
Scaling Back-Propagation by
Parallel Scan Algorithm

Shang Wang1,2, YifanBai1, Gennady Pekhimenko1,2

1 2

The original PPTX file can be downloaded from here.

http://www.cs.toronto.edu/~wangsh46/SCALING BACK-PROPAGATION BY PARALLEL SCAN ALGORITHM.pptx


Executive Summary

The back-propagation (BP)algorithm is popularly usedin training deep learning (DL) 
models and implemented in manyDL frameworks (e.g., PyTorchand TensorFlow).

2

Problem:BP imposes a strong sequential dependencyalong layers during the 
gradient computations.



Executive Summary

The back-propagation (BP)algorithm is popularly usedin training deep learning (DL) 
models and implemented in manyDL frameworks (e.g., PyTorchand TensorFlow).

2

Problem:BP imposes a strong sequential dependencyalong layers during the 
gradient computations.

Key idea:We propose scaling BPby Parallel Scan Algorithm (BPPSA):
ÅReformulate BP into a scanoperation.

1 2 3 4 5 6 7 8

0 1 3 6 10 15 21 28



Executive Summary

The back-propagation (BP)algorithm is popularly usedin training deep learning (DL) 
models and implemented in manyDL frameworks (e.g., PyTorchand TensorFlow).

2

Problem:BP imposes a strong sequential dependencyalong layers during the 
gradient computations.

Key idea:We propose scaling BPby Parallel Scan Algorithm (BPPSA):
ÅReformulate BP into a scanoperation.
ÅScaled by a customized parallel algorithm.

Key Results:Θ(log n) vs. Θ(n) steps on parallel systems.

Up to 108×ōŀŎƪǿŀǊŘ Ǉŀǎǎ ǎǇŜŜŘǳǇ όҦ 2.17×overall speedup).



Back-propagation1 (BP) Everywhere

3
1
wǳƳŜƭƘŀǊǘ Ŝǘ ŀƭΦ ά[ŜŀǊƴƛƴƎ ǊŜǇǊŜǎŜƴǘŀǘƛƻƴǎ ōȅ ōŀŎƪ-propagating 
ŜǊǊƻǊǎΦέΣ bŀǘǳǊŜ όмфусύ 



BP’s Strong Sequential Dependency

Linearᴆὼ
♩■

4

​ᴆὰ
‬Ὢᴆὼ

‬ᴆὼ
​ ᴆὰ

ReLU

♩■

Linear

♩■

Loss ὰ

⸗█

⸗

╣
⸗█

⸗

╣

Ὢᴆὼ

ᴆὼ

‬Ὢᴆὼ

‬ᴆὼ

Jacobian



BP’s Strong Sequential Dependency

Linearᴆὼ
♩■

4

​ᴆὰ
‬Ὢᴆὼ

‬ᴆὼ
​ ᴆὰ

Strong Sequential Dependencyalong layers.

ReLU

♩■

Linear

♩■

Loss ὰ

⸗█

⸗

╣
⸗█

⸗

╣

Ὢᴆὼ

ᴆὼ

‬Ὢᴆὼ

‬ᴆὼ

Jacobian



Data Parallel Training

5

Conceptually simple, widely used. 

Effectively increases the batch size:
ÅGeneralization gap1

ÅBatch size scaling limit2

1YŜǎƪŀǊΣ bƛǘƛǎƘ {ƘƛǊƛǎƘ Ŝǘ ŀƭΦ άhƴ [ŀǊƎŜ-.ŀǘŎƘ ¢ǊŀƛƴƛƴƎ ŦƻǊ 5ŜŜǇ [ŜŀǊƴƛƴƎΥ DŜƴŜǊŀƭƛȊŀǘƛƻƴ DŀǇ ŀƴŘ {ƘŀǊǇ aƛƴƛƳŀΦέ L/[w όнлмтύ
2{ƘŀƭƭǳŜΣ /ƘǊƛǎǘƻǇƘŜǊ WΦ Ŝǘ ŀƭΦ άaŜŀǎǳǊƛƴƎ ǘƘŜ 9ŦŦŜŎǘǎ ƻŦ 5ŀǘŀ tŀǊŀƭƭŜƭƛǎƳ ƻƴ bŜǳǊŀƭ bŜǘǿƻǊƪ ¢ǊŀƛƴƛƴƎΦέ WƻǳǊƴŀƭ ƻŦ aŀŎƘƛƴŜ [Ŝŀrning Research 20 (2019)

