Scaling Back-Propagation by

Parallel Scan Algorithm
Shang Want?, YifanBat, Gennady Pekhimenkd

Ly ° VECTOR
Computer Science -\¢ INSTITUTE
%,gg,«a UNIVERSITY OF TORONTO

The original PPTX file can be downloafteth here.

http://www.cs.toronto.edu/~wangsh46/SCALING BACK-PROPAGATION BY PARALLEL SCAN ALGORITHM.pptx

Executive Summary
Thebackpropagation (BPalgorithm ispopularly usedin training deep learning (DL)
models andmplemented in manyDL frameworks (e.gPyTorchand TensorFlow).

Problem:BP imposes atrong sequential dependencalong layers during the
gradient computations.

<lllllllllllllll- <lllllllllllllll-

Executive Summary
Thebackpropagation (BPalgorithm ispopularly usedin training deep learning (DL)
models andmplemented in manyDL frameworks (e.gPyTorchand TensorFlow).

Problem:BP imposes atrong sequential dependencalong layers during the
gradient computations.

Key ideaWe propose scalingPby ParallelScanAlgorithm BPPSA
AReformulate BP into scanoperation

Ell
nintaintnistnte

Executive Summary
Thebackpropagation (BPalgorithm ispopularly usedin training deep learning (DL)
models andmplemented in manyDL frameworks (e.gPyTorchand TensorFlow).

Problem:BP imposes atrong sequential dependencalong layers during the
gradient computations.

Key ideaWe propose scalingPby ParallelScanAlgorithm BPPSA
AReformulate BP into scanoperation.

AScaled by a customized parallel algorithm.

Key Results©(log n)vs.©(n) steps on parallel systems.
Uptol08xo I O1 ¢ NR LJ &4 7xévéedd SpReathkip). 0

Back-propagation! (BP) Everywhere

How do we get the J
gradients for our SGD?
4

& PyTorch theano

Caffe @Xnet
Q’ Chainer

1

TensorFlow

wdzy$t KF NI SdG F @ & SI-papagyisg NB LING
SNNENERPES bl GdzNBE 6mdpyc O

BP’s Strong Sequential Dependency

o— Linear- RelLU Linear- LOSS gt |

/= J)m).
/7 N\
/7 g g N\
/ N\

/ \

/ Y4 N\ N\
/ / \ N\
J 3 —

Q)

?_

— X

Il
2

HEREN,

HEEEE e

L1 111K

BP’s Strong Sequential Dependency

: i oug Lincar JJ ReLV Linear [Loss g®!
o .

2

<,| >4J-<,|>4|J-

Q)

JS®

cobiar

o \Te e

‘Strong Sequential Dependen@long layers.

J

QO

HEEEE
A
A

Data Parallel Training

wSaLlsoua .t Qa

dependency. ‘
Conceptuallysimple, widely used Q@.H
Effectively increases the batch size:

A Generalization gap Q*.ZIZIZ.*QB
ABatch size scaling linfit e 3
Constraint:The modelnustfit in T il

one device. @—».4__’.2.2.—»(4

WSE&1TFNE bAGAAK {AKAMKAKNEAYyRYy@ FRWIBSSAS[SI NYAY3IY DSYSNItATFGA2y DI LI
A KFffdzST / KNRAEAG2LIKSNI Wo S | fd dgaSlkadaNAy3a GKS 9F7FS dhingiRegedrch20 (#019) t I NJ f f

Model Parallel Training

Used when the model cannot fit in one device.
t Qa a0 NRy 3 &S ljlides yealdbtitgy RSLISYRSY O
Prior works orpipeline parallel training-%to mitigate such problem,

but have their own limitations:

ALinearper-device space complexity. , S
ATrade2 ¥ F 0 Shihls & Wlenéss Ga ¢ ddvarGyca dffect

1 F NI F LI 'PipalBegny SCI Bl o y R 9FFAOASY G tALISEAYS tIFNffSt 5b ¢ NJ A
2Huang,YanpinS i GPip® QFFAOASY U C¢NIAYAY3I 2F DAl Y(NeuBRERJMYI) bSiGo2NJ] a dza

Rethinking BP from an Algorithm Perspective

o
=

T 0
i iy DL -,
9 Prio
: ::.. |, '11 .;i:!.' -
<

Rethinking BP from an Algorithm Perspective

AProblems with strong sequential dependency were studied in the past
OynQuI o0dzi AY | YdzOK &AYLI SNJ O2y

AWe propose scalinBackPropagation byParaIIeIS‘canAIgorlthm (BPPS)!&
AReformulate BP assxanoperation. .
AScale BP byaustomizedBlellochScanalgorithm.
A Leveragesparsityin the Jacobians.

