
SLIDE : In Defense of Smart Algorithms over Hardware
Acceleration for Large-Scale Deep Learning Systems

Beidi Chen

Collaborators: Tharun Medini*, James Farwell† , Sameh Gobriel†,
Charlie Tai †, Anshumali Shrivastava*

* Rice University, †Intel

MLSys 2020

Our SLIDE System (C++ from scratch) on a 44 core CPU
beats TF on V100 (1 hours vs 3.5 hours). 100+ million
parameter networks. TF on same CPU is 16 hours with all
HPC optimization (Intel MKL-DNN).

3.5x faster on CPU than TF on V100 (Log Scale in Time)
2

The Age of Large Networks

• More Data
• Large Models
• Tons of Engineering
• Backpropagation
(Aka Simple Gradient Descent)

3

Giant Matrix Multiplication for every data point in each epoch
(Forward + Backward)

Fully Connected NN

1
2
3
4

1
2
3

1
2
3

Input
Hidden 1 Hidden 2

1

5

…
…

…

9

Output

…

… …

𝑓(𝑊$𝑥)

4

Challenges
Do we really need all the computations?
No!!
Good News: Only high activations are important

• Sampling few neurons in proportion of activations is enough (Adaptive Dropouts)

(Ba et al. Neurips 13 , Makhzani et al. Neurips 15)

• Relu filtered negative activations (50% sparsity by design)

• Softmax

Bad News: We need to compute all to identify (or sample) the high activation
neurons.
NO SAVINGS 5

The Fundamental Sampling Puzzle

Given N fixed sampling weights, 𝑤(,𝑤*, … ,𝑤, .
• Task: Sample 𝑥- with probability 𝑤-

• Cost of 1 sample 𝑂(𝑁).
• Cost of K samples 𝑂(𝑁).

Given N time-varying sampling weights (activations) 𝑤(0, 𝑤*0, … , 𝑤,0 .
• Task: At time t, sample 𝑥- with probability 𝑤-0

• Cost of sampling O(N), at every time t.
• Last Few years of work in Locality Sensitive Hashing: If 𝑤-0 = 𝑓(𝑠𝑖𝑚(𝜃0, 𝑥-)), for a

specific set of f and sim, then 𝑂(1) every time after and initial preprocessing cost of
𝑂(𝑁).

6

Textbook Hashing (Dictionary)
Hashing: Function h that maps a given data point (𝑥 ∈ 𝑅9) to an integer
key ℎ ∶ 𝑅9 ↦ 0, 1, 2, … , 𝑁 . ℎ(𝑥) serves as a discrete fingerprint.

Property (Ideal Hash Functions):
• If x = 𝑦, then ℎ 𝑥 = ℎ(𝑦)
• If x ≠ 𝑦, then ℎ 𝑥 ≠ ℎ(𝑦)

7

Probabilistic Fingerprinting (Hashing) (late 90s)
Hashing: Function (Randomized) h that maps a given data point (𝑥 ∈ 𝑅9) to
an integer key ℎ ∶ 𝑅9 ↦ 0, 1, 2, … , 𝑁 . ℎ(𝑥) serves as a discrete fingerprint.

Locality Sensitive Property:
• If x = 𝑦 S𝑖𝑚(𝑥, 𝑦) is high, then ℎ 𝑥 = ℎ 𝑦 Pr(ℎ 𝑥 = ℎ 𝑦) is high
• If x ≠ 𝑦 S𝑖𝑚(𝑥, 𝑦) is low, then ℎ 𝑥 ≠ ℎ(𝑦) Pr(ℎ 𝑥 = ℎ 𝑦) is low

Likely Unlikely

8

Example 1: Signed Random Projection (SRP)

monotonic in 𝜃

+

- +

Pr(h(x) = h(y)) = 1� 1

⇡

cos

�1
(✓)

X

Y

X

Y

H1

H2

A classical result from Goemans-Williamson (95)
9

Example 2: (Densified) Winner Take All

Original Vectors:

WTA hash codes:
(ICCV 2011)

DWTA hash codes:
(UAI 2018)

K=3

Yagnik (ICCV11), Chen and Shrivastava (UAI 18) 10

Probabilistic Hash Tables

Given: 𝑓 is monotonic.
Prh

⇥
h(x) = h(y)

⇤
= f(sim(x, y)),

<latexit sha1_base64="T1X8MzxWNtEUHQEsV/R6e5uIKKQ=">AAACEnicbZDLSsNAFIYnXmu9VV26GSxCAqUkVdCFQsGNywr2AmkIk+mkGTq5MDORhtBncOOruHGhiFtX7nwbp20W2vrDwDf/OYeZ83sJo0Ka5re2srq2vrFZ2ipv7+zu7VcODjsiTjkmbRyzmPc8JAijEWlLKhnpJZyg0GOk641upvXuA+GCxtG9zBLihGgYUZ9iJJXlVowWd4O+R4d2oI8NeA0DPTOmd0exrwsa6uNaZhg16FaqZt2cCS6DVUAVFGq5la/+IMZpSCKJGRLCtsxEOjnikmJGJuV+KkiC8AgNia0wQiERTj5baQJPlTOAfszViSScub8nchQKkYWe6gyRDMRibWr+V7NT6V86OY2SVJIIzx/yUwZlDKf5wAHlBEuWKUCYU/VXiAPEEZYqxbIKwVpceRk6jbp1Vm/cnVebV0UcJXAMToAOLHABmuAWtEAbYPAInsEreNOetBftXfuYt65oxcwR+CPt8wdf55q3</latexit>

• Given query, if ℎ(𝑞 = 11
and ℎ* 𝑞 = 01, then probe
bucket with index 1101. It is a
good bucket !!