Constraint:The model must fit in 
one device.

wŜǎǇŜŎǘǎ .tΩǎ ǎǘǊƻƴƎ ǎŜǉǳŜƴǘƛŀƭ 
dependency.

ᴆὼ4 ὰ4

ᴆὼ3 ὰ3

ᴆὼ2 ὰ2

ᴆὼ1 ὰ1

ᴆὼi ὰi

Strong Sequential Dependency

Strong Sequential Dependency

Strong Sequential Dependency



Model Parallel Training

6

Used when the model cannot fit in one device.

1IŀǊƭŀǇΣ !ŀǊƻƴ Ŝǘ ŀƭΦ άPipeDreamΥ Cŀǎǘ ŀƴŘ 9ŦŦƛŎƛŜƴǘ tƛǇŜƭƛƴŜ tŀǊŀƭƭŜƭ 5bb ¢ǊŀƛƴƛƴƎΦέ {h{t όнлмфύ
2Huang, YanpingŜǘ ŀƭΦ άGPipeΥ 9ŦŦƛŎƛŜƴǘ ¢ǊŀƛƴƛƴƎ ƻŦ Dƛŀƴǘ bŜǳǊŀƭ bŜǘǿƻǊƪǎ ǳǎƛƴƎ tƛǇŜƭƛƴŜ tŀǊŀƭƭŜƭƛǎƳΦέ NeurIPS(2019)

Prior works on pipeline parallel training1,2 to mitigate such problem, 
but have their own limitations: 
ÅLinearper-device space complexity.
ÅTrade-ƻŦŦ ōŜǘǿŜŜƴ άbubble of idlenessέ ǾǎΦ ǇƻǘŜƴǘƛŀƭ convergence affect.

Conv Conv Linear

.tΩǎ ǎǘǊƻƴƎ ǎŜǉǳŜƴǘƛŀƭ ŘŜǇŜƴŘŜƴŎȅ limits scalability. 

♩░ ■ ♩░ ■ ♩░■ ♩░ ■



Rethinking BP from an Algorithm Perspective

7



Rethinking BP from an Algorithm Perspective

7

ÅProblems with strong sequential dependency were studied in the past 
όулΩύΣ ōǳǘ ƛƴ ŀ ƳǳŎƘ ǎƛƳǇƭŜǊ ŎƻƴǘŜȄǘΦ

ÅWe propose scaling Back-Propagation by Parallel Scan Algorithm (BPPSA):
ÅReformulate BP as a scanoperation.
ÅScale BP by a customized BlellochScanalgorithm.
ÅLeverage sparsityin the Jacobians.



What is a Scan1 Operation?

Input sequence:

Binary, associativeoperator: +

Exclusive scan:

1 2 3 4 5 6 7 8

0 1 3

8

6 10 15 21 28

Compute partial reductions at each step of the sequence.

Identity: 0

1Blelloch, Guy E.έtǊŜŦƛȄ ǎǳƳǎ ŀƴŘ ǘƘŜƛǊ ŀǇǇƭƛŎŀǘƛƻƴǎέΦ ¢ŜŎƘƴƛŎŀƭ wŜǇƻǊǘ όмффлύ



What is a Scan1 Operation?

Input sequence:

Binary, associativeoperator: +

Exclusive scan:

1 2 3 4 5 6 7 8

0 1 3

8

6 10 15 21 28

Compute partial reductions at each step of the sequence.