What is a Scan! Operation?

Binary, associativeoperator: + ldentity: O
Inputsequence: E IEI
D

Exclusive scan: IEI IEI

Compute partial reductions at each step of the sequence.

Blelloch, GuyE.t NBFAE &dzYda FyR GKSANI I LILIX AOFGA2y&aéd ¢SOKYAOFt wSLI2 N

What is a Scan! Operation?

Binary, associativeoperator: + ldentity: O

Inputsequence: El IEI

Exclusive scan: IEI IEI

Compute partial reductions at each step of the sequence.

. . . . 3 8 .
1Blelloch, Guy E. t NBFAE ddzyd FyR GKSANI FLILXE AOFGA2Yyaéd ¢SOKYAOIE wSLI2 N

Linear Scan

Step:executing the
operator once.

Number of Elementsn|

Worker p): an instance of execution;
e.g., a core in a muitore CPU

On a single workeperform scan
linearly; takesn steps.

With more workersCan we achieve
sublinearsteps?

Blelloch Scan: (1) Up-sweep Phase

Up-sweep

A+B

Compute partial sums
via areduction tree

Blelloch Scan: (2) Down-sweep Phase

Parallel <

Down-sweep
B
8

Combine partial sums
across branches.

Blelloch Scan: Efficiency

Logarithmic
steps along th¢ 2logn <
critical path

Reformulate BP as a Scan Operation

Binary, associativeoperator: + ldentity: 0

Inputsequence: IEI

Exclusive scan: IEI IEI

Key Insight matrix multiplication in BPis alsdbinary & associative ‘

13

Reformulate BP as a Scan Operation G=1.m

ds MY
Binary, associativeoperator: A¢ B = BA Identity:| 4+1=(')

mputsequence: [1 1 E1 E B1 B BB

d

Exclusivescan:El

Key Insight matrix multiplication in BPis alsobinary & associative ‘

13

Scale BP by
Blelloch Scan

Logarithmic
steps along th¢2logn <
critical path!

Scale BP by
Blelloch Scan

Logarithmic
steps along the 2logn <
critical path!

Scale BP by
Blelloch Scan

Logarithmic
steps along th¢2logn <
critical path!

Down-sweep

AL [B] mar

. —1 Matrix

E o8 multiplications are
@9 noncommutative

Scale BP by
Blelloch Scan

Logarithmic
steps along th¢2logn <
critical path!

Down-sweep

AL LB v

. 1 Matrix

E multiplications are
noncommutative

Reconstructs the Original BP Exactly

Our method produces gradientsathematically equivalentto BP.
The Jacobians are multiplied in a different orélgnumerical differences.

Empirically show that such differences do not effect convergence.
Training LeNeb on CIFARO (baselinePyTorchAutograd

Baseline, train Baseline, test

2.2- “‘ p— Ble”OCh, tra[n 22' ‘-‘ LR B]e”OCh, teSt
'I -
2.0- i |
5:““ 2.0
1.8 o
wn 1.8 1 L L R)
@ Wl 2 1.8
i :-23,,‘ B
1.6 T
="=.ﬁ' 3 1.6
" E@:‘".. . 3 Tey
el 5 s,
1.4 : :"t‘;:hl % 'aa"
.hl.I.lﬂ\ 2 ':'
R uSa 1.41 Mg
1.2 AR W
0 2000 4000 6000 8000 0 2000 4000 6000 8000
Iterations (# of batches) Iterations (# of batches)

15

(a) Training loss per iteration. (b) Test loss per iteration.

Jacobians are Memory & Compute Hungry

A full Jacobian can be prohibitively expensive to handle.
Ae.g., Ftconvolution in VG@1 on CIFARO images occupy68 MBof memory.

[1] 3072

u

—n
2
e

'q 65536_|| 768 MB

Jacobians are Memory & Compute Hungry

A full Jacobian can be prohibitively expensive to handle.