• (Locality Sensitive) ℎ- 𝑞 =
ℎ-(𝑥) noisy indicator of high
similarity.

• Doing better than random !!

11

LSH for Search (Known)

Theory
• Super-linear 𝑂(𝑁(FG) memory
• Sub-linear query time, O(𝑁G)
• 𝜌 < 1 but generally large (close to 1) and often hard to determine

Practical Issues
• Needs lot of hash tables and distance computations for good accuracy on

near-neighbors
• Buckets can be quite heavy. Poor randomness, or unfavorable data

distributions

12

New View: Data Structures for Efficient Sampling!

Is LSH really a search algorithm?
• Given the query 𝜃0, LSH samples 𝑥- from the dataset, with probability
𝑤-0 = 1 − 1 − p xL, 𝜃0 M N

• 𝑤-0 is proportional to p xL, 𝜃0 M and the some similarity of xL, 𝜃0
• LSH is considered a black box for nearest-neighbor search. It is not!!

13

LSH as Samplers
We can pre-process the dataset D, such that
• Given any query q, we can sample 𝑥 ∈ 𝐷 with probability
𝐶𝑜𝑛𝑠𝑡× 1 − 1 − 𝑝 𝑞, 𝑥 V W in KL hash computation and L bucket probes.
• Even K = 1, L =1 is adaptive. So O(1) time adaptive.
• Adaptive: x is sampled with higher probability than y

• if and only if sim(q,x) > sim(q,y)

We can exactly compute the sampling probability.
• Const = No of elements sampled/ No of elements in Buckets

(Chen et al. NeurIPS 2019)

Sufficient for Importance Sampling Estimations. Sampling cost O(1).

14

SLIDE: Sub-LInear Deep learning Engine

Step 1 – Build the hash tables by
processing the weights of the
hidden layers (initialization).

Subtlety: Neurons (vectors) in
hash tables are not the data
vectors. Reorganizing neurons.

1
2
3
4
5

1
2
3
4

1
2
3
4

1

5

Input
Hidden 1 Hidden 2

…
…

…
9

Output

H2

1 |3

2 | 1,4

3 | 2

1 1

H1
1 |1

2 | 2,4

3 | 3

15

SLIDE: Sub-LInear Deep learning Engine

Step 2 – Hash the input to any
given layer using its randomized
hash function.

1
2
3
4
5

1
2
3
4

1
2
3
4

1

5

Input
Hidden 1 Hidden 2

…
…

…
9

Output

H1
1 |1

2 | 2,4

3 | 3

H2

1 |3

2 | 1,4

3 | 22

16

SLIDE: Sub-LInear Deep learning Engine

Step 3 – Query the hidden layer's
hash table(s) for the active set
using integer fingerprint.
Sample neurons in proportion to
their activations.1

2
3
4
5

1
2
3
4

1
2
3
4

1

5

Input
Hidden 1 Hidden 2

…
…

…
9

Output

H1
1 |1

2 | 2,4

3 | 3

H2

1 |3

2 | 1,4

3 | 2

3

17

SLIDE: Sub-LInear Deep learning Engine

Step 4 – Perform forward and
back propagation only on the
nodes in the active set.
Computation is in the same order
of active neurons.1

2
3
4
5

1
2
3
4

1
2
3
4

1

5

Input
Hidden 1 Hidden 2

…
…

…
9

Output

H1
1 |1

2 | 2,4

3 | 3

H2

1 |3

2 | 1,4

3 | 2

4

18

SLIDE: Sub-LInear Deep learning Engine

Step 5 – Update hash tables by
rehashing the updated node
weights.
Computation is in the same order
of active neurons.1

2
3
4
5

1
2
3
4

1
2
3
4

1

5

Input
Hidden 1 Hidden 2

…
…

…
9

Output

H1
1 |1

2 | 2,4

3 | 3

H2

1 |3

2 | 1,4

3 | 2

55

19

We can go very sparse if Adaptive

• 2 Hidden Layers
• 1000 Nodes Per Layer

• Reduce both training
and inference cost by
95%!

• Significantly more for
larger networks.

(The wider the better)

20

Sparsity + Randomness à Asynchronous Updates

• 3 Hidden Layers
• 1000 Nodes Per Layer21

Less Computations + Asynchronous Parallelism

• Each update is computationally very small (100x+ reduction in
computation and energy)

• Updates are near-independent, very low chance of conflict. Hence,
parallel SGD!

