
Scaling Back-Propagation by
Parallel Scan Algorithm

Shang Wang1,2, Yifan Bai1, Gennady Pekhimenko1,2

1 2

The original PPTX file can be downloaded from here.

http://www.cs.toronto.edu/~wangsh46/SCALING BACK-PROPAGATION BY PARALLEL SCAN ALGORITHM.pptx

Executive Summary

The back-propagation (BP) algorithm is popularly used in training deep learning (DL)
models and implemented in many DL frameworks (e.g., PyTorch and TensorFlow).

2

Problem: BP imposes a strong sequential dependency along layers during the
gradient computations.

Executive Summary

The back-propagation (BP) algorithm is popularly used in training deep learning (DL)
models and implemented in many DL frameworks (e.g., PyTorch and TensorFlow).

2

Problem: BP imposes a strong sequential dependency along layers during the
gradient computations.

Key idea: We propose scaling BP by Parallel Scan Algorithm (BPPSA):
• Reformulate BP into a scan operation.

1 2 3 4 5 6 7 8

0 1 3 6 10 15 21 28

Executive Summary

The back-propagation (BP) algorithm is popularly used in training deep learning (DL)
models and implemented in many DL frameworks (e.g., PyTorch and TensorFlow).

2

Problem: BP imposes a strong sequential dependency along layers during the
gradient computations.

Key idea: We propose scaling BP by Parallel Scan Algorithm (BPPSA):
• Reformulate BP into a scan operation.
• Scaled by a customized parallel algorithm.

Key Results: Θ(log n) vs. Θ(n) steps on parallel systems.

Up to 108× backward pass speedup (→ 2.17× overall speedup).

Back-propagation1 (BP) Everywhere

3
1
Rumelhart et al. “Learning representations by back-propagating

errors.”, Nature (1986)

BP’s Strong Sequential Dependency

LinearԦ𝑥
𝜵 𝒍

4

𝛻Ԧ𝑥𝑙 =
𝜕𝑓(Ԧ𝑥)

𝜕 Ԧ𝑥

𝑇

𝛻𝑓(Ԧ𝑥)𝑙

ReLU

𝜵𝒍

Linear

𝜵𝒍

Loss 𝑙

𝝏𝒇(⦁)

𝝏⦁

𝑻
𝝏𝒇(⦁)

𝝏⦁

𝑻

𝑓 Ԧ𝑥

Ԧ𝑥

𝜕𝑓(Ԧ𝑥)

𝜕 Ԧ𝑥

Jacobian

BP’s Strong Sequential Dependency

LinearԦ𝑥
𝜵 𝒍

4

𝛻Ԧ𝑥𝑙 =
𝜕𝑓(Ԧ𝑥)

𝜕 Ԧ𝑥

𝑇

𝛻𝑓(Ԧ𝑥)𝑙

Strong Sequential Dependency along layers.

ReLU

𝜵𝒍

Linear

𝜵𝒍

Loss 𝑙

𝝏𝒇(⦁)

𝝏⦁

𝑻
𝝏𝒇(⦁)

𝝏⦁

𝑻

𝑓 Ԧ𝑥

Ԧ𝑥

𝜕𝑓(Ԧ𝑥)

𝜕 Ԧ𝑥

Jacobian

Data Parallel Training

5

Conceptually simple, widely used.

Effectively increases the batch size:
• Generalization gap1

• Batch size scaling limit2

1Keskar, Nitish Shirish et al. “On Large-Batch Training for Deep Learning: Generalization Gap and Sharp Minima.” ICLR (2017)
2Shallue, Christopher J. et al. “Measuring the Effects of Data Parallelism on Neural Network Training.” Journal of Machine Learning Research 20 (2019)

Constraint: The model must fit in
one device.

Respects BP’s strong sequential
dependency.

Ԧ𝑥4 𝑙4

Ԧ𝑥3 𝑙3

Ԧ𝑥2 𝑙2

Ԧ𝑥1 𝑙1

Ԧ𝑥i 𝑙i

Strong Sequential Dependency

Strong Sequential Dependency

Strong Sequential Dependency

Model Parallel Training

6

Used when the model cannot fit in one device.

