Attention-based Learning for Missing Data Imputation in HoloClean

Richard Wu¹, Aoqian Zhang¹, Ihab F. Ilyas¹ Theodoros Rekatsinas²

Problem

- Missing data is a **persistent** problem in many fields
 - \circ Sciences
 - Data mining
 - Finance
- Missing data can reduce downstream statistical power
- Most models require complete data

Modern ML for Data Cleaning: HoloClean

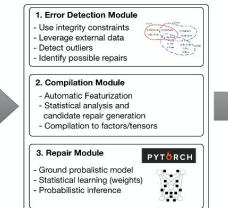
- Framework for holistic data repairing driven by probabilistic inference
- Unifies **qualitative** (integrity constraints and external sources) with **quantitative** data repairing methods (statistical inference)

Available at www.holoclean.io

Input

	DBAName	Address	City	State	z	р
t1	John Veliotis Sr.	3465 S Morgan ST	Chicago	IL	606	808
t2	John Veliotis Sr.	3465 S Morgan ST	Chicago	IL	606	609
t3	John Veliotis Sr.	3465 S Morgan ST	Chicago	IL	606	609
t4	Johnnyo's	3465 S Morgan ST	Cicago	IL.	606	
D c1	Johnnyo's enial Cons DBAName → Zip → City, S	Morgan ST straints	Cicago Exter	nal Ir		
D c1 c2	enial Cons DBAName →	Morgan ST straints Zip tate	Exter	nal Ir	nform	atio
D c1 c2 c3	enial Cons DBAName \rightarrow Zip \rightarrow City, S City, State, Ad	Morgan ST straints Zip tate	Exter Ext_Address 3465.8 Mergan	nal Ir	form Ext_State	atio
D 1 2 3	enial Cons DBAName \rightarrow Zip \rightarrow City, S City, State, Ad	Morgan ST straints Zip tate dress → Zip eendencies	Exter Ext_Address 3465 3 Mergan ST 1200 N Wols	nal Ir Ext_City Chicago	Ext_State	

The HoloClean Framework



Output

	DBAName	Address	City	Stat	e Zip
t1	John Veliotis Sr.	3465 S Morgan ST	Chicago	IL	60608
t2	John Veliotis Sr.	3465 S Morgan ST	Chicago	IL	60608
t3	John Veliotis Sr.	3465 S Morgan ST	Chicago	IL	60608
t4	John Veliotis Sr.	3465 S Morgan ST	Chicago	IL	60608
			Dietributi	on	
		Marginal I of Cell As	signmen	ts	Drohohilit
	Cell	Marginal I of Cell As Poss	signmen ible Valu	ts	Probability
		Marginal I of Cell As Poss	signmen i ble Valu 60608	ts	0.84
	Cell	Marginal I of Cell As Poss	signmen i ble Valu 60608 60609	ts	0.84 0.16
	Cell t2.Zip	Marginal I of Cell As Poss	signmen i ble Valu 60608	ts	0.84
	Cell	Marginal I of Cell As Poss	signmen i ble Valu 60608 60609	ts	0.84 0.16
	Cell t2.Zip	Marginal I of Cell As Poss	signmen ible Valu 60608 60609 :hicago	es	0.84 0.16 0.95

Missing Values in *Real* Data sets

Team	Senior Management	Bonus %	Salary	Last Login Time	Start Date	Gender	First Name	
Marketing	True	<mark>6.945</mark>	97308	12:42 PM	8/6/1993	Male	douglas	0
NaN	True	<mark>4.1</mark> 70	61933	6:53 AM	3/31/1996	Male	thomas	1
Finance	False	11.858	130590	11:17 AM	4/23/1993	Female	maria	2
Finance	True	9.340	138705	1:00 PM	3/4/2005	Male	jerry	3
Client Services	True	1.389	101004	4:47 PM	1/24/1998	Male	larry	4
Legal	False	10.125	1 <mark>15</mark> 163	1:35 AM	4/18/1987	Male	dennis	5
Product	True	10.012	65476	4:20 PM	8/ <mark>1</mark> 7/1987	Female	ruby	6
Finance	NaN	11.598	45906	10:43 AM	7/20/2015	Female	NaN	7
Engineering	True	18.523	95570	6:29 AM	11/22/2005	Female	angela	8
Business Development	True	7.524	139852	6:51 AM	8/8/2002	Female	frances	9
NaN	True	15.132	63241	9:01 AM	8/12/1980	Female	louise	10
Legal	True	12.637	102508	3:19 PM	10/26/1997	Female	julie	11
Human Resources	True	17,492	112807	1:08 AM	12/1/1980	Male	brandon	12