22

SLIDE: Sub-LInear Deep learning Engine

1
2
3
4
5

1
2
3
4

1
2
3
4

Input
Hidden	1 Hidden	2

1

5

…
…

…

9

Output

Layer

Active Inputs

1 0 1 ……

Active Inputs

0.1 0.2 0.5 ……

Activation for each Inputs

0.3 0.8 0.7 ……

Accumulated Gradients

-0.3 …
Weights

0.8 -0.5

BatchSize

Neuron
Network

Hash	Table	1 Hash	Table	L

00

00

00
…

11

…

…

…

…

…

00

01

10
…

11

ℎ"" ℎ#"… Buckets
…

…

Empty
…

…

…
1 9
2

00

00

00
…

11

…

…

…

…

…

00

01

10
…

11

ℎ"$ ℎ#$… Buckets
…

…

Empty
…

…

1
9

5

1

2

…

Previous Layer Size

23

(Extreme sparsity and randomness in gradient updates)

Thanks to the theory of HOGWILD!
(Recht et al. Neurips 11)

Parallelism with OpenMP

Parallel across training samples in a batch
1 0 1 ……

Active Inputs

0.1 0.2 0.5 ……

Activation for each Inputs

0.3 0.8 0.7 ……

Accumulated Gradients

Weights

Batchsize
Node

-0.3 0.8 -0.5 ……

24

Flexible choices of Hash Functions

SLIDE supports four different LSH hash functions
• Simhash (cosine similarity)
• Winner-take-all Hashing (order)
• Densified Winner-take-all Hashing (for sparse data)∗
• Minhash (jaccard similarity)

Easily add more!

25

• Vanilla sub-sampling:
- choose sub-samples uniformly

• Top K sub-sampling:
- rank samples and choose topk

• Hard Thresholding sub-sampling:
- choose sub-samples that occur > threshold times

Design Choices for Speed

26

Micro-Architecture Optimization

Cache Optimization

Transparent Hugepages

Vector Processing

Software Pipelining and Prefetching

27

Looks Good on Paper. Does it change anything?

Baseline
State-of-the-art optimized Implementations
• TF on Intel Xeon E5-2699A v4 @ 2.40GHz CPU (FMA,AVX, AVX2, SSE4.2)
• TF on NVIDIA Tesla V100 (32GB)

VS.
SLIDE on Intel Xeon E5-2699A v4 @ 2.40GHz CPU (FMA,AVX, AVX2,
SSE4.2)
• TF on NVIDIA Tesla V100 (32GB)

28

Datasets

29

Performance

30

Performance compared to sampled softmax

31

Performance @ Different Batchsizes

32

Asynchronous Parallelism gets best scalability

33

Inefficiency Diagnosis

34

0

0.1

0.2

0.3

0.4

0.5

0.6

8		Threads 16	Threads 32	Threads

Tensorflow-CPU Inefficiencies Ratio in CPU Usage

Front-End	Bound Memory	Bound Retiring	Bound Core	Bound

0

0.1

0.2

0.3

0.4

0.5

0.6

8		Threads 16	Threads 32	Threads

SLIDE	Inefficiencies Ratio in CPU Usage

Front-End	Bound Memory	Bound Retiring	Bound Core	Bound

Impact of HugePages

35

Conclusion: From Matrix Multiplication to (few) Hash Lookups

• Standard
• Operation
• Matrix Multiply

• Pros
• Hardware Support

• Cons
• Expensive O(N^3)
• Can only scale with hardware.
• Energy

• SLIDE
• Operations
• Compute Random Hashes of Data
• Hash lookups, Sample and Update.

(Decades of work in Databases)
• Very Few Multiplication (100x+ reduction)

• Pros
• Energy (IoT), Latency
• Asynchronous Parallel Gradient updates
• Simple Hash Tables
• Larger Network à More Savings

• Cons
• Random Memory Access (but parallel SGD)

36

Future Work

• Distributed SLIDE

• SLIDE on more complex architectures like CNN/RNN

37

References

[1] Beidi Chen, Tharun Medini, Anshumali Shrivastava “SLIDE : In Defense of Smart Algorithms over
Hardware Acceleration for Large-Scale Deep Learning Systems”. Proceedings of the 3rd MLSys
Conference (2020).
[2] Ryan Spring, Anshumali Shrivastava. "Scalable and sustainable deep learning via randomized
hashing". Proceedings of the 23rd ACM SIGKDD (2017).
[3] Makhzani, A. and Frey, B. J. “Winner-take-all autoencoders”. In Advances in neural information
processing systems (2015).
[4] Beid Chen, Anshumali Shrivastava. “Densified Winner Take All (WTA) Hashing for Sparse
Datasets”. In Uncertainty in artificial intelligence (2018).
[5] Beidi Chen, Yingchen Xu, and Anshumali Shrivastava. "LGD: Fast and Accurate Stochastic
Gradient Estimation”. In Neurips, Dec. 2019. Vancouver.
[6] Benjamin Recht, Christopher Re, Stephen Wright, and Feng Niu. “Hogwild: A lock-free approach
to parallelizing stochastic gradient descent”. In Advances in neural information processing systems
(2011).

38

https://arxiv.org/abs/1903.03129

Thanks!!!
Welcome to stop by Poster #7

39

