intel)

SLIDE : In Defense of Smart Algorithms over Hardware

Acceleration for Large-Scale Deep Learning Systems

Beidi Chen

Collaborators: Tharun Medini*, James Farwell” , Sameh Gobriel’,
Charlie Tai 7, Anshumali Shrivastava®

*Rice University, TIntel

MLSys 2020

% RICE

Our SLIDE System (C++ from scratch) on a 44 core CPU
beats TF on V100 (1 hours vs 3.5 hours). 100+ million
parameter networks. TF on same CPU is 16 hours with all
HPC optimization (Intel MKL-DNN).

Amazon-670K Amazon-670K

—— SLIDE CPU
0.301 — TF-GPU

—— SLIDE CPU
0.304 —— TF-GPU

—— TF-CPU
0.25 0.25
> >
© 0.20 § 0.20
O O
é,:’ 0.15 é,:’ 0.15
0.10 A 0.10
0.05 A1 0.05 1
103 104 108 103 100
Time (s) Iterations

3.5x faster on CPU than TF on V100 (Log Scale in Time)

% RICE

Model Performance

The Age of Large Networks

* More Data
e Large Models
* Tons of Engineering

* Backpropagation

Traditional ML algorithms / (Aka S|mp|e Gradient Descent)

Statistical Learning

Data Size

% RICE
Fully Connected NN

Giant Matrix Multiplication for every data point in each epoch
(Forward + Backward)

f(W'x)

/

N

7

PRAK

S LR XX

SRR
-

Hidden1 Hidden 2

Output

% RICE

Challenges

Do we really need all the computations?
No!l
Good News: Only high activations are important

» Sampling few neurons in proportion of activations is enough (Adaptive Dropouts)

(Ba et al. Neurips 13, Makhzani et al. Neurips 15) A

* Relu filtered negative activations (50% sparsity by design)

e Softmax /

"

v

v

Bad News: We need to compute all to identify (or sample) the high activation
neurons.

NO SAVINGS

% RICE

The Fundamental Sampling Puzzle

Given N fixed sampling weights, {w{, w,, ..., wy }.
* Task: Sample x; with probability w;
* Cost of 1 sample O(N).
* Cost of Ksamples O(N).

Given N time-varying sampling weights (activations) {wf, w:, ..., w}}.
* Task: At time t, sample x; with probability Wit
e Cost of sampling O(N), at every time t.

« Last Few years of work in Locality Sensitive Hashing: If w/ = f(sim(6¢, x;)), for a

specific set of f and sim, then O(1) every time after and initial preprocessing cost of
O(N).

% RICE

Textbook Hashing (Dictionary)

Hashing: Function h that maps a given data point (x € R”) to an integer
key h: RP »{0,1,2, ..., N}. h(x) serves as a discrete fingerprint.

Property (Ideal Hash Functions):
e If x =y, then h(x) = h(y)
* If x # y, then h(x) # h(y)

% RICE

Probabilistic Fingerprinting (Hashing) (late 90s)

Hashing: Function (Randomized) h that maps a given data point (x € R”) to
an integer key h : R? » {0,1, 2, ..., N}. h(x) serves as a discrete fingerprint.

Locality Sensitive Property:
o If x=9 Sim(x,y) is high, then Ae)=-"h Pr(h(x) = h(y)) is high
o If x#=3-Sim(x,y) islow, then Aze)+h{ Pr(h(x) = h(y)) is low

Likely Unlikely
./ h ‘:. o0 -
' .. ann .‘ “nwn
Empty Empty

% RICE

Example 1: Signed Random Projection (SRP)

X X
H2

1
Pr(h(z) = h(y)) = 1 — = cos™*(#) monotonic in 8
7

A classical result from Goemans-Williamson (95)

% RICE

Example 2: (Densified) Winner Take All

Original Vectors:

WTA hash codes:
(ICCV 2011)

DWTA hash codes:

(UAI 2018)

X 0,0,5,0,0,7,6,0,0 (=3
y 0,0,1,0,0,0,0,0,0
Bin 1 Bin 2 Bin 3 Bin 4 Bin 5 Bin 6
® 2,1,8 53,9 6,2, 4 8,9,1 1,7,3 2,4,5
0x) 0,0,0(E) | 0,5,0 7,0,0 | 0,0,0(E) | 0,6,5 | 0,0,0(E)
O(y) 0,0,0(E) 0,1,0 0,0,0(E) | 0,0,0(E) 0,0,1 0,0,0 (E)
Hota(X) 1(E) 2 1 1(E) 2 1(E)
Hutaly) 1(E) 2 1(E) 1(E) 3 1(E)
Hbwta(X) 1+3*C° | 2 1 2+15C | 2 2+2%C
Hpwtaly) 3+3’~‘C(\ 2 2+3>~<g 3+4>~<C 3 2+2*g