Challenges

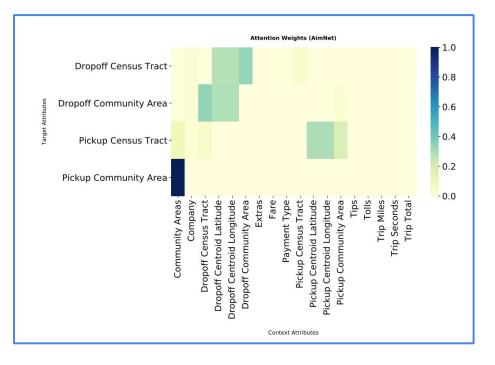
- Values may not be missing completely at random (MCAR/i.i.d.) but systematically
- Mixed types (discrete and continuous) introduce **mixed distributions**
- **Drawbacks** of current methods:
 - Heuristic-based (impute **mean/mode**)
 - Requires predefined **rules**
 - **Complex** ML models that are **difficult to train**, **slow**, **hard to interpret**

Contribution

A **simple** attention architecture that exploits **structure** across attributes

Our results:

- >54% lower run time than baselines
- Missing at random (MCAR): 3% higher accuracy and 26.7% reduction in normalized-RMS
- Systematic: 43% higher accuracy and
 7.4% reduction in normalized-RMS



How does AimNet improve on the MVI problem?

Key idea: Exploit the structure in data

model that learns **schema-level relationships** between attributes

dot product attention

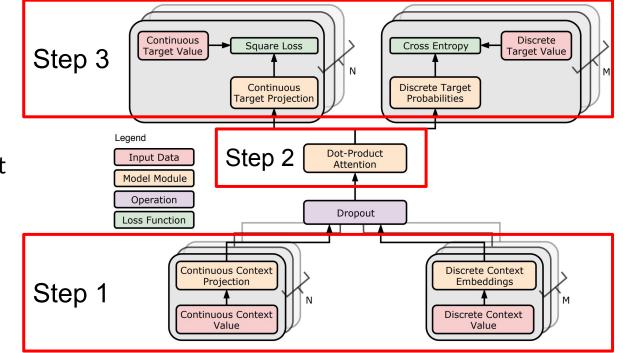
Architecture overview

(1) Model mixed data

- Encode w/ non-linear layers (continuous)
- Embedding lookup (discrete)
- (2) Identify relevant context
 - Attention helps identify schema-level importance

(3) Prediction

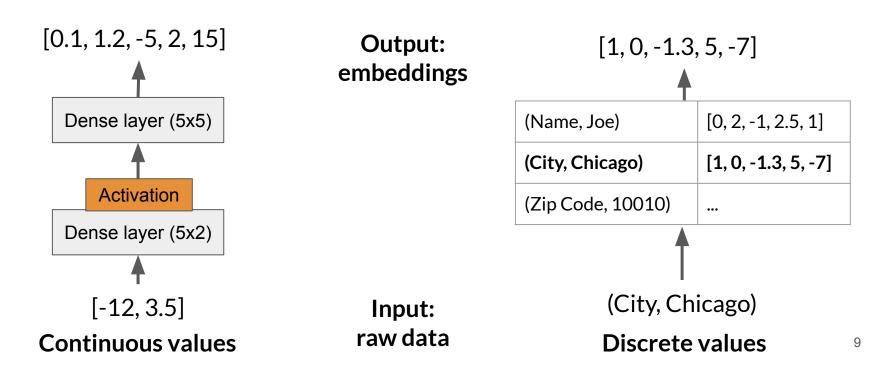
- Inverse of encoding (continuous)
- Softmax over possible values (discrete)

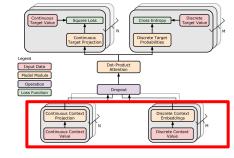


Learned via self-supervision: mask and predict observed values

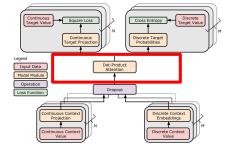
How do we encode mixed types?