Identity: 0

1Blelloch, Guy E.έtǊŜŦƛȄ ǎǳƳǎ ŀƴŘ ǘƘŜƛǊ ŀǇǇƭƛŎŀǘƛƻƴǎέΦ ¢ŜŎƘƴƛŎŀƭ wŜǇƻǊǘ όмффлύ



Linear Scan

9

1 2 3 4 5 6 7

3

6

10

15

21

28

On a single worker:perform scan 
linearly; takes n steps. 

Worker (p): an instance of execution; 
e.g., a core in a multi-core CPU 

Number of Elements (n)

With more workers:Can we achieve 
sublinearsteps?

T
im

e

n

Step:executing the 
operator once.



Blelloch Scan: ① Up-sweep Phase

10

1 2 3 4 5 6 7 8

3 7 11 15

10 26A B

A+B

Up-sweep

Compute partial sums 
via a reduction tree.

T
im

e



Blelloch Scan: ② Down-sweep Phase

11

1 2 3 4 5 6 7 8

3 7 11 15

10 26

10 0

3 0 11 10

1 0 3 3 5 10 7 21

0 1 3 6 10 15 21

A

B

B

A+B

Down-sweep

Combine partial sums
across branches.

T
im

e

Parallel

28



Blelloch Scan: Efficiency

12

2logn
Logarithmic
steps along the 
critical path.

1 2 3 4 5 6 7 8

3 7 11 15

10 26

10 0

3 0 11 10

1 0 3 3 5 10 7 21

0 1 3 6 10 15 21

T
im

e

28



0

0 1 3 6 10 15 21 28

1 2 3 4 5 6 7 8

Reformulate BP as a Scan Operation

Input sequence:

Binary, associativeoperator:

Exclusive scan:

13

Key Insight: matrix multiplication in BPis also binary & associative!

+ Identity: 



I G7 G6 G5 G4 G3 G2 G1

G7 J7 J6 J5 J4 J3 J2 J1

Reformulate BP as a Scan Operation

Input sequence:

Binary, associativeoperator:

Exclusive scan:

13

A ◊B = BA

Gi = ♩●░■

Ji+1 =
⸗●░

⸗●░

╣

Key Insight: matrix multiplication in BPis also binary & associative!

Identity: I



Scale BP by 
Blelloch Scan

2logn
Logarithmic
steps along the 
critical path!

1 2 3 4 5 6 7 8

3 7 11 15

10 26

10 0

3 0 11 10

1 0 3 3 5 10 7 21

0 1 3 6 10 15 21 28

T
im

e



I

I

I

I

Scale BP by 
Blelloch Scan

2logn
Logarithmic
steps along the 
critical path!

G7 J7 J6 J5 J4 J3 J2 J1

G6 J5:6 J3:4 J1:2

G4 J1:4

G4

G6 J3:4 G4

G7 J6 G6 J4 G4 J2 G2

G7 G6 G5 G4 G3 G2

T
im

e

G1



I

I

I

I

Scale BP by 
Blelloch Scan

2logn
Logarithmic
steps along the 
critical path!

G7 J7 J6 J5 J4 J3 J2 J1

G6 J5:6 J3:4 J1:2

G4 J1:4

G4

G6 J3:4 G4

G7 J6 G6 J4 G4 J2 G2

G7 G6 G5 G4 G3 G2

T
im

e

A

B

B

BA

Down-sweep

AB

Matrix 
multiplications are 
noncommutative. G1



I

I

I

I

Scale BP by 
Blelloch Scan

2logn
Logarithmic
steps along the 
critical path!

G7 J7 J6 J5 J4 J3 J2 J1

G6 J5:6 J3:4 J1:2

G4 J1:4

G4

G6 J3:4 G4

G7 J6 G6 J4 G4 J2 G2

G7 G6 G5 G4 G3 G2

T
im

e

A

B

B

BA

Down-sweep

Matrix 
multiplications are 
noncommutative. G1



Reconstructs the Original BP Exactly

Training LeNet-5 on CIFAR-10 (baseline: PyTorchAutograd)

15

Our method produces gradients mathematically equivalentto BP.