1Harlap, Aaron et al. “PipeDream: Fast and Efficient Pipeline Parallel DNN Training.” SOSP (2019)
2Huang, Yanping et al. “GPipe: Efficient Training of Giant Neural Networks using Pipeline Parallelism.” NeurIPS (2019)

Prior works on pipeline parallel training1,2 to mitigate such problem,
but have their own limitations:
• Linear per-device space complexity.
• Trade-off between “bubble of idleness” vs. potential convergence affect.

Conv Conv Linear

BP’s strong sequential dependency limits scalability.

𝜵𝒊−𝟐𝒍 𝜵𝒊−𝟏𝒍 𝜵𝒊𝒍 𝜵𝒊+𝟏𝒍

Rethinking BP from an Algorithm Perspective

7

Rethinking BP from an Algorithm Perspective

7

• Problems with strong sequential dependency were studied in the past
(80’), but in a much simpler context.

• We propose scaling Back-Propagation by Parallel Scan Algorithm (BPPSA):
• Reformulate BP as a scan operation.
• Scale BP by a customized Blelloch Scan algorithm.
• Leverage sparsity in the Jacobians.

What is a Scan1 Operation?

Input sequence:

Binary, associative operator: +

Exclusive scan:

1 2 3 4 5 6 7 8

0 1 3

8

6 10 15 21 28

Compute partial reductions at each step of the sequence.

Identity: 0

1Blelloch, Guy E. ”Prefix sums and their applications”. Technical Report (1990)

What is a Scan1 Operation?

Input sequence:

Binary, associative operator: +

Exclusive scan:

1 2 3 4 5 6 7 8

0 1 3

8

6 10 15 21 28

Compute partial reductions at each step of the sequence.

Identity: 0

1Blelloch, Guy E. ”Prefix sums and their applications”. Technical Report (1990)

Linear Scan

9

1 2 3 4 5 6 7

3

6

10

15

21

28

On a single worker: perform scan
linearly; takes n steps.

Worker (p): an instance of execution;
e.g., a core in a multi-core CPU

Number of Elements (n)

With more workers: Can we achieve
sublinear steps?

Ti
m

e

n

Step: executing the
operator once.

Blelloch Scan: ① Up-sweep Phase

10

1 2 3 4 5 6 7 8

3 7 11 15

10 26A B

A+B

Up-sweep

Compute partial sums
via a reduction tree.

Ti
m

e

Blelloch Scan: ② Down-sweep Phase

11

1 2 3 4 5 6 7 8

3 7 11 15

10 26

10 0

3 0 11 10

1 0 3 3 5 10 7 21

0 1 3 6 10 15 21

A

B

B

A+B

Down-sweep

Combine partial sums
across branches.

Ti
m

e

Parallel

28

Blelloch Scan: Efficiency

12

2logn
Logarithmic
steps along the
critical path.

1 2 3 4 5 6 7 8

3 7 11 15

10 26

10 0

3 0 11 10

1 0 3 3 5 10 7 21

0 1 3 6 10 15 21

Ti
m

e

28

0

0 1 3 6 10 15 21 28

1 2 3 4 5 6 7 8

Reformulate BP as a Scan Operation

Input sequence:

Binary, associative operator:

Exclusive scan:

13

Key Insight: matrix multiplication in BP is also binary & associative!

+ Identity:

I G7 G6 G5 G4 G3 G2 G1

G7 J7 J6 J5 J4 J3 J2 J1

Reformulate BP as a Scan Operation

Input sequence:

Binary, associative operator:

Exclusive scan:

13

A ◊ B = BA

Gi = 𝜵𝒙𝒊
𝒍

Ji+1 =
𝝏𝒙𝒊+𝟏

𝝏𝒙𝒊

𝑻

Key Insight: matrix multiplication in BP is also binary & associative!

Identity: I

Scale BP by
Blelloch Scan

2logn
Logarithmic
steps along the
critical path!

1 2 3 4 5 6 7 8

3 7 11 15

10 26

10 0

3 0 11 10

1 0 3 3 5 10 7 21

0 1 3 6 10 15 21 28

Ti
m

e

I

I

I

I

Scale BP by
Blelloch Scan

2logn
Logarithmic
steps along the
critical path!

