
Xiaofan Zhang\(^1\), Haoming Lu\(^1\), Cong Hao\(^1\), Jiachen Li\(^1\), Bowen Cheng\(^1\), Yuhong Li\(^1\), Kyle Rupnow\(^2\), Jinjun Xiong\(^3,1\), Thomas Huang\(^1\), Honghui Shi\(^3,1\), Wen-mei Hwu\(^1\), Deming Chen\(^{1,2}\)

\(^1\) C\(^3\)SR, UIUC \(^2\) Inspirit IoT, Inc \(^3\) IBM Research
Outline:

1) Background & Challenges
 Edge AI is necessary but challenging

2) Motivations
 Two major issues prevent better AI quality on embedded systems

3) The Proposed SkyNet Solution
 A bottom-up approach for building hardware-efficient DNNs

4) Demonstrations on Object Detection and Tracking Tasks
 Double champions in an international system design competition
 Faster and better results than trackers with ResNet-50 backbone

5) Conclusions
Cloud solutions for AI deployment

Major requirements:
• High throughput performance
• Short tail latency

Recommendations
- Video analysis
- Language Translation
- Voice-activated assistant
- Recommendations
- Video analysis
Why still need Edge solutions?

Demanding AI applications cause great challenges for Edge solutions.

We summarize three major challenges

Communication Privacy Latency
Edge AI Challenge #1 Huge compute demands

Compute Demands During Training

PetaFLOP/s-days (exponential)

1e+4
1e+2
1e0
1e-2
1e-4

2012 2014 2016 2018

https://openai.com/blog/ai-and-compute/
Edge AI Challenge #1 Huge compute demands

PetaFLOP/s-days
(exponential)

1e+4

1e+2

1e0

1e-2

1e-4

2012 2014 2016 2018

Compute Demands During Training

300,000X

Canziani, arXiv 2017

Compute Demands During Inference

https://openai.com/blog/ai-and-compute/
Edge AI Challenge #2 Massive memory footprint

[Bianco, IEEE Access 2018]
Edge AI Challenge #2 Massive memory footprint

➢ HD inputs for real-life applications
 1) Larger memory space required for input feature maps
 2) Longer inference latency

➢ Harder for edge-devices
 1) Small on-chip memory
 2) Limited external memory access bandwidth
Edge AI Challenge #3 Real-time requirement

➢ Video/audio streaming I/O

1) Need to deliver high throughput
 • 24FPS, 30FPS ...
Edge AI Challenge #3 Real-time requirement

- Video/audio streaming I/O

1) Need to deliver high throughput
 - 24FPS, 30FPS ...

2) Need to work for real-time
 - E.g., millisecond-scale response for self-driving cars, UAVs
 - Can’t wait for assembling frames into a batch
Outline:

1) Background & Challenges
 Edge AI is necessary but challenging

2) Motivations
 Two major issues prevent better AI quality on embedded systems

3) The Proposed SkyNet Solution
 A bottom-up approach for building hardware-efficient DNNs

4) Demonstrations on Object Detection and Tracking Tasks
 Double champions in an international system design competition
 Faster and better results than trackers with ResNet-50 backbone

5) Conclusions
A Common flow to design DNNs for embedded systems

Various key metrics: Accuracy; Latency; Throughput; Energy/Power; Hardware cost, etc.

- Trained DNNs
 - More focus on accuracy
 - Excessively complicated for IoT
 Step 1

- SW-related Optimization
 - Quantization
 - Pruning
 - Layer fusion
 - Conv variation
 Step 2

- HW-related Optimization
 - Parallel factors adjustment
 - Resource allocation
 - I/O optimizations
 Step 3

- Implementation on embedded devices
 Step 4

It is a top-down flow: form reference DNNs to optimized DNNs
Object detection design for embedded GPUs

