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Overview

Meta-analysis of neural network pruning
We aggregated results across 81 pruning papers and pruned
hundreds of networks in controlled conditions

- Some surprising findings...

ShrinkBench
Open source library to facilitate development and standardized
evaluation of neural network pruning methods

Blalock & Gonzalez 2



Part O: Background
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Neural Network Pruning

* Neural networks are often accurate but large
* Pruning: Systematically removing parameters from a network
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Typical Pruning Pipeline
A
pd Algorithm

Many design choices:

« Scoring importance of parameters  * Structure of induced sparsity

« Schedule of pruning, training /  Finetuning details — optimizer,
finetuning duration, hyperparameters
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Evaluating Neural Network Pruning

* Goal: Increase efficiency of Accuracy of Pruned Network
network as much as possible 0.70
with minimal drop in quality
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* Metrics
* Quality = Accuracy

* Efficiency = FLOPs,
compression, latency...
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Part 1: Meta-Analysis
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Overview of Meta-Analysis

* We aggregated results across
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81 prunlng paperS NeurlPS 16
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Robust Findings

* Pruning works

* Almost any heuristic improves efficiency with
little performance drop

* Many methods better than random pruning
* Don’t prune all layers uniformly

- Sparse models better for fixed # of parameters
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Better Pruning vs Better Architecture
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|ldeal Results Over Time

ResNet-50 on ImageNet
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|ldeal Results Over Time

VGG-16 on ImageNet AlexNet on ImageNet ResNet-50 on ImageNet
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Actual Results Over Time

- VGG-16 on ImageNet AlexNet on ImageNet ResNet-50 on ImageNet
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Quantifying the Problem

All (dataset, architecture) pairs
used in at least 4 papers

° Among 31 papers. Architecture | # of Papers
* 49 datasets

llcing Pair

| ImageNet  VGG-16
* 132 architectures AFRED | RemE:5e :
_ _ ImageNet ResNet-50 14
* 195 (dataset, architecture) pairs imageNet  CaffeNet 11
ImageNet AlexNet 9
o CIFAR-10  CIFAR-VGG 8
* Vicious cycle: extreme burden to imageNet  ResNet-34 6
s ImageNet ResNet-18 6
compare to existing methods I E——— .
CIFAR-10 PreResNet-164 4
CIFAR-10 ResNet-32 4
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Dearth of Reported Comparisons

* Presence of comparisons:
* Most papers compare to at most 1 other method
* 40% papers have never been compared to
* Pre-2010s methods almost completely ignored

* Reinventing the wheel:
* Magnitude-based pruning: Janowsky (1989)
* Gradient times magnitude: Mozer & Smolensky (1989)
* “Reviving” pruned weights: Tresp et al. (1997)
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* Alice’s network has 10 million parameters. She
prunes 8 million of them. What compression
ratio might she report in her paper?

A. 80%
B. 20%
C. 5x

D. No reported compression ratio
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» According to the literature, how many FLOPs

does it take to run inference using AlexNet on
ImageNet?

A. 371 million
B. 500 million
C. 724 million
D. 1.5 billion
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Part 2: ShrinkBench
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Why ShrinkBench?

* Want to hold everything but pruning algorithm constant
* Improved rigor, development time

» Pruning :
Potential confounding factors
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Masking AP

* Lets algorithm return arbitrary masks for weight tensors
» Standardizes all other aspects of training and evaluation

Model (+ Data)

Pruning Masks
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Crucial to Vary Amount of Pruning & Architecture

CIFAR-VGG ResNet 56
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Compression and Speedup are not Interchangeable

ResNet-18 on ImageNet
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Using Identical Initial Veights is essential

ResNet-56 on CIFAR-10
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Conclusion

* Pruning works
* But not as well as improving architecture

* But we have no idea what methods work the best
* Field suffers from extreme fragmentation in experimental setups

* We introduce a library/benchmark to address this
* Faster progress in the future, interesting findings already

https://github.com/jjgo/shrinkbench
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https://github.com/jjgo/shrinkbench

Questions?
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