G7 J7 J6 J5 J4 J3 J2 J1

G6 J5:6 J3:4 J1:2

G4 J1:4

G4

G6 J3:4 G4

G7 J6 G6 J4 G4 J2 G2

G7 G6 G5 G4 G3 G2

Ti
m

e

G1

I

I

I

I

Scale BP by
Blelloch Scan

2logn
Logarithmic
steps along the
critical path!

G7 J7 J6 J5 J4 J3 J2 J1

G6 J5:6 J3:4 J1:2

G4 J1:4

G4

G6 J3:4 G4

G7 J6 G6 J4 G4 J2 G2

G7 G6 G5 G4 G3 G2

Ti
m

e

A

B

B

BA

Down-sweep

AB

Matrix
multiplications are
noncommutative. G1

I

I

I

I

Scale BP by
Blelloch Scan

2logn
Logarithmic
steps along the
critical path!

G7 J7 J6 J5 J4 J3 J2 J1

G6 J5:6 J3:4 J1:2

G4 J1:4

G4

G6 J3:4 G4

G7 J6 G6 J4 G4 J2 G2

G7 G6 G5 G4 G3 G2

Ti
m

e

A

B

B

BA

Down-sweep

Matrix
multiplications are
noncommutative. G1

Reconstructs the Original BP Exactly

Training LeNet-5 on CIFAR-10 (baseline: PyTorch Autograd)

15

Our method produces gradients mathematically equivalent to BP.

The Jacobians are multiplied in a different order → numerical differences.

Empirically show that such differences do not effect convergence.

Jacobians are Memory & Compute Hungry

A full Jacobian can be prohibitively expensive to handle.
• e.g., 1st convolution in VGG-11 on CIFAR-10 images occupy 768 MB of memory.

16

𝑓 Ԧ𝑥

Ԧ𝑥

𝜕𝑓(Ԧ𝑥)

𝜕 Ԧ𝑥
65536

3072

768 MB

Jacobians are Memory & Compute Hungry

A full Jacobian can be prohibitively expensive to handle.
• e.g., 1st convolution in VGG-11 on CIFAR-10 images occupy 768 MB of memory.
• Generated one row at a time by passing basis vectors into Op_Grad() (the VJP

function).

16

𝑪𝒐𝒏𝒗𝟐𝒅_𝑮𝒓𝒂𝒅(

𝟏
𝟎
𝟎
𝟎
𝟎
𝟎
𝟎

)
𝑪𝒐𝒏𝒗𝟐𝒅_𝑮𝒓𝒂𝒅(

𝟎
𝟏
𝟎
𝟎
𝟎
𝟎
𝟎

)

Jacobians are Memory & Compute Hungry

A full Jacobian can be prohibitively expensive to handle.
• e.g., 1st convolution in VGG-11 on CIFAR-10 images occupy 768 MB of memory.
• Generated one row at a time by passing basis vectors into Op_Grad() (the VJP

function).

16

𝑪𝒐𝒏𝒗𝟐𝒅_𝑮𝒓𝒂𝒅(

𝟏
𝟎
𝟎
𝟎
𝟎
𝟎
𝟎

)
𝑪𝒐𝒏𝒗𝟐𝒅_𝑮𝒓𝒂𝒅(

𝟎
𝟏
𝟎
𝟎
𝟎
𝟎
𝟎

)𝑪𝒐𝒏𝒗𝟐𝒅_𝑮𝒓𝒂𝒅(

𝟎
𝟎
𝟏
𝟎
𝟎
𝟎
𝟎

)
𝑪𝒐𝒏𝒗𝟐𝒅_𝑮𝒓𝒂𝒅(

𝟎
𝟎
𝟎
𝟏
𝟎
𝟎
𝟎

)

Jacobians are Memory & Compute Hungry

A full Jacobian can be prohibitively expensive to handle.
• e.g., 1st convolution in VGG-11 on CIFAR-10 images occupy 768 MB of memory.
• Generated one row at a time by passing basis vectors into Op_Grad() (the VJP

function).