- Target NVIDIA TX2 GPU

 ~665 GFLOPS @1300MHz

① Input resizing ② Pruning ③ Quantization ④ TensorRT ⑤ Multithreading

<table>
<thead>
<tr>
<th>GPU-Track</th>
<th>Reference</th>
<th>Software Optimizations</th>
<th>Hardware Optimizations</th>
</tr>
</thead>
<tbody>
<tr>
<td>’19 2nd Thinker</td>
<td>ShuffleNet + RetinaNet</td>
<td>①②③</td>
<td>⑤</td>
</tr>
<tr>
<td>’19 3rd DeepZS</td>
<td>Tiny YOLO</td>
<td>-</td>
<td>⑤</td>
</tr>
<tr>
<td>’18 1st ICT-CAS</td>
<td>Tiny YOLO</td>
<td>①②③④</td>
<td>-</td>
</tr>
<tr>
<td>’18 2nd DeepZ</td>
<td>Tiny YOLO</td>
<td>-</td>
<td>⑤</td>
</tr>
<tr>
<td>’18 3rd SDU-Legend</td>
<td>YOLOv2</td>
<td>①②③</td>
<td>⑤</td>
</tr>
</tbody>
</table>

[From the winning entries of DAC-SDC’18 and ’19]
Object detection design for embedded FPGAs

➢ Target Ultra96 FPGA

① Input resizing ② Pruning ③ Quantization
⑤ CPU-FPGA task partition ⑥ double-pumped DSP ⑦ pipeline ⑧ clock gating

<table>
<thead>
<tr>
<th>FPGA-Track</th>
<th>Reference</th>
<th>Software Optimizations</th>
<th>Hardware Optimizations</th>
</tr>
</thead>
<tbody>
<tr>
<td>’19 2nd XJTU Tripler</td>
<td>ShuffleNetV2</td>
<td>②③</td>
<td>⑤⑥⑧</td>
</tr>
<tr>
<td>’19 3rd SystemsETHZ</td>
<td>SqueezeNet</td>
<td>①②③</td>
<td>⑦</td>
</tr>
<tr>
<td>’18 1st TGIIF</td>
<td>SSD</td>
<td>①②③</td>
<td>⑤⑥</td>
</tr>
<tr>
<td>’18 2nd SystemsETHZ</td>
<td>SqueezeNet</td>
<td>①②③</td>
<td>⑦</td>
</tr>
<tr>
<td>’18 3rd iSmart2</td>
<td>MobileNet</td>
<td>①②③</td>
<td>⑤⑦</td>
</tr>
</tbody>
</table>

[From the winning entries of DAC-SDC’18 and ’19]
Drawbacks of the top-down flow

1) Hard to balance the sensitivities of DNN designs on software and hardware metrics

 SW metrics:
 - Accuracy;
 - Generalization;
 - Robustness;

 HW metrics:
 - Throughput / latency;
 - Resource utilization;
 - Energy / power;

2) Difficult to select appropriate reference DNNs at the beginning
 - Choose by experience
 - Performance on published datasets
Outline:

1) Background & Challenges
 Edge AI is necessary but challenging

2) Motivations
 Two major issues prevent better AI quality on embedded systems

3) The Proposed SkyNet Solution
 A bottom-up approach for building hardware-efficient DNNs

4) Demonstrations on Object Detection and Tracking Tasks
 Double champions in an international system design competition
 Faster and better results than trackers with ResNet-50 backbone

5) Conclusions
The proposed flow

To overcome drawbacks, we propose a bottom-up DNN design flow:

- No reference DNNs; Start from scratch;
- Consider HW constraints; Reflect SW variations

It needs **Bundle** to cover both SW and HW perspectives.

SW part: DNN Models

HW part:
- Embedded devices which run the DNN

Perspectives
- SW: a set of sequential DNN layers (stack to build DNNs)
- HW: a set of IPs to be implemented on hardware
The proposed flow [overview]

➢ It is a three-stage flow

Select Bundles -> Explore network architectures -> Add features
The proposed flow [stage 1]

- Start building DNNs from choosing the HW-aware Bundles

Goal: Let Bundles capture HW features and accuracy potentials

- Prepare DNN components
- Enumerate Bundles
- Evaluate Bundles (Latency-Accuracy)
- Select those in the Pareto curve
The proposed flow [stage 2]

➢ Start exploring DNN architecture to meet HW-SW metrics

Goal: Solve the multi-objective optimization problem

- Stack the selected Bundle
- Explore two hyper parameters using PSO (channel expansion factor & pooling spot)
- Evaluate DNN candidates (Latency-Accuracy)
- Select candidates in the Pareto curve
The proposed flow [stage 2] (cont.)