Yagnik (ICCV11), Chen and Shrivastava (UAI 18)

/

10

% RICE
Probabilistic Hash Tables

Given: Prp, |h(z) = h(y)| = f(sim(x,y)), f is monotonic.

h hy | Iy Buckets |*® Givenquery, if hi(q) =11
¢ ¢ - and h,(q) = 01, then probe

/\‘00 0 0e - bucket with index 1101. It is a
® 00

¢ o 0100 - good bucket !!
o RD\%'m Empty * (Locality Sensitive) h;(q) =
- h;(x) noisy indicator of high
similarity.
. pD 11 | 11
hys hy 2 RZ = {0,1,2,3] * Doing better than random !!

11

% RICE
LSH for Search (Known)

Theory
e Super-linear O(N*P) memory
* Sub-linear query time, O(N”)
* p < 1 but generally large (close to 1) and often hard to determine

Practical Issues

* Needs lot of hash tables and distance computations for good accuracy on
near-neighbors

* Buckets can be quite heavy. Poor randomness, or unfavorable data
distributions

% RICE

New View: Data Structures for Efficient Sampling!

h. | Buckets

h,
o
® /\m 000
¢ 00

®9 0100

o RD\—“’&' 10 Empty

h,

—

11

hi,hy : R” - {0,1,2,3} 1

Is LSH really a search algorithm?
* Given the query 6, LSH samples x; from the dataset, with probability
L
Wit =1- (1 — p(x;, Ht)K)
. Wit is proportional to p(x;, Ht)K and the some similarity of x;, 6,

* LSH is considered a black box for nearest-neighbor search. It is not!!
13

% RICE

LSH as Samplers

We can pre-process the dataset D, such that

* Given any query g, we can sample x € D with probability
Constx[1 — (1 — p(q, x)¥)*] in KL hash computation and L bucket probes.

* Even K=1, L =1 is adaptive. So O(1) time adaptive.
* Adaptive: x is sampled with higher probability thany
 if and only if sim(q,x) > sim(q,y)

We can exactly compute the sampling probability.

e Const = No of elements sampled/ No of elements in Buckets
(Chen et al. NeurlPS 2019)

Sufficient for Importance Sampling Estimations. Sampling cost O(1).

% RICE

SLIDE: Sub-LInear Deep learning Engine

Step 1 — Build the hash tables by
processing the weights of the
hidden layers (initialization).

Subtlety: Neurons (vectors) in
hash tables are not the data
vectors. Reorganizing neurons.

Output -

% RICE

SLIDE: Sub-LInear Deep learning Engine

T 113 Step 2 — Hash the input to any
" PYPY 2 =214 given layer using its randomized
@ . hash function.

Yew
/\ /

i

J
&

Output -

% RICE

SLIDE: Sub-LInear Deep learning Engine

Step 3 — Query the hidden layer's
hash table(s) for the active set
using integer fingerprint.

Sample neurons in proportion to
their activations.

/|

E?‘

Yew
A

\Y7
Z\

i

¢
VA

\
Z\

\Y
%

)

AS

V@Y
N\ _/\

Hidden 1 Hidden 2

Output .

% RICE

SLIDE: Sub-LInear Deep learning Engine

)-)
\17

¢

\Y7
Z\

\
Z\

\/

V@Y
N\ _/\

/

g
Y

)
)

\

Output

Step 4 — Perform forward and
back propagation only on the
nodes in the active set.

Computation is in the same order
of active neurons.

18

% RICE

SLIDE: Sub-LInear Deep learning Engine

Output

Step 5 — Update hash tables by
rehashing the updated node
weights.

Computation is in the same order
of active neurons.

19

We can go very sparse if Adaptive

1.00

0.95

o
©
o

Accuracy
o
[00]
ul

Accuracy
o
(9)]
(9]

o
o
o

0.55¢

055,

MNIST8M

Accuracy

Standard NN

- Randomized Hashing
- Vanilla Dropout

.0 0.2 0.4 0.6 0.8

% Active Nodes
Rectangles

% Active Nodes

0 0.2 0.4 0.6 0.8

1.00

0.95}

NORB

0.4 0.6
% Active Nodes
Convex

0.4
% Active Nodes

* Reduce both training
and inference cost by
95%!

 Significantly more for
larger networks.

