Scaling Back-Propagation by

Parallel Scan Algorithm
Shang Want?, YifanBat, Gennady Pekhimenkd

Ly ° VECTOR
Computer Science -\¢ INSTITUTE
%,gg,«a UNIVERSITY OF TORONTO

The original PPTX file can be downloafteth here.


http://www.cs.toronto.edu/~wangsh46/SCALING BACK-PROPAGATION BY PARALLEL SCAN ALGORITHM.pptx

Executive Summary
Thebackpropagation (BPalgorithm ispopularly usedin training deep learning (DL)
models andmplemented in manyDL frameworks (e.gPyTorchand TensorFlow).

Problem:BP imposes atrong sequential dependencalong layers during the
gradient computations.
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Executive Summary
Thebackpropagation (BPalgorithm ispopularly usedin training deep learning (DL)
models andmplemented in manyDL frameworks (e.gPyTorchand TensorFlow).

Problem:BP imposes atrong sequential dependencalong layers during the
gradient computations.

Key ideaWe propose scalingPby ParallelScanAlgorithm BPPSA
AReformulate BP into scanoperation.

AScaled by a customized parallel algorithm.

Key Results©(log n)vs.©(n) steps on parallel systems.
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Back-propagation! (BP) Everywhere

How do we get the J
gradients for our SGD?
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BP’s Strong Sequential Dependency
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BP’s Strong Sequential Dependency
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Data Parallel Training

wSaLlsoua .t Qa

dependency. ‘
Conceptuallysimple, widely used Q@.H
Effectively increases the batch size:

A Generalization gap Q*.ZIZIZ.*QB
ABatch size scaling linfit e 3
Constraint:The modelnustfit in T il
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Model Parallel Training

Used when the model cannot fit in one device.
t Qa a0 NRy 3 &S ljlides yealdbtitgy RSLISYRSY O
Prior works orpipeline parallel training-%to mitigate such problem,

but have their own limitations:

ALinearper-device space complexity. , S
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Rethinking BP from an Algorithm Perspective
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Rethinking BP from an Algorithm Perspective

AProblems with strong sequential dependency were studied in the past
OynQuI o0dzi AY | YdzOK &AYLI SNJ O2y

AWe propose scalinBackPropagation byParaIIeIS‘canAIgorlthm (BPPS)!&
AReformulate BP assxanoperation. .
AScale BP byaustomizedBlellochScanalgorithm.
A Leveragesparsityin the Jacobians.




What is a Scan! Operation?

Binary, associativeoperator: + ldentity: O
Inputsequence: E IEI
D

Exclusive scan: IEI IEI

Compute partial reductions at each step of the sequence.
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What is a Scan! Operation?

Binary, associativeoperator: + ldentity: O

Inputsequence: El IEI

Exclusive scan: IEI IEI

Compute partial reductions at each step of the sequence.
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Linear Scan

Step:executing the
operator once.

Number of Elementsn|

Worker p): an instance of execution;
e.g., a core in a muitore CPU

On a single workeperform scan
linearly; takesn steps.

With more workersCan we achieve
sublinearsteps?




Blelloch Scan: (1) Up-sweep Phase

Up-sweep

A+B

Compute partial sums
via areduction tree




Blelloch Scan: (2) Down-sweep Phase

Parallel <

Down-sweep
B
8

Combine partial sums
across branches.




Blelloch Scan: Efficiency

Logarithmic
steps along th¢ 2logn <
critical path




Reformulate BP as a Scan Operation

Binary, associativeoperator: + ldentity: 0

Inputsequence: IEI

Exclusive scan: IEI IEI

Key Insight matrix multiplication in BPis alsdbinary & associative ‘
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Reformulate BP as a Scan Operation G=1.m

ds MY
Binary, associativeoperator: A¢ B = BA Identity:| 4+1=( ' )

mputsequence: [ 1 1 E1 E B1 B BB

d

Exclusivescan:El

Key Insight matrix multiplication in BPis alsobinary & associative ‘
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Scale BP by
Blelloch Scan

Logarithmic
steps along th¢2logn <
critical path!
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Reconstructs the Original BP Exactly

Our method produces gradientsathematically equivalentto BP.
The Jacobians are multiplied in a different orélgnumerical differences.

Empirically show that such differences do not effect convergence.
Training LeNeb on CIFARO (baselinePyTorchAutograd
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(a) Training loss per iteration. (b) Test loss per iteration.



Jacobians are Memory & Compute Hungry

A full Jacobian can be prohibitively expensive to handle.
Ae.g., Ftconvolution in VG@1 on CIFARO images occupy68 MBof memory.
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Jacobians are Memory & Compute Hungry

A full Jacobian can be prohibitively expensive to handle.

Ae.g., Bt convolution in VG@1 on CIFARO images occupy68 MBof memory.