Convert context values to vector embeddings.

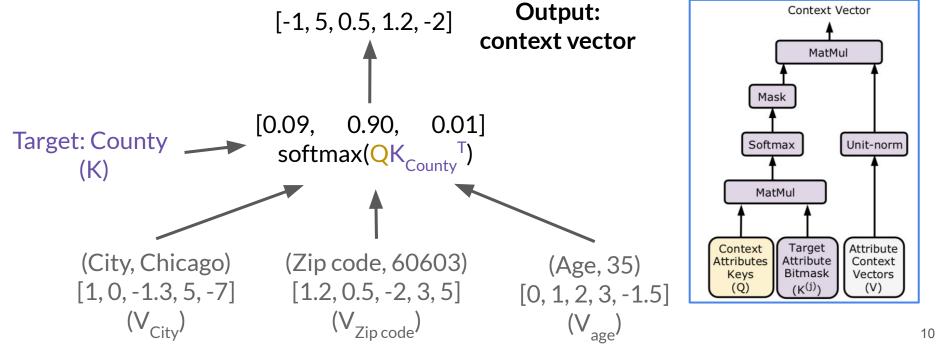


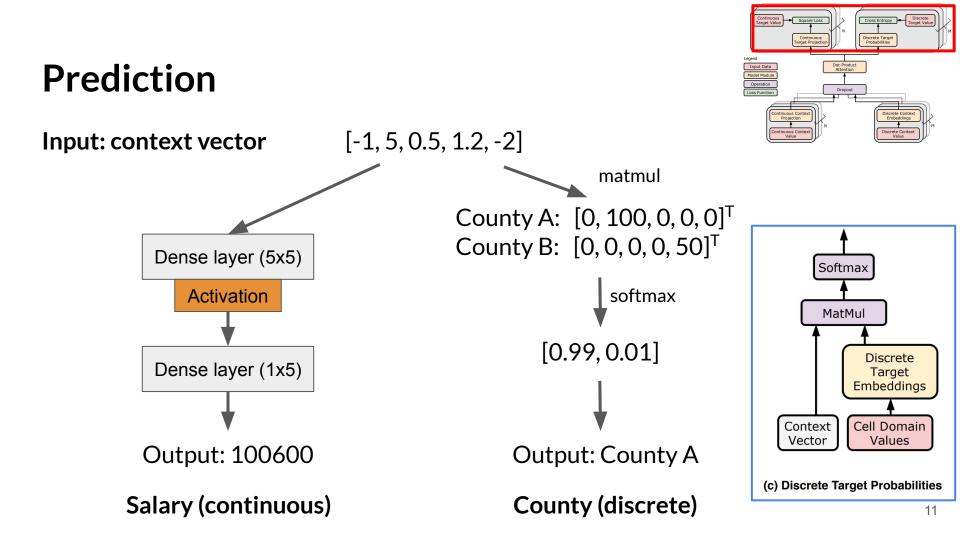


Attention layer



Attention where Q/K are derived from **attributes** rather than values





Questions

• Can AimNet impute missing completely at random (MCAR/i.i.d.) values?

• Does AimNet's emphasis on structure help it with **systematic bias** in missing values?

• Can we **interpret** the structure that AimNet learns in the data?