(The wider the better)

* 2 Hidden Layers
1000 Nodes Per Layer

Sparsity + Randomness =2 Asynchronous Updates

1.00

Accuracy
o o
[00] O
0} o

o
o)
o

0.75¢

0.70

0.80

0.75}

0.70¢
> 0.65]
O

©

5 0.60

|9

(]

< 0.55
0.50

0.45}

0.40

MNIST8M
- STD-56
— | SH-56
10 15 20 25 30
Enochs
Rectangles

10

20 30
Fnochs

40 50

Accuracy
o
~
ul

0.60

0.80

0.75¢
0.70¢}
{ >0.65¢
O
©
| 50.60
|9
O
| < 0.55¢
0.50¢
0.45}

0.40

NORB

5 10 15 20 25 30
anvex‘
5 10 15 20 25 30

Fnochs

* 3 Hidden Layers
* 1000 Nodes Per Layér

Less Computations + Asynchronous Parallelism

* Each update is computationally very small (100x+ reduction in
computation and energy)

* Updates are near-independent, very low chance of conflict. Hence,
parallel SGD!

% RICE

SLIDE: Sub-LInear Deep learning Engine

Network

Output

Hash Table L

hi

Buckets

Layer

Hash Table 1
hi| - | hy] Buckets
00 |~ | o1 @
00 | |10 Empty
11 [~ |11

00 |~ | oo
o |~ |o|®@
o0 | |10 Empty

"

N
o &
?
/

Neuron

BatchSize
|

Active Inputs

Activation for each Inputs

01 02 05 ...

Weights

-03 08 -05

L
Y

\ Previous Layer Size J

J

23

% RICE

Parallelism with OpenMP

Node

Batchsize
I \

f \ Parallel across training samples in a batch

Active Inputs

falal - (Extreme sparsity and randomness in gradient updates)

Activation for each Inputs

Thanks to the theory of HOGWILD!
(Recht et al. Neurips 11)

24

% RICE
Flexible choices of Hash Functions

SLIDE supports four different LSH hash functions
e Simhash (cosine similarity)
* Winner-take-all Hashing (order)
* Densified Winner-take-all Hashing (for sparse data)”
* Minhash (jaccard similarity)

Easily add more!

% RICE

Desigh Choices for Speed

MIPS Strategies

* Vanilla sub-sampling:
- choose sub-samples uniformly o
, £
* Top K sub-sampling: 107
- rank samples and choose topk
10—3_: L

. '-.._-i--&'.".“‘".'- TR
LR s Il

. LT

_':' _-.".- < e

. o0 Jwnlse o
Mot oo qh Vs B0 g
MO B e

Vanilla Sampling
TopK Sampling
Hard Thresholding

e e il Toag e She .
. aiag ettty S S T A
B e P et

-
"
P

* Hard Thresholding sub-sampling: 2000

- choose sub-samples that occur > threshold times

3000 4000 5000 6000
Samples

7000

26

% RICE
Micro-Architecture Optimization

Cache Optimization
Transparent Hugepages
Vector Processing

Software Pipelining and Prefetching

% RICE

Looks Good on Paper. Does it change anything?

Baseline

State-of-the-art optimized Implementations
* TF on Intel Xeon E5-2699A v4 @ 2.40GHz CPU (FMA,AVX, AVX2, SSE4.2)

* TF on NVIDIA Tesla V100 (32GB)

VS.

SLIDE on Intel Xeon E5-2699A v4 @ 2.40GHz CPU (FMA,AVX, AVX2,

SSE4.2)
* TF on NVIDIA Tesla V100 (32GB)

% RICE

Datasets
Delicious-200K | Amazon-670K
Feature Dim 782,585 135,909
Feature Sparsity 0.038 % 0.055 %
Label Dim 205,443 670,091
Training Size 196,606 490,449
Testing Size 100,095 153,025

Network Architectures (Fully Connected)
@ Delicious-200K 782,585 = 128 =- 205,443 (126 million parameters)
@ Amazon-670K 135,909 = 128 =- 670,091 (103 million parameters)

% RICE

Performance

Delicious-200K

0.45 -

o
N
o

Accuracy
o
w
ul

0.30
—— SLIDE CPU
—— TF-GPU
0.25 —— TF-CPU
EL 163
Time (s)

0.30 1

o
N
Ul

Accuracy
o
N
o

o
=
Ul

Amazon-670K

—— SLIDE CPU
—— TF-GPU
—— TF-CPU

102 10* 10°
Time (s)

30

% RICE

Performance compared to sampled softmax

Delicious-200K Amazon-670K

0.45 A —— SLIDE CPU

0.40 0.304 —— TF-GPU SSM

0.35 1 0.25
> 0.30 - >
§ § 0.20
3 0.25 1 2
O 0 0.15
< 0.20 <

0.15- 0.10

0.10 —— SLIDE CPU 0.05 A

L T T T LA AL L LA | T T 0.00""I T T L L L L | T T L L L L |
102 103 102 103 104

Time (s) Time (s)