16

𝑪𝒐𝒏𝒗𝟐𝒅_𝑮𝒓𝒂𝒅(

𝟏
𝟎
𝟎
𝟎
𝟎
𝟎
𝟎

)
𝑪𝒐𝒏𝒗𝟐𝒅_𝑮𝒓𝒂𝒅(

𝟎
𝟏
𝟎
𝟎
𝟎
𝟎
𝟎

)𝑪𝒐𝒏𝒗𝟐𝒅_𝑮𝒓𝒂𝒅(

𝟎
𝟎
𝟏
𝟎
𝟎
𝟎
𝟎

)
𝑪𝒐𝒏𝒗𝟐𝒅_𝑮𝒓𝒂𝒅(

𝟎
𝟎
𝟎
𝟏
𝟎
𝟎
𝟎

)𝑪𝒐𝒏𝒗𝟐𝒅_𝑮𝒓𝒂𝒅(

𝟎
𝟎
𝟎
𝟎
𝟏
𝟎
𝟎

)

𝑪𝒐𝒏𝒗𝟐𝒅_𝑮𝒓𝒂𝒅(

𝟎
𝟎
𝟎
𝟎
𝟎
𝟏
𝟎

)

Jacobians are Memory & Compute Hungry

A full Jacobian can be prohibitively expensive to handle.
• e.g., 1st convolution in VGG-11 on CIFAR-10 images occupy 768 MB of memory.
• Generated one row at a time by passing basis vectors into Op_Grad() (the VJP

function).

16

𝑪𝒐𝒏𝒗𝟐𝒅_𝑮𝒓𝒂𝒅(

𝟏
𝟎
𝟎
𝟎
𝟎
𝟎
𝟎

)
𝑪𝒐𝒏𝒗𝟐𝒅_𝑮𝒓𝒂𝒅(

𝟎
𝟏
𝟎
𝟎
𝟎
𝟎
𝟎

)𝑪𝒐𝒏𝒗𝟐𝒅_𝑮𝒓𝒂𝒅(

𝟎
𝟎
𝟏
𝟎
𝟎
𝟎
𝟎

)
𝑪𝒐𝒏𝒗𝟐𝒅_𝑮𝒓𝒂𝒅(

𝟎
𝟎
𝟎
𝟏
𝟎
𝟎
𝟎

)𝑪𝒐𝒏𝒗𝟐𝒅_𝑮𝒓𝒂𝒅(

𝟎
𝟎
𝟎
𝟎
𝟏
𝟎
𝟎

)

𝑪𝒐𝒏𝒗𝟐𝒅_𝑮𝒓𝒂𝒅(

𝟎
𝟎
𝟎
𝟎
𝟎
𝟏
𝟎

)𝑪𝒐𝒏𝒗𝟐𝒅_𝑮𝒓𝒂𝒅(

𝟎
𝟎
𝟎
𝟎
𝟎
𝟎
𝟏

)

Jacobians are Memory & Compute Hungry

A full Jacobian can be prohibitively expensive to handle.
• e.g., 1st convolution in VGG-11 on CIFAR-10 images occupy 768 MB of memory.
• Generated one row at a time by passing basis vectors into Op_Grad() (the VJP

function).
Conventional ML algorithms avoid using Jacobians directly (including BP).

16

Ԧ𝑥

3072

768 MB

𝑪𝒐𝒏𝒗𝟐𝒅_𝑮𝒓𝒂𝒅(

𝟏
𝟎
𝟎
𝟎
𝟎
𝟎
𝟎

)
𝑪𝒐𝒏𝒗𝟐𝒅_𝑮𝒓𝒂𝒅(

𝟎
𝟏
𝟎
𝟎
𝟎
𝟎
𝟎

)𝑪𝒐𝒏𝒗𝟐𝒅_𝑮𝒓𝒂𝒅(

𝟎
𝟎
𝟏
𝟎
𝟎
𝟎
𝟎

)
𝑪𝒐𝒏𝒗𝟐𝒅_𝑮𝒓𝒂𝒅(

𝟎
𝟎
𝟎
𝟏
𝟎
𝟎
𝟎

)𝑪𝒐𝒏𝒗𝟐𝒅_𝑮𝒓𝒂𝒅(

𝟎
𝟎
𝟎
𝟎
𝟏
𝟎
𝟎

)