Ae.g., Bt convolution in VG@1 on CIFARO images occupy68 MBof memory.

AGenerated one row at a time by passing basis vectorsOmoGrad) (the VJP
function).

FD |

16

Jacobians are Memory & Compute Hungry

A full Jacobian can be prohibitively expensive to handle.

Ae.g., Bt convolution in VG@1 on CIFARO images occupy68 MBof memory.

AGenerated one row at a time by passing basis vectorsOmoGrad) (the VJP
function).

L1

.

R R ol e

Illlflllll
—
O
= |
v
H
[]

16

Jacobians are Memory & Compute Hungry

A full Jacobian can be prohibitively expensive to handle.

Ae.g., Bt convolution in VG@1 on CIFARO images occupy68 MBof memory.

AGenerated one row at a time by passing basis vectorsOmoGrad) (the VJP
function).

[]

[11 []

L 11

FE

FE

Fo» o BM L

;Fn-o.ﬂw

16

Jacobians are Memory & Compute Hungry

A full Jacobian can be prohibitively expensive to handle.

Ae.g., Bt convolution in VG@1 on CIFARO images occupy68 MBof memory.

AGenerated one row at a time by passing basis vectorsOmoGrad) (the VJP
function).

[]

[1 []
F1__ []

FE

FE

;Fn-o.ﬂw

foe o B —|

16

Jacobians are Memory & Compute Hungry

A full Jacobian can be prohibitively expensive to handle.

Ae.g., Bt convolution in VG@1 on CIFARO images occupy68 MBof memory.

AGenerated one row at a time by passing basis vectorsOmoGrad) (the VJP
function).

Conventional ML algorithms avoid using Jacobians directly (including BF

[]

[1]

[]

L1 1

L 11

Fo o O;-ﬂ ‘=|=- E Fo = O.-ﬂ ‘:I:-

"

d

imgflip.com

16

The Jacobians of Many Operators are Sparse

Nonzeros g Possible Zeros g Guaranteed Zeros Guaranteed zeros:

‘Knownahead of training time ‘

| Deterministic pattern |
Potentiallybetter SpGEMM
performance.

RelLU MaxPool2D

First three ops of VGG1 on CIFARO Max Pooling

17

Fast Sparse Jacobians Generation

Therefore, instead of calculating the Jacobians-roge,
generatedirectly into Compressed Sparse RqQ@WSR)

— [dan 4
‘ ConvZ2d, VVI indices

First three ops of VG&G1 on CIFARO Max Pooling
Jacobian Calculation Speedup 8.3x102 x 1.2x10°x 1.5x10°Px

18

Complexity Analysis

Perstep Complexity@: runtime of each step.

Runtime:
BPPSA BP

Gepps(logn) vs. Gpd ()

19

Complexity Analysis

Perstep Complexity@: runtime of each step.

Runtime:
BPPSA BP

Gepps(logn) vs. Gpd (*)

Performance benefits:
1. Largen: deep network, long sequential dependency.

19

Complexity Analysis

Perstep Complexity@: runtime of each step.

Runtime:
BPPSA BP

Cofps (09 1) Vs, Geeh(n)

Performance benefits:

1. Largen: deep network, long sequential dependency.
2. Reducing pestep complexitySpGEMM

Complexity Analysis

Perstep Complexity@: runtime of each step.

Runtime:
BPPSA BP

Gepps(logn) vs. Gpd ()

Performance benefits:

. -pl
1. Largen: deep network, long sequential dependency. ‘ In-p ace‘
2. Reducing pestep complexitySpGEMM Upsweep Down-sweep

Constant peidevice space complexity! ‘

Methodology: Benchmark

Model: RNN

:

W) OAlEd’ & o W

TaskBitstream Classification

.
__

B
o IoN (1 N KN] [2

ot ¥ 601 ¢ ¢mBoLasR) T

)

20

Methodology: Environment

Hardware:

Baseline: CUDNN
O PyTorch

Implementation:.custom CUDA 10 kernels.