Mostly discrete

Experimental setup

- 14 real data sets
- Missing types
 - MCAR/i.i.d.
 - Systematic
- Evaluation
 - Accuracy (discrete)
 - normalized-RMS (continuous)

Data Set	r	# Continuous Attributes	#Discrete Attributes
Tic-Tac-Toe	958	0	10
Hospital	1000	2	14
Mammogram	831	1	5
Thoracic	470	3	14
Contraceptive	1473	2	8
Solar Flare	1066	3	10
NYPD	32399	4	13
Credit	653	6	10
Australian	691	6	9
Chicago	400k	11	7
Balance	625	4	1
Eye EEG	14976	14	1
Phase	9628	4	0
CASP	45730	10	0

 $NRMS_j = (\sum_{i=1}^{n_j} ((y_i - \hat{y}_i)^2) / (n_j \cdot \sigma(\vec{y})^2))^{-1/2}$

- Mostly continuous
- Training: self-supervised learning where targets = observable values

Experiment results

- >54% lower run time than baselines
- *Missing at random (MCAR)* : **3%** higher accuracy and **26.7%** reduction in normalized-RMS
- *Systematic*: **43%** higher accuracy and **7.4%** reduction in normalized-RMS

Attention identifies structure between attributes that helps it deal with systematic bias in missing values

MCAR (20%)

AimNet outperforms on both **discrete** and **continuous** attributes on almost

all data sets

- 3% in accuracy
- 26.7% in NRMS

HCQ		ICQ XGB		MIDAS		GAIN	M	IF		MICI	Ξ
	oClean with XGBoost antization		Denoising Autoencode	r	GAN		dom est	L	inear regres. multiple ite		
Accuracy on discrete attributes (ACC \pm std)											
data set	AimNe	et	HCQ	XGB	- cube	MIDAS	utob (11	GAI	/	MF	MICE
Tic-Tac-Toe Hospital	$egin{array}{c} 0.61 \pm 0 \\ 0.99 \pm 0 \end{array}$		0.53 ± 0.0 0.99 ± 0.0			0.46 ± 0.00 0.24 ± 0.00		0.32 ± 0.00 0.13 ± 0.00		0.52 ± 0.01 0.99 ± 0.0	0.58 ± 0.02 0.82 ± 0.01
Mammogram Thoracic	$egin{array}{c} 0.75 \pm 0 \ 0.86 \pm 0 \end{array}$		0.74 ± 0.0 0.84 ± 0.0			0.74 ± 0.0 0.84 ± 0.0		$0.35 \pm 0.00 \pm 0.000$		$\begin{array}{c} 0.68\pm0.02\\ \textbf{0.86}\pm\textbf{0.01} \end{array}$	$\begin{array}{c} 0.64 \pm 0.02 \\ 0.38 \pm 0.4 \end{array}$
Contraceptive Solar Flare	$egin{array}{c} 0.65 \pm 0 \ 0.78 \pm 0 \end{array}$		$\begin{array}{c} \textbf{0.64} \pm \textbf{0.0} \\ \textbf{0.77} \pm \textbf{0.0} \end{array}$			0.63 ± 0.02 0.65 ± 0.02		0.42 ± 0 0.48 ± 0		$0.63 \pm 0.02 \\ 0.76 \pm 0.02$	$0.57 \pm 0.01 \\ 0.67 \pm 0.02$
NYPD Credit	0.92 ± 0 0.76 ± 0	500 CT ()	0.89 ± 0.0 0.73 ± 0.02			0.79 ± 0.02 0.61 ± 0.02		0.14 ± 0 0.4 ± 0		0.92 ± 0.0 0.76 ± 0.01	0.72 ± 0.0 0.68 ± 0.01
Australian Balance	$egin{array}{c} 0.72 \pm 0 \ 0.79 \pm 0 \end{array}$		0.69 ± 0.02 0.78 ± 0.02			0.61 ± 0.03 0.68 ± 0.08		0.45 ± 0.000		0.73 ± 0.01 0.69 ± 0.05	0.63 ± 0.02 0.72 ± 0.05
Eye EEG	0.71 ± 0	.01	0.63 ± 0.0				0.54 ± 0		0.87 ± 0.01	0.54 ± 0.01	
data set	AimNe	\mathbf{et}	HCQ	NRMS on con XGB	ntinuo	ous attribu MIDAS	ites (NF	$MS \pm s$ GAII	/	MF	MICE
Hospital	0.72 ± 0		1.4 ± 0.36			11.12 ± 129		1.19 ± 0		0.86 ± 0.07	1.13 ± 0.13
Mammogram Thoracic	$egin{array}{c} 0.91 \pm 0 \ 1.1 \pm 0. \end{array}$		1.03 ± 0.03 1.78 ± 2.33			1.12 ± 0.03 1.71 ± 1.12		1.0 ± 0 1.5 ± 0		$0.99 \pm 0.05 \\ 1.66 \pm 1.61$	1.27 ± 0.11 3.62 ± 4.82
Contraceptive	1.1 ± 0.00 0.84 ± 0.00		1.78 ± 2.3 1.06 ± 0.0			1.71 ± 1.1 1.09 ± 0.03		1.3 ± 0 1.13 ± 0		1.00 ± 1.01 0.88 ± 0.04	3.02 ± 4.82 1.14 ± 0.06
Solar Flare	0.94 ± 0		0.94 ± 0.1			98.23 ± 893		0.96 ± 0		0.96 ± 0.2	1.14 ± 0.00 1.22 ± 0.34
NYPD	0.15 ± 0		1.28 ± 0.53			0.62 ± 0.04		3.19 ± 0		0.1 ± 0.0	0.37 ± 0.01
Credit	0.94 ± 0	.03	1.84 ± 0.83	1.09 ± 0.15		1.29 ± 0.24	4	1.18 ± 0	0.09	1.04 ± 0.13	1.84 ± 0.83
Australian	0.94 ± 0	.03	2.47 ± 2.0	1.09 ± 0.12		1.22 ± 0.13	3	1.24 ± 0	0.18	1.07 ± 0.24	1.58 ± 0.28
Balance	0.92 ± 0		1.37 ± 0.03			1.02 ± 0.02		1.03 ± 0		1.08 ± 0.05	1.26 ± 0.07
Eye EEG	0.4 ± 0		0.94 ± 0.34			0.84 ± 0.02		0.65 ± 0		0.35 ± 0.0	0.62 ± 0.0
Phase	0.45 ± 0		0.54 ± 0.03			0.95 ± 0.0		0.76 ± 0		0.5 ± 0.01	0.63 ± 0.01
CASP	0.45 ± 0	.02	1.45 ± 0.14	4 0.43 ± 0.02		0.82 ± 0.02	1	0.72 ± 0	0.04	0.41 ± 0.02	0.64 ± 0.03