The Jacobians are multiplied in a different order Ҧnumerical differences.

Empirically show that such differences do not effect convergence.



Jacobians are Memory & Compute Hungry

A full Jacobian can be prohibitively expensive to handle.
Åe.g., 1st convolution in VGG-11 on CIFAR-10 images occupy 768 MB of memory.

16

Ὢᴆὼ

ᴆὼ

‬Ὢᴆὼ

‬ᴆὼ
65536

3072

768 MB



Jacobians are Memory & Compute Hungry

A full Jacobian can be prohibitively expensive to handle.
Åe.g., 1st convolution in VGG-11 on CIFAR-10 images occupy 768 MB of memory.
ÅGenerated one row at a time by passing basis vectors into Op_Grad() (the VJP 

function).

16

╒▫▪○ ▀╖ͅ►╪▀
╒▫▪○ ▀╖ͅ►╪▀



Jacobians are Memory & Compute Hungry

A full Jacobian can be prohibitively expensive to handle.
Åe.g., 1st convolution in VGG-11 on CIFAR-10 images occupy 768 MB of memory.
ÅGenerated one row at a time by passing basis vectors into Op_Grad() (the VJP 

function).

16

╒▫▪○ ▀╖ͅ►╪▀
╒▫▪○ ▀╖ͅ►╪▀╒▫▪○ ▀╖ͅ►╪▀
╒▫▪○ ▀╖ͅ►╪▀



Jacobians are Memory & Compute Hungry

A full Jacobian can be prohibitively expensive to handle.
Åe.g., 1st convolution in VGG-11 on CIFAR-10 images occupy 768 MB of memory.
ÅGenerated one row at a time by passing basis vectors into Op_Grad() (the VJP 

function).

16

╒▫▪○ ▀╖ͅ►╪▀
╒▫▪○ ▀╖ͅ►╪▀╒▫▪○ ▀╖ͅ►╪▀
╒▫▪○ ▀╖ͅ►╪▀╒▫▪○ ▀╖ͅ►╪▀

╒▫▪○ ▀╖ͅ►╪▀



Jacobians are Memory & Compute Hungry

A full Jacobian can be prohibitively expensive to handle.
Åe.g., 1st convolution in VGG-11 on CIFAR-10 images occupy 768 MB of memory.
ÅGenerated one row at a time by passing basis vectors into Op_Grad() (the VJP 

function).

16

╒▫▪○ ▀╖ͅ►╪▀
╒▫▪○ ▀╖ͅ►╪▀╒▫▪○ ▀╖ͅ►╪▀
╒▫▪○ ▀╖ͅ►╪▀╒▫▪○ ▀╖ͅ►╪▀

╒▫▪○ ▀╖ͅ►╪▀╒▫▪○ ▀╖ͅ►╪▀



Jacobians are Memory & Compute Hungry

A full Jacobian can be prohibitively expensive to handle.
Åe.g., 1st convolution in VGG-11 on CIFAR-10 images occupy 768 MB of memory.
ÅGenerated one row at a time by passing basis vectors into Op_Grad() (the VJP 

function).
Conventional ML algorithms avoid using Jacobians directly (including BP).

16

ᴆὼ

3072

768 MB

╒▫▪○ ▀╖ͅ►╪▀
╒▫▪○ ▀╖ͅ►╪▀╒▫▪○ ▀╖ͅ►╪▀
╒▫▪○ ▀╖ͅ►╪▀╒▫▪○ ▀╖ͅ►╪▀

╒▫▪○ ▀╖ͅ►╪▀╒▫▪○ ▀╖ͅ►╪▀



The Jacobians of Many Operators are Sparse

17

Guaranteed ZerosPossible ZerosNon-zeros

Conv2d ReLU MaxPool2D

First three ops of VGG-11 on CIFAR-10 Convolution ReLU Max Pooling

Sparsity 0.99157 0.99998 0.99994

Deterministic pattern.

