
What is the State of Neural 
Network Pruning?

Davis Blalock*
Jose Javier Gonzalez*
Jonathan Frankle
John V. Guttag

*equal  contr ibut ion



Blalock	&	Gonzalez 2

Overview

Meta-analysis of neural network pruning 
We aggregated results across 81 pruning papers and pruned
hundreds of networks in controlled conditions

• Some surprising findings…

ShrinkBench 
Open source library to facilitate development and standardized 
evaluation of neural network pruning methods
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Part	0:	Background
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• Neural networks are often accurate but large
• Pruning: Systematically removing parameters from a network
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Neural Network Pruning
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Typical Pruning Pipeline

• Scoring importance of parameters
• Schedule of pruning, training / 

finetuning

• Structure of induced sparsity
• Finetuning details — optimizer, 

duration, hyperparameters
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Data 

Model 

Pruning 
Algorithm Finetuning Evaluation

Many design choices:
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• Goal: Increase efficiency of 
network as much as possible 
with minimal drop in quality  

• Metrics
• Quality = Accuracy
• Efficiency = FLOPs, 

compression, latency…

• Must use comparable tradeoffs
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Evaluating Neural Network Pruning

Accuracy of Pruned Network
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Part	1:	Meta-Analysis
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•We aggregated results across 
81 pruning papers

•Mostly published in top venues

•Corpus closed under 
experimental comparison
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Overview of Meta-Analysis

Venue #	of	Papers
arXiv	only 22
NeurIPS 16
ICLR 11
CVPR 9
ICML 4
ECCV 4
BMVC 3
IEEE	Access 2
Other 10
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•Pruning works
•Almost any heuristic improves efficiency with 
little performance drop
•Many methods better than random pruning

•Don’t prune all layers uniformly

•Sparse models better for fixed # of parameters
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Robust Findings
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Better Pruning vs Better Architecture
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Ideal Results Over Time

2015
2016
2017
2018
2019

(Dataset,	Architecture,	X	metric,	Y	metric,	Hyperparameters)	→	Curve
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Compression	Ratio
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Ideal Results Over Time

2015
2016
2017
2018
2019

VGG-16	on	ImageNet AlexNet	on	ImageNet ResNet-50	on	ImageNet
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Compression	Ratio Compression	Ratio Compression	Ratio

Theoretical	Speedup Theoretical	Speedup Theoretical	Speedup
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Actual Results Over Time

2015
2016
2017
2018
2019

VGG-16	on	ImageNet AlexNet	on	ImageNet ResNet-50	on	ImageNet
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Compression	Ratio Compression	Ratio Compression	Ratio

Theoretical	Speedup Theoretical	Speedup Theoretical	Speedup
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• Among 81 papers:
• 49 datasets
• 132 architectures
• 195 (dataset, architecture) pairs
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Quantifying the Problem

Dataset Architecture #	of	Papers	
Using	Pair

ImageNet VGG-16 22
CIFAR-10 ResNet-56 14
ImageNet ResNet-50 14
ImageNet CaffeNet 11
ImageNet AlexNet 9
CIFAR-10 CIFAR-VGG 8
ImageNet ResNet-34 6
ImageNet ResNet-18 6
CIFAR-10 ResNet-110 5
CIFAR-10 PreResNet-164 4
CIFAR-10 ResNet-32 4

All	(dataset,	architecture)	pairs		
used	in	at	least	4	papers

• Vicious cycle: extreme burden to 
compare to existing methods
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• Presence of comparisons:
•Most papers compare to at most 1 other method 
• 40% papers have never been compared to
• Pre-2010s methods almost completely ignored

•Reinventing the wheel:
• Magnitude-based pruning:  Janowsky (1989)
• Gradient times magnitude:  Mozer & Smolensky (1989)
• “Reviving” pruned weights:  Tresp et al. (1997)
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Dearth of Reported Comparisons
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•Alice’s network has 10 million parameters. She 
prunes 8 million of them. What compression 
ratio might she report in her paper?
A.  80%
B.  20%
C.  5x
D.  No reported compression ratio
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Pop quiz!
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•According to the literature, how many FLOPs 
does it take to run inference using AlexNet on 
ImageNet?
A.  371 million
B.  500 million
C.  724 million
D.  1.5 billion
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Pop quiz!
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Part	2:	ShrinkBench
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Why ShrinkBench?

•Want to hold everything but pruning algorithm constant
• Improved rigor, development time
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Data 

Model 

Pruning 
Algorithm Finetuning Evaluation

Potential confounding factors
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Masking API

Model (+ Data) Pruning Masks 
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Accuracy Curve

• Lets algorithm return arbitrary masks for weight tensors
• Standardizes all other aspects of training and evaluation
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Crucial to Vary Amount of Pruning & Architecture
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CIFAR-VGG ResNet-56
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Compression and Speedup are not Interchangeable
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ResNet-18 on ImageNet
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Using Identical Initial Weights is essential
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ResNet-56 on CIFAR-10
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• Pruning works
• But not as well as improving architecture

•But we have no idea what methods work the best
• Field suffers from extreme fragmentation in experimental setups

•We introduce a library/benchmark to address this
• Faster progress in the future, interesting findings already
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Conclusion

https://github.com/jjgo/shrinkbench

https://github.com/jjgo/shrinkbench
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Questions?
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