➢ Adopt a group-based **PSO** (**particle swarm optimization**)
 • Multi-objective optimization: **Latency-Accuracy**
 • Group-based evolve: Candidates with the same **Bundle** are in the same group

![Diagram of the proposed flow](image)

Fitness Score:

\[
Fit_j^i = Acc_j^i + \alpha \cdot (Est(n_j^i) - Tar)
\]

- **Candidate accuracy**
- **Candidate latency in hardware**
- **Targeted latency**
- \(\alpha\) factor to balance accuracy and latency
The proposed flow [stage 2] (cont.)

- Adopt a group-based **PSO** (*particle swarm optimization*)
 - Multi-objective optimization: **Latency-Accuracy**
 - Group-based evolve: Candidates with the same **Bundle** are in the same group
The proposed flow [stage 2] (cont.)

- Adopt a group-based **PSO** (*particle swarm optimization*)
 - Multi-objective optimization: **Latency-Accuracy**
 - Group-based evolve: Candidates with the same **Bundle** are in the same group
The proposed flow [stage 2] (cont.)

- Adopt a group-based **PSO** *(particle swarm optimization)*
 - Multi-objective optimization: **Latency-Accuracy**
 - Group-based evolve: Candidates with the same **Bundle** are in the same group

![Diagram](image-url)
The proposed flow [stage 2] (cont.)

- Adopt a group-based PSO (particle swarm optimization)
 - Multi-objective optimization: Latency-Accuracy
 - Group-based evolve: Candidates with the same Bundle are in the same group
The proposed flow [stage 2] (cont.)

➢ Adopt a group-based **PSO** (*particle swarm optimization*)
 • Multi-objective optimization: **Latency-Accuracy**
 • Group-based evolve: Candidates with the same **Bundle** are in the same group
The proposed flow [stage 2] (cont.)

➢ Adopt a group-based **PSO** (particle swarm optimization)
 • Multi-objective optimization: **Latency-Accuracy**
 • Group-based evolve: Candidates with the same **Bundle** are in the same group

![Diagram of the proposed flow with stages and candidate designs](image-url)

- Stack the selected Bundle \(i\) and explore DNN in two dimensions using **PSO**
- **Front-end**
 - Bundle \(i\)
 - Bundle \(i\)
 - Bundle \(i\)...
 - **Back-end**

- **Candidates**
 - **Current design** \(N(t+3)\)
 - **Local best**
 - **Group best**

- **Candidate designs** with **activation functions** and **pooling positions**
 - **Conv3**
 - **BN**
 - **ReLU**

- **Dimensions**
 - **Dim1**: Potential channel expansion in Conv layers
 - **Dim2**: Potential pooling position

- **Iteration** \(t+3\)
The proposed flow [stage 3]

- Add more features if HW constraints allow

Goal: better fit in the customized scenario

- For small object detection, we add feature map bypass
- Feature map reordering
- For better HW efficiency, we use ReLU6
The proposed flow [HW deployment]

➢ We start from a well-defined accelerator architecture

Two-level memory hierarchy to fully utilize given memory resources
IP-based scalable process engines to fully utilize computation resources
The proposed flow [HW deployment]

- We start from a well-defined accelerator architecture

Limit the DNN design space
Enable fast performance evaluation
Outline:

1) Background & Challenges

 Edge AI is necessary but challenging

2) Motivations

 Two major issues prevent better AI quality on embedded systems

3) The Proposed SkyNet Solution

 A bottom-up approach for building hardware-efficient DNNs

4) Demonstrations on Object Detection and Tracking Tasks

 Double champions in an international system design competition
 Faster and better results than trackers with ResNet-50 backbone