𝑪𝒐𝒏𝒗𝟐𝒅_𝑮𝒓𝒂𝒅(

𝟎
𝟎
𝟎
𝟎
𝟎
𝟏
𝟎

)𝑪𝒐𝒏𝒗𝟐𝒅_𝑮𝒓𝒂𝒅(

𝟎
𝟎
𝟎
𝟎
𝟎
𝟎
𝟏

)

The Jacobians of Many Operators are Sparse

17

Guaranteed ZerosPossible ZerosNon-zeros

Conv2d ReLU MaxPool2D

First three ops of VGG-11 on CIFAR-10 Convolution ReLU Max Pooling

Sparsity 0.99157 0.99998 0.99994

Deterministic pattern.

Potentially better SpGEMM
performance.

Guaranteed zeros:

Known ahead of training time.

Fast Sparse Jacobians Generation

Therefore, instead of calculating the Jacobians row-wise,

generate directly into Compressed Sparse Row (CSR):

1 2 0 3

0 1 2 2 4

Conv2d, W

data

indices

indptr

First three ops of VGG-11 on CIFAR-10 Convolution ReLU Max Pooling

Jacobian Calculation Speedup 8.3×103 x 1.2×106 x 1.5×105 x

18

0

0

0

0

0

0

0

0

0

0

0

0

Complexity Analysis

19

Θ(log n) CBP Θ(n)vs.

BPPSA BP

Per-step Complexity (C): runtime of each step.

CBPPSA

Runtime:

Complexity Analysis

Performance benefits:
1. Large n: deep network, long sequential dependency.

19

Θ(log n) CBP Θ(n)vs.

BPPSA BP

Per-step Complexity (C): runtime of each step.

CBPPSA

Runtime:

Complexity Analysis

Performance benefits:
1. Large n: deep network, long sequential dependency.
2. Reducing per-step complexity: SpGEMM.

19

Θ(log n) CBP Θ(n)vs.

BPPSA BP

Per-step Complexity (C): runtime of each step.

CBPPSA

Runtime:

Complexity Analysis

Performance benefits:
1. Large n: deep network, long sequential dependency.
2. Reducing per-step complexity: SpGEMM.

19

Constant per-device space complexity!

Θ(log n) CBP Θ(n)vs.

BPPSA BP

A B

BA

Up-sweep

A

B

B

AB

Down-sweep

In-place

Per-step Complexity (C): runtime of each step.

CBPPSA

Runtime:

Methodology: Benchmark

Task: Bitstream Classification

20

Model: RNN

V100

ℎ𝑡
𝑘
= tanh 𝑊𝑖ℎ𝑥𝑡

𝑘
+ 𝑏𝑖ℎ +𝑊ℎℎℎ𝑡−1

𝑘
+ 𝑏ℎℎ

0 1 0 0 1 0 0 1 1 0

C=4

𝑥𝑡
𝑘
~ 𝐵𝑒𝑟𝑛𝑜𝑢𝑙𝑙𝑖(0.05 + 𝐶 𝑘 × 0.1)

Methodology: Environment

21

Baseline:

Implementation: custom CUDA 10 kernels.

Hardware: RTX 2070

1.2

7.6.2

RTX 2080 Ti

7.5.1

1.1

1.2

1.4

1.6

1.8

2

2.2

2.4

0 1000 2000 3000 4000 5000

Tr
ai

n
in

g
Lo

ss

Wall-clock Time (s)

Baseline BPPSA

End-to-end Training Speedup

Training curve of BPPSA v.s. the baseline
when batch size B=16, sequence length T=1000:

22

Numerical differences do not effect
convergence.

1.2

1.4

1.6

1.8

2

2.2

2.4

0 1000 2000 3000 4000 5000

Tr
ai

n
in

g
Lo

ss

Wall-clock Time (s)

Baseline BPPSA

End-to-end Training Speedup

Training curve of BPPSA v.s. the baseline
when batch size B=16, sequence length T=1000:

22

Numerical differences do not effect
convergence.

2.17× speedup on the overall training time.