Potentiallybetter SpGEMM
performance.

Guaranteed zeros:

Known ahead of training time.



Fast Sparse Jacobians Generation

Therefore, instead of calculating the Jacobians row-wise,

generate directly into Compressed Sparse Row(CSR):

1 2 0 3

0 1 2 2 4

Conv2d, W

data

indices

indptr

First three ops of VGG-11 on CIFAR-10 Convolution ReLU Max Pooling

Jacobian Calculation Speedup 8.3×103 x 1.2×106 x 1.5×105 x

18

0

0

0

0

0

0

0

0

0

0

0

0



Complexity Analysis

19

ɸ(log n) CBP ɸ(n)vs. 

BPPSA BP

Per-step Complexity (C): runtime of each step.

CBPPSA

Runtime:



Complexity Analysis

Performance benefits:
1. Large n: deep network, long sequential dependency.

19

ɸ(log n) CBP ɸ(n)vs. 

BPPSA BP

Per-step Complexity (C): runtime of each step.

CBPPSA

Runtime:



Complexity Analysis

Performance benefits:
1. Large n: deep network, long sequential dependency.
2. Reducing per-step complexity: SpGEMM.

19

ɸ(log n) CBP ɸ(n)vs. 

BPPSA BP

Per-step Complexity (C): runtime of each step.

CBPPSA

Runtime:



Complexity Analysis

Performance benefits:
1. Large n: deep network, long sequential dependency.
2. Reducing per-step complexity: SpGEMM.

19

Constant per-device space complexity!

ɸ(log n) CBP ɸ(n)vs. 

BPPSA BP

A B

BA

Up-sweep

A

B

B

AB

Down-sweep

In-place

Per-step Complexity (C): runtime of each step.

CBPPSA

Runtime:



Methodology: Benchmark

Task:Bitstream Classification

20

Model:RNN

V100

Ὤ ÔÁÎÈὡ ὼ ὦ ὡ Ὤ ὦ

0 1 0 0 1 0 0 1 1 0

C=4

ὼ ͯὄὩὶὲέόὰὰὭπȢπυὅ πȢρ



Methodology: Environment

21

Baseline:

Implementation:custom CUDA 10 kernels.

Hardware: RTX 2070

1.2

7.6.2

RTX 2080 Ti

7.5.1

1.1



1.2

1.4

1.6

1.8

2

2.2

2.4

0 1000 2000 3000 4000 5000

T
ra

in
in

g
 L

o
ss

Wall-clock Time (s)

Baseline BPPSA

End-to-end Training Speedup

Training curve of BPPSA v.s. the baseline
when batch size B=16, sequence length T=1000:

22

Numerical differences do not effect 
convergence.



1.2

1.4

1.6

1.8

2

2.2

2.4

0 1000 2000 3000 4000 5000

T
ra

in
in

g
 L

o
ss

Wall-clock Time (s)

Baseline BPPSA

End-to-end Training Speedup

Training curve of BPPSA v.s. the baseline
when batch size B=16, sequence length T=1000:

22

Numerical differences do not effect 
convergence.

2.17× speedup on the overalltraining time.



1

10

100

10 30 100 300 1k 3k 10k 30k

S
p

e
e

d
u

p

Sequence Length (T)

Backward Pass Speedup over Baseline

Sensitivity Analysis: Model Length

23

Sequence length (T) reflects the 
model length n.

BPPSA scaleswith the model 
length (n);



1

10

100

10 30 100 300 1k 3k 10k 30k

S
p

e
e

d
u

p

Sequence Length (T)

Backward Pass Speedup over Baseline

Sensitivity Analysis: Model Length

23

Sequence length (T) reflects the 
model length n.

BPPSA scaleswith the model 
length (n);

until being bounded by the 
number of workers (p).