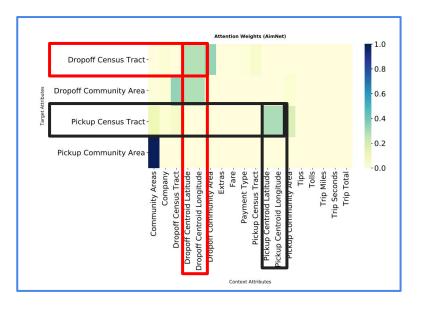
Chicago taxi data set

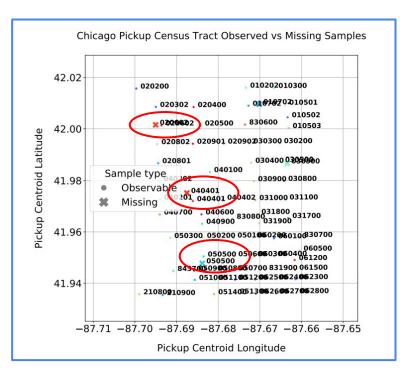
- Benchmark in TFX data validation pipeline
- Pickup/dropoff info, fare, company
- Naturally-occurring missing values w/ ground truth
- Systematic bias between companies

	Company	Pick	up Census Tract	Pickup Cent	roid Latitude	Pickup Centroic	l Longitude
2366	Chicago Medallion Leasing INC		nan		41.975171		-87.687516
78445	Dispatch Taxi Affiliation		nan		41.975171		-87.687516
57109	Taxi Affiliation Services		17031040401		41.972036		-87.686100
						*	
		А	ll within "1	7031040)401" ce	nsus tract	

Chicago taxi: naturally-occurring missing data

- Values are missing systematically (not i.i.d.)
- Attention learns relationship between Census Tract and Latitude/Longitude





Chicago taxi results

AimNet outperforms baselines by a huge margin

- Accuracy: **73%** vs 27% (XGB)
- Run time: **53 mins.** vs 124 mins (HoloClean w/ Quantization)

	Accuracy on discrete attributes for the Chicago data set								
AimNet	HCQ	XGB	MIDAS	GAIN	MF	MICE			
0.73 ± 0.01	0.07 ± 0.0	0.27 ± 0.0	0.09 ± 0.01	0.01 ± 0.01	0.3 ± 0.0	_			
	Run t	ime (minutes	s) for the Chie	cago data set					
AimNet	HCQ	XGB	MIDAS	GAIN	\mathbf{MF}	MICE			
53	124	5350	176	186	7439				

What if we inject systematic errors into other real data sets?