RTX 20801

7.6.2

1.2

21

End-to-end Training Speedup

Training curve of BPPSA the baseline
when batch siz&=16, sequence length=1000:

—Baseline =—BPPSA
2.4

- Numerical differences doot effect
7 convergence.
] 2
(@))
£ 18
c
©
I: 1.6

14

1.2

0 1000 2000 3000 4000 5000

Wall-clock Time (s)

22

End-to-end Training Speedup

Training curve of BPPSA the baseline
when batch siz&=16, sequence length=1000:

—Baseline =—BPPSA

2.4
Numerical differences doot effect

convergence.

2.2

2

1.8

1.6

Training Loss

1.4

< >

1.2
0 000 2000 312.17xspeedup on theveralltraining time.
Wall-clock Ti)

22

Sensitivity Analysis: Model Length

100

Speedup

Backward Pass Speedup over Baselir - Sequence lengthl] reflects the

model lengthn.

BPPSAcaleawith the model
length {);

1

30 100 300 1k 3k 10k 30k
Sequence Length (T)

23

Sensitivity Analysis: Model Length

106 Backward Pass Speedup over Baselir Sequence IengthT][reflects the

Speedup

model lengthn.
BPPSAcalesawith the model
length);
until being bounded by the
LB I number of workers).
10

30 100 300 1k 3k 10k 30k
Sequence Length (T)

Sensitivity Analysis: Model Length

Speedup

Lo j2aCkward Pass Sp 08¢ = aselir - Sequence lengthl] reflects the
model lengthn.
BPPSAcaleswith the model
length ();
until being bounded by the
. J I number of workersg).

30 100 300 1k 3k 10k 30k
Sequence Length (T)

Sensitivity Analysis: Number of Workers

” Backward Pass Speedup over Basel Fraction of GPU per samplfb’lB)

reflects the number of workers.
8
7]
i BPPSAcaleswith the number of
LB workers).

1/256 1/128 1/64 1/32 1/16 1/8 1/4 1/2
Fraction of GPU per Sample (1/B)

24

Sensitivity Analysis: Number of Workers

” Backward Pass Speedup over Basel Fraction of GPU per samplfb’lB)

reflects the number of workers.
8
7]
i BPPSAcaleswith the number of
LB workers).

1/256 1/128 1/64 1/32 1/16 1/8 1/4 1/2
Fraction of GPU per Sample (1/B)

24

Sensitivity Analysis: Number of Workers

” Backward Pass Speedup over Basel Fraction of GPU per samplfb’lB)

reflects the number of workers.
8
7]
i BPPSAcaleswith the number of
LB workers).

1/256 1/128 1/64 1/32 1/16 1/8 1/4 1/2
Fraction of GPU per Sample (1/B)

24

Sensitivity Analysis: Number of Workers

Speedup

16

Backward Pass Speedup over Basel

fill

1/256 1/128 1/64 1/32 1/16 1/8 14 1/2
Fraction of GPU per Sample (1/B)

Fraction of GPU per sample/B)
reflects the number of workerg.

BPPSAcaleawith the number of
workers).

24

Sensitivity Analysis: 2070 v.s. 2080Ti

#SMs(2070) < #SMs(2080Ti)
- Latency(2070) > Latency(2080

m 2070 m2080Ti

an sn as a8 S5 B [’.
10 30 100 300 1k 3k 10k 30k
Sequence Length (T)

Latency (ns) per Iteration

S

<

_
~—~~
>

= - N N w
o ol o ol o

ol

o

S

- St

So>

bt

reaming Multiprocessor;
Gt NI f € St

1/256 1/128 1/64 1/32 1/16 1/8 1/4

Fraction of GPU per Sample (1/B)s

1/2

/

2

More Results in the Paper

AEndto-end benchmarks of GRU training on IRMAS.
A A more realistic version of the RNN results.

APruned VG@A.1 retraining on CIFARD.

AMicrobenchmark via FLOP measurements.
AQ @I tdzZ- S UKS STFFSOUAQSYSaa

Conclusion

BP imposes atrong sequential dependencgmong layers during the
gradient computations, limiting its scalability on parallel systems.

We propose scalinBackPropagation byParallelScanAlgorithm BPPSA

AReformulate BP asszanoperation.
A Scale by austomizedBlellochscanalgorithm.
A Leveragesparsityin the Jacobians.

Key Results©(log n)vs.O(n) steps on parallel systems.
Uptol08<a LISS RdzLJ 2y (KS 2.a7k@drall $pdERup)LI &