31

% RICE

Performance @ Different Batchsizes

Amazon-670K, Batch_Size=64

0.30 1

© o o
= N N
0] o (6]

Accuracy

0.10 1

0.05 1

—— SLIDE CPU
—— TF-GPU
—— TF-GPU SSM

102 103 10%
Time (s)

0.30 1

0.25 1

Accuracy

0.10 -

0.05 1

0.00

Amazon-670K, Batch_Size=128

0.20 1

0.151

—— SLIDE CPU
—— TF-GPU
—— TF-GPU SSM

102 103 104
Time (s)

Accuracy

Amazon-670K, Batch_Size=256

0.351

0.30

0.25

o o
= N
(6] o

0.10 1

—— SLIDE CPU
—— TF-GPU
—— TF-GPU SSM

102 103 104
Time (s)

32

% RICE

Asynchronous Parallelism gets best scalability

Table: Core Utilization

8 16 32
Tensorflow-CPU | 45% | 35% | 32%
SLIDE 82% | 81% | 85%

Amazon- 670K
—— TF-CPU

—— SLIDE o
105 - _:_:T 6x10 —— SLIDE
— TF-GPU
4x10°
o 3x10°
2x10°

ence Time

A RICE

Inefficiency Diagnosis

Tensorflow-CPU Inefficiencies Ratio in CPU Usage SLIDE Inefficiencies Ratio in CPU Usage
0.6 0.6
0.5 0.5
0.4 0.4
0.3 0.3
0.2 0.2
0.1 . I 0.1 I I I
0 O [l , N O -
8 Threads 16 Threads 32 Threads 8 Threads 16 Threads 32 Threads
B Front-End Bound ® Memory Bound ® Retiring Bound Core Bound B Front-End Bound ® Memory Bound ™ Retiring Bound = Core Bound

34

% RICE

Impact of HugePages
Metric Without With
Hugepages Hugepages
dTLB load miss rate 5.12% 0.25%
iTLB load miss rate 56.12% 20.96%
PTW dTLB-miss 7.74% 0.72%
PTW iTLB-miss 0.02% 0.015%
RAM read dTLB-miss 3,062,039/s 749,485/ s
RAM read iTLB-miss 12,060/ s 11,580/s
PageFault 32,548/ s 26,527/

35

% RICE

Conclusion: From Matrix Multiplication to (few) Hash Lookups

. Standard - SLIDE

- Operations
« Compute Random Hashes of Data
» Hash lookups, Sample and Update.

- Operation
* Matrix Multiply

- Pros (Decades of work in Databases)
- Hardware Support « Very Few Multiplication (100x+ reduction)
* Pros
* Cons - Energy (loT), Latency
« Expensive O(N”3) Asynchronous Parallel Gradient updates
- Can only scale with hardware. * Simple Hash Tables
- Energy - Larger Network = More Savings
» Cons

« Random Memory Access (but parallel SGD)

% RICE
Future Work

e Distributed SLIDE

 SLIDE on more complex architectures like CNN/RNN

References

[1] Beidi Chen, Tharun Medini, Anshumali Shrivastava “SLIDE : In Defense of Smart Algorithms over
Hardware Acceleration for Large-Scale Deep Learning Systems”. Proceedings of the 3rd MLSys
Conference (2020).

[2] Ryan Spring, Anshumali Shrivastava. "Scalable and sustainable deep learning via randomized
hashing". Proceedings of the 234 ACM SIGKDD (2017).

[3] Makhzani, A. and Frey, B. J. “Winner-take-all autoencoders”. In Advances in neural information
processing systems (2015).

[4] Beid Chen, Anshumali Shrivastava. “Densified Winner Take All (WTA) Hashing for Sparse
Datasets”. In Uncertainty in artificial intelligence (2018).

[5] Beidi Chen, Yingchen Xu, and Anshumali Shrivastava. "LGD: Fast and Accurate Stochastic
Gradient Estimation”. In Neurips, Dec. 2019. Vancouver.

[6] Benjamin Recht, Christopher Re, Stephen Wright, and Feng Niu. “Hogwild: A lock-free approach
to parallelizing stochastic gradient descent”. In Advances in neural information processing systems
(2011).

38

https://arxiv.org/abs/1903.03129

% RICE

Thanks!!!
Welcome to stop by Poster #7

PAPER LINK

[=]:5. i [m]

[=]

CODE LINK