AGenerated one row at a time by passing basis vectorsOmoGrad) (the VJP
function).
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Jacobians are Memory & Compute Hungry

A full Jacobian can be prohibitively expensive to handle.

Ae.g., Bt convolution in VG@1 on CIFARO images occupy68 MBof memory.

AGenerated one row at a time by passing basis vectorsOmoGrad) (the VJP
function).

Conventional ML algorithms avoid using Jacobians directly (including BF
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The Jacobians of Many Operators are Sparse

Nonzeros g Possible Zeros g Guaranteed Zeros Guaranteed zeros:

‘Knownahead of training time ‘

| Deterministic pattern |
Potentiallybetter SpGEMM
performance.

RelLU MaxPool2D

First three ops of VGG1 on CIFARO Max Pooling

17



Fast Sparse Jacobians Generation

Therefore, instead of calculating the Jacobians-roge,
generatedirectly into Compressed Sparse RqQ@WSR)

— [ dan 4
‘ ConvZ2d, VVI indices

First three ops of VG&G1 on CIFARO Max Pooling
Jacobian Calculation Speedup 8.3x102 x 1.2x10°x  1.5x10°Px
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Complexity Analysis

Perstep Complexity@: runtime of each step.

Runtime:
BPPSA BP

Gepps(logn)  vs.  Gpd ()
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Complexity Analysis

Perstep Complexity@: runtime of each step.

Runtime:
BPPSA BP

Gepps(logn)  vs.  Gpd (*)

Performance benefits:
1. Largen: deep network, long sequential dependency.
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Runtime:
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Complexity Analysis

Perstep Complexity@: runtime of each step.

Runtime:
BPPSA BP

Gepps(logn)  vs.  Gpd ()

Performance benefits:

. -pl
1. Largen: deep network, long sequential dependency. ‘ In-p ace‘
2. Reducing pestep complexitySpGEMM Upsweep  Down-sweep

Constant peidevice space complexity! ‘




Methodology: Benchmark

Model: RNN
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Methodology: Environment

Hardware:

Baseline: CUDNN
O PyTorch

Implementation:.custom CUDA 10 kernels.

RTX 20801

7.6.2

1.2
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End-to-end Training Speedup

Training curve of BPPSA the baseline
when batch siz&=16, sequence length=1000:

—Baseline =—BPPSA
2.4

- Numerical differences doot effect
7 convergence.
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End-to-end Training Speedup

Training curve of BPPSA the baseline
when batch siz&=16, sequence length=1000:

—Baseline =—BPPSA

2.4
Numerical differences doot effect

convergence.
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2
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Training Loss
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Sensitivity Analysis: Model Length

100

Speedup

Backward Pass Speedup over Baselir - Sequence lengthl] reflects the

model lengthn.

BPPSAcaleawith the model
length {);

1

30 100 300 1k 3k 10k 30k
Sequence Length (T)
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Sensitivity Analysis: Model Length

106 Backward Pass Speedup over Baselir Sequence IengthT][ reflects the

Speedup

model lengthn.
BPPSAcalesawith the model
length );
until being bounded by the
LB I number of workers).
10
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Sensitivity Analysis: Model Length

Speedup

Lo j2aCkward Pass Sp 08¢ = aselir - Sequence lengthl] reflects the
model lengthn.
BPPSAcaleswith the model
length ();
until being bounded by the
. J I number of workersg).

30 100 300 1k 3k 10k 30k
Sequence Length (T)



Sensitivity Analysis: Number of Workers

” Backward Pass Speedup over Basel Fraction of GPU per samplfb’lB)

reflects the number of workers.
8
7]
i BPPSAcaleswith the number of
LB workers ).

1/256 1/128 1/64 1/32 1/16 1/8 1/4 1/2
Fraction of GPU per Sample (1/B)
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Sensitivity Analysis: Number of Workers

Speedup

16

Backward Pass Speedup over Basel

fill

1/256 1/128 1/64 1/32 1/16 1/8 14 1/2
Fraction of GPU per Sample (1/B)

Fraction of GPU per sample/B)
reflects the number of workerg.

BPPSAcaleawith the number of
workers ).
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Sensitivity Analysis: 2070 v.s. 2080Ti

#SMs(2070) < #SMs(2080Ti)
- Latency(2070) > Latency(2080

m 2070 m2080Ti

an sn as a8 S5 B [’.
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More Results in the Paper

AEndto-end benchmarks of GRU training on IRMAS.
A A more realistic version of the RNN results.

APruned VG@A.1 retraining on CIFARD.

AMicrobenchmark via FLOP measurements.
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Conclusion

BP imposes atrong sequential dependencgmong layers during the
gradient computations, limiting its scalability on parallel systems.

We propose scalinBackPropagation byParallelScanAlgorithm BPPSA

AReformulate BP asszanoperation.
A Scale by austomizedBlellochscanalgorithm.
A Leveragesparsityin the Jacobians.

Key Results©(log n)vs.O(n) steps on parallel systems.
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