5) Conclusions
Demo #1: an object detection task for drones

➢ System Design Contest for *low power object detection* in the IEEE/ACM Design Automation Conference (DAC-SDC)

➢ DAC-SDC targets single object detection for real-life UAV applications
 Images contain 95 categories of targeted objects (most of them are small)

➢ Comprehensive evaluation: *accuracy, throughput, and energy consumption*

\[
TS_i = R_{IoU_i} \times (1 + ES_i)
\]
Demo #1: DAC-SDC dataset

➢ The distribution of target relative size compared to input image

- 31% targets < 1% of the input size
- 91% targets < 9% of the input size
Demo #1: the proposed DNN architecture

- 13 CONV with 0.4 million parameters
- For Embedded FPGA: Quantization, Batch, Tiling, Task partitioning
- For Embedded GPU: Task partitioning
Demo #1: Results from DAC-SDC [GPU]

- Evaluated by 50k images in the official test set

2.3X faster

Designs using TX2 GPU
Demo #1: Results from DAC-SDC [FPGA]

- Evaluated by 50k images in the official test set

’19 Designs using Ultra96 FPGA
’18 Designs using Pynq-Z1 FPGA

10.1% more accurate
Demo #2: generic object tracking in the wild

- We extend SkyNet to real-time tracking problems
- We use a large-scale high-diversity benchmark called Got-10K
 - **Large-scale:** 10K video segments with 1.5 million labeled bounding boxes
 - **Generic:** 560+ classes and 80+ motion patterns (better coverage than others)

[From Got-10K]
Demo #2: Results from Got-10K

➢ Evaluated using two state-of-the-art trackers with single 1080Ti

SiamRPN++ with different backbones

<table>
<thead>
<tr>
<th>Backbone</th>
<th>(AO)</th>
<th>(SR_{0.50})</th>
<th>(SR_{0.75})</th>
<th>(FPS)</th>
</tr>
</thead>
<tbody>
<tr>
<td>AlexNet</td>
<td>0.354</td>
<td>0.385</td>
<td>0.101</td>
<td>52.36</td>
</tr>
<tr>
<td>ResNet-50</td>
<td>0.365</td>
<td>0.411</td>
<td>0.115</td>
<td>25.90</td>
</tr>
<tr>
<td>SkyNet</td>
<td>0.364</td>
<td>0.391</td>
<td>0.116</td>
<td>41.22</td>
</tr>
</tbody>
</table>

SiamMask with different backbones

<table>
<thead>
<tr>
<th>Backbone</th>
<th>(AO)</th>
<th>(SR_{0.50})</th>
<th>(SR_{0.75})</th>
<th>(FPS)</th>
</tr>
</thead>
<tbody>
<tr>
<td>ResNet-50</td>
<td>0.380</td>
<td>0.439</td>
<td>0.153</td>
<td>17.44</td>
</tr>
<tr>
<td>SkyNet</td>
<td>0.390</td>
<td>0.442</td>
<td>0.158</td>
<td>30.15</td>
</tr>
</tbody>
</table>

Similar \(AO\), 1.6X faster vs. ResNet-50

Slightly better \(AO\), 1.7X faster vs. ResNet-50
Outline:

1) Background & Challenges
 Edge AI is necessary but challenging

2) Motivations
 Two major issues prevent better AI quality on embedded systems

3) The Proposed SkyNet Solution
 A bottom-up approach for building hardware-efficient DNNs

4) Demonstrations on Object Detection and Tracking Tasks
 Double champions in an international system design competition
 Faster and better results than trackers with ResNet-50 backbone

5) Conclusions
Conclusions

- We presented *SkyNet* & a *hardware-efficient DNN design method*
 - a bottom-up DNN design flow for embedded systems
 - an effective way to capture realistic HW constraints
 - a solution to satisfy demanding HW and SW metrics

- *SkyNet* has been demonstrated by object detection and tracking tasks
 - Won the double champions in DAC-SDC
 - Achieved faster and better results than trackers using ResNet-50
➢ Scan for paper, slides, poster, code, & demo

➢ Please come to Poster #11
Thank you