1

10

100

10 30 100 300 1k 3k 10k 30k

Sp
e

e
d

u
p

Sequence Length (T)

Backward Pass Speedup over Baseline

Sensitivity Analysis: Model Length

23

Sequence length (T) reflects the
model length n.

BPPSA scales with the model
length (n);

1

10

100

10 30 100 300 1k 3k 10k 30k

Sp
e

e
d

u
p

Sequence Length (T)

Backward Pass Speedup over Baseline

Sensitivity Analysis: Model Length

23

Sequence length (T) reflects the
model length n.

BPPSA scales with the model
length (n);

until being bounded by the
number of workers (p).

1

10

100

10 30 100 300 1k 3k 10k 30k

Sp
e

e
d

u
p

Sequence Length (T)

Backward Pass Speedup over Baseline

Sensitivity Analysis: Model Length

23

Sequence length (T) reflects the
model length n.

BPPSA scales with the model
length (n);

108× =

until being bounded by the
number of workers (p).

Sensitivity Analysis: Number of Workers

24

Fraction of GPU per sample (1/B)
reflects the number of workers p.

BPPSA scales with the number of
workers (p).

1

2

4

8

16

1/256 1/128 1/64 1/32 1/16 1/8 1/4 1/2

Sp
e

e
d

u
p

Fraction of GPU per Sample (1/B)

Backward Pass Speedup over Baseline

Sensitivity Analysis: Number of Workers

24

Fraction of GPU per sample (1/B)
reflects the number of workers p.

BPPSA scales with the number of
workers (p).

1

2

4

8

16

1/256 1/128 1/64 1/32 1/16 1/8 1/4 1/2

Sp
e

e
d

u
p

Fraction of GPU per Sample (1/B)

Backward Pass Speedup over Baseline

Sensitivity Analysis: Number of Workers

24

Fraction of GPU per sample (1/B)
reflects the number of workers p.

BPPSA scales with the number of
workers (p).

1

2

4

8

16

1/256 1/128 1/64 1/32 1/16 1/8 1/4 1/2

Sp
e

e
d

u
p

Fraction of GPU per Sample (1/B)

Backward Pass Speedup over Baseline

Sensitivity Analysis: Number of Workers

24

Fraction of GPU per sample (1/B)
reflects the number of workers p.

BPPSA scales with the number of
workers (p).

1

2

4

8

16

1/256 1/128 1/64 1/32 1/16 1/8 1/4 1/2

Sp
e

e
d

u
p

Fraction of GPU per Sample (1/B)

Backward Pass Speedup over Baseline

25

0

5

10

15

20

25

30

1/256 1/128 1/64 1/32 1/16 1/8 1/4 1/2

La
te

n
cy

 (
m

s)
 p

e
r

It
e

ra
ti

o
n

Fraction of GPU per Sample (1/B)

0

5

10

15

20

25

30

35

40

10 30 100 300 1k 3k 10k 30k

La
te

n
cy

 (
m

s)
 p

e
r

It
e

ra
ti

o
n

Sequence Length (T)

2070 2080Ti

Sensitivity Analysis: 2070 v.s. 2080Ti

#SMs(2070) < #SMs(2080Ti)
→ Latency(2070) > Latency(2080Ti)

SM: Streaming Multiprocessor;
i.e., “Parallel Cores”.

More Results in the Paper

• End-to-end benchmarks of GRU training on IRMAS.
• A more realistic version of the RNN results.

• Pruned VGG-11 retraining on CIFAR-10.
• Microbenchmark via FLOP measurements.

• Evaluate the effectiveness of leveraging the Jacobians’ sparsity in CNNs.

26

Conclusion

27

BP imposes a strong sequential dependency among layers during the
gradient computations, limiting its scalability on parallel systems.

We propose scaling Back-Propagation by Parallel Scan Algorithm (BPPSA):
• Reformulate BP as a scan operation.
• Scale by a customized Blelloch scan algorithm.
• Leverage sparsity in the Jacobians.

Key Results: Θ(log n) vs. Θ(n) steps on parallel systems.

Up to 108× speedup on the backward pass (→ 2.17× overall speedup).