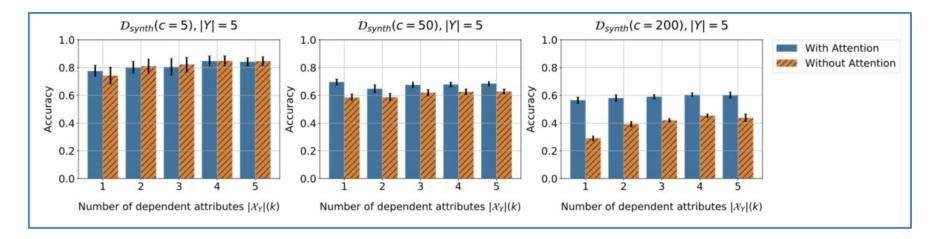
AimNet still outperforms baselines in almost all cases

			Accuracy on discrete attributes (ACC \pm std)							
data set	Attribute	AimNet	HCQ	XGB	MIDAS	GAIN	MF	MICE		
Balance	class	0.83 ± 0.07	0.4 ± 0.37	0.48 ± 0.32	0.7 ± 0.16	0.5 ± 0.12	0.46 ± 0.34	0.78 ± 0.15		
	ADDR_PCT_CD	0.67 ± 0.03	0.19 ± 0.05	0.41 ± 0.05	0.13 ± 0.01	0.04 ± 0.04	0.59 ± 0.03	0.23 ± 0.01		
NYPD	BORO_NM	0.92 ± 0.07	0.85 ± 0.09	0.58 ± 0.18	0.78 ± 0.04	0.23 ± 0.03	0.84 ± 0.09	0.58 ± 0.09		
	PATROL_BORO	0.83 ± 0.07	0.69 ± 0.03	0.57 ± 0.17	0.6 ± 0.06	0.13 ± 0.02	0.72 ± 0.1	0.58 ± 0.07		
	Attribute		NRMS on continuous attributes (NRMS \pm std)							
data set		AimNet	HCQ	XGB	MIDAS	GAIN	MF	MICE		
	А	0.75 ± 0.13	1.26 ± 0.46	0.81 ± 0.18	1.45 ± 0.5	2.04 ± 1.73	0.94 ± 0.18	1.41 ± 0.66		
Phase	В	0.77 ± 0.07	0.99 ± 0.27	0.83 ± 0.16	1.18 ± 0.33	1.54 ± 0.54	0.98 ± 0.13	1.32 ± 0.4		
rnase	С	0.79 ± 0.11	1.25 ± 0.26	0.81 ± 0.13	1.44 ± 0.25	1.33 ± 0.34	1.09 ± 0.23	1.29 ± 0.1		
	D	0.62 ± 0.09	1.1 ± 0.24	0.65 ± 0.09	1.47 ± 0.56	1.57 ± 0.63	0.85 ± 0.17	1.03 ± 0.13		
	Trip Total	0.82 ± 0.21	2.38 ± 1.16	0.48 ± 0.32	3.84 ± 0.7	1.87 ± 0.7	0.71 ± 0.57			
Chicago	Fare	1.35 ± 0.76	5.18 ± 1.94	1.16 ± 0.73	12.73 ± 7.93	58.09 ± 36.03	2.78 ± 3.0			
	Tips	0.52 ± 0.01	1.29 ± 0.09	0.5 ± 0.12	1.59 ± 0.49	11.64 ± 6.76	0.8 ± 0.28			

Does the attention layer actually help?