1

10

100

10 30 100 300 1k 3k 10k 30k

S
p

e
e

d
u

p

Sequence Length (T)

Backward Pass Speedup over Baseline

Sensitivity Analysis: Model Length

23

Sequence length (T) reflects the 
model length n.

BPPSA scaleswith the model 
length (n);

108× = 

until being bounded by the 
number of workers (p).



Sensitivity Analysis: Number of Workers

24

Fraction of GPU per sample (1/B) 
reflects the number of workers p.

BPPSA scaleswith the number of 
workers (p).

1

2

4

8

16

1/256 1/128 1/64 1/32 1/16 1/8 1/4 1/2

S
p

e
e

d
u

p

Fraction of GPU per Sample (1/B)

Backward Pass Speedup over Baseline



Sensitivity Analysis: Number of Workers

24

Fraction of GPU per sample (1/B) 
reflects the number of workers p.

BPPSA scaleswith the number of 
workers (p).

1

2

4

8

16

1/256 1/128 1/64 1/32 1/16 1/8 1/4 1/2

S
p

e
e

d
u

p

Fraction of GPU per Sample (1/B)

Backward Pass Speedup over Baseline



Sensitivity Analysis: Number of Workers

24

Fraction of GPU per sample (1/B) 
reflects the number of workers p.

BPPSA scaleswith the number of 
workers (p).

1

2

4

8

16

1/256 1/128 1/64 1/32 1/16 1/8 1/4 1/2

S
p

e
e

d
u

p

Fraction of GPU per Sample (1/B)

Backward Pass Speedup over Baseline



Sensitivity Analysis: Number of Workers

24

Fraction of GPU per sample (1/B) 
reflects the number of workers p.

BPPSA scaleswith the number of 
workers (p).

1

2

4

8

16

1/256 1/128 1/64 1/32 1/16 1/8 1/4 1/2

S
p

e
e

d
u

p

Fraction of GPU per Sample (1/B)

Backward Pass Speedup over Baseline



25

0

5

10

15

20

25

30

1/256 1/128 1/64 1/32 1/16 1/8 1/4 1/2

L
a
te

n
c
y 

(m
s)

 p
e

r 
It
e

ra
tio

n
Fraction of GPU per Sample (1/B)

0

5

10

15

20

25

30

35

40

10 30 100 300 1k 3k 10k 30k

L
a
te

n
cy

 (m
s)

 p
e

r 
It
e

ra
tio

n

Sequence Length (T)

2070 2080Ti

Sensitivity Analysis: 2070 v.s. 2080Ti

#SMs(2070) < #SMs(2080Ti)
→Latency(2070) > Latency(2080Ti)

SM: Streaming Multiprocessor; 
ƛΦŜΦΣ άtŀǊŀƭƭŜƭ /ƻǊŜǎέΦ



More Results in the Paper

ÅEnd-to-end benchmarks of GRU training on IRMAS.
ÅA more realistic version of the RNN results.

ÅPruned VGG-11 retraining on CIFAR-10.
ÅMicrobenchmark via FLOP measurements.

Å9ǾŀƭǳŀǘŜ ǘƘŜ ŜŦŦŜŎǘƛǾŜƴŜǎǎ ƻŦ ƭŜǾŜǊŀƎƛƴƎ ǘƘŜ WŀŎƻōƛŀƴǎΩ ǎǇŀǊǎƛǘȅ ƛƴ /bbǎΦ

26



Conclusion

27

BP imposes a strong sequential dependencyamong layers during the 
gradient computations, limiting its scalability on parallel systems.

We propose scaling Back-Propagation by Parallel Scan Algorithm (BPPSA):
ÅReformulate BP as a scanoperation.
ÅScale by a customized Blellochscan algorithm.
ÅLeverage sparsityin the Jacobians.

Key Results:Θ(log n) vs. Θ(n) steps on parallel systems.

Up to 108×ǎǇŜŜŘǳǇ ƻƴ ǘƘŜ ōŀŎƪǿŀǊŘ Ǉŀǎǎ όҦ 2.17×overall speedup).


