὅ πȢρ



Methodology: Environment
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Baseline:

Implementation:custom CUDA 10 kernels.

Hardware: RTX 2070

1.2

7.6.2

RTX 2080 Ti

7.5.1

1.1
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when batch size B=16, sequence length T=1000:
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Numerical differences do not effect 
convergence.
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Training curve of BPPSA v.s. the baseline
when batch size B=16, sequence length T=1000:
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Numerical differences do not effect 
convergence.

2.17× speedup on the overalltraining time.
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Sequence length (T) reflects the 
model length n.

BPPSA scaleswith the model 
length (n);
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Sequence length (T) reflects the 
model length n.

BPPSA scaleswith the model 
length (n);

108× = 

until being bounded by the 
number of workers (p).



Sensitivity Analysis: Number of Workers

24

Fraction of GPU per sample (1/B) 
reflects the number of workers p.

BPPSA scaleswith the number of 
workers (p).
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#SMs(2070) < #SMs(2080Ti)
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SM: Streaming Multiprocessor; 
ƛΦŜΦΣ άtŀǊŀƭƭŜƭ /ƻǊŜǎέΦ



More Results in the Paper

ÅEnd-to-end benchmarks of GRU training on IRMAS.
ÅA more realistic version of the RNN results.

ÅPruned VGG-11 retraining on CIFAR-10.
ÅMicrobenchmark via FLOP measurements.

Å9ǾŀƭǳŀǘŜ ǘƘŜ ŜŦŦŜŎǘƛǾŜƴŜǎǎ ƻŦ ƭŜǾŜǊŀƎƛƴƎ ǘƘŜ WŀŎƻōƛŀƴǎΩ ǎǇŀǊǎƛǘȅ ƛƴ /bbǎΦ
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Conclusion

27

BP imposes a strong sequential dependencyamong layers during the 
gradient computations, limiting its scalability on parallel systems.

We propose scaling Back-Propagation by Parallel Scan Algorithm (BPPSA):
ÅReformulate BP as a scanoperation.
ÅScale by a customized Blellochscan algorithm.
ÅLeverage sparsityin the Jacobians.

Key Results:Θ(log n) vs. Θ(n) steps on parallel systems.

Up to 108×ǎǇŜŜŘǳǇ ƻƴ ǘƘŜ ōŀŎƪǿŀǊŘ Ǉŀǎǎ όҦ 2.17×overall speedup).