As the **domain size increases**, attention leads to better performance

• Learns schema-level dependencies



5 classes

50 classes

200 classes

Architecture summary

- Encode: learns projections for continuous and embeddings for discrete data
- **Structure**: new variation of attention to learn structural dependencies between **attributes**
- **Prediction**: mixed-type prediction using projections (continuous) and softmax classification (discrete)

Conclusion

- A **simple attention-based architecture** modestly outperforms existing methods on i.i.d. missing values
- AimNet outperforms state of the art in the presence of **systematically** missing values by **a large margin**
- Attention mechanism learns structural properties of the data which improves MVI with systematic bias

Appendix

Hyperparameter Sensitivity

	dropout	max domain size	embedding size	AimNet
base	0.25	50	64	0.921
(deencout note)	0.0			0.918
(dropout rate)	0.5			0.920
(max domain siza)		10		0.917
(max domain size)		100		0.921
(and adding along)			16	0.920
(embedding size)			32	0.921
			128	0.922
			256	0.920
NRM	S on continuou	s attributes for the N	VYPD data set	
	dropout rate	max domain size	embedding size	AimNet
base	0.0	50	64	0.150
	0.25			0.281
(dropout rate)	0.5			0.509
			16	0.159
(embedding size)			32	0.150
1 C. 1 C C C C C C.			128	0.153
			256	0.144

Multi-task and Single-task

Data Set	Accuracy on disc	rete attributes (ACC \pm std)			
Data Set	Single	Multi-Task			
Tic-Tac-Toc	0.61 ± 0.01	0.61 ± 0.01			
Hospital	0.99 ± 0.0	0.99 ± 0.0			
Mammogram	0.75 ± 0.01	0.75 ± 0.01			
Thoracic	0.86 ± 0.01	0.86 ± 0.01			
Contraceptive	0.65 ± 0.01	0.65 ± 0.01			
Solar Flare	0.78 ± 0.02	0.78 ± 0.01			
NYPD	0.92 ± 0.0	0.92 ± 0.0			
Credit	0.76 ± 0.01	0.76 ± 0.01			
Australian	0.72 ± 0.02	0.72 ± 0.01			
Chicago	0.73 ± 0.01	0.7 ± 0.03			
Balance	0.79 ± 0.04	0.79 ± 0.04			
Eye EEG	0.71 ± 0.01	0.69 ± 0.01			
Data Set	NRMS on continuous attributes (NRMS \pm std)				
Data Set	Single	Multi-Task			
Hospital	0.72 ± 0.06	0.77 ± 0.06			
Mammogram	0.91 ± 0.04	0.93 ± 0.03			
Thoracic	1.1 ± 0.41	1.3 ± 0.83			
Contraceptive	0.84 ± 0.02	0.84 ± 0.02			
Solar Flare	0.94 ± 0.15	0.87 ± 0.16			
NYPD	0.15 ± 0.01	0.15 ± 0.01			
Credit	0.94 ± 0.03	0.94 ± 0.03			
Australian	0.94 ± 0.03	0.93 ± 0.02			
Eye EEG	0.4 ± 0.0	0.44 ± 0.0			
Phase	0.45 ± 0.01	0.45 ± 0.01			
CASP	0.45 ± 0.02	0.48 ± 0.01			

Data Set	Rur	time (seconds)
Data Set	Single	Multi-Task
Tic-Tac-Toc	9	38
Hospital	18	148
Mammogram	9	39
Thoracic	11	69
Contraceptive	15	102
Solar Flare	15	131
NYPD	378	6320
Credit	15	198
Australian	16	145
Chicago	3180	462756
Balance	11	12
Eye EEG	188	5306
Phase	66	250
CASP	648	5800

MCAR (40% missing) results

Data Set			Accuracy or	n discrete attributes (A	$CC \pm std$)				
Data Set	AimNet	HCQ	XGB	MIDAS	GAIN	MF	MICE		
Tic-Tac-Toc	0.53 ± 0.01	0.5 ± 0.01	0.52 ± 0.01	0.44 ± 0.02	0.35 ± 0.01	0.5 ± 0.01	0.46 ± 0.01		
Hospital	0.95 ± 0.0	0.95 ± 0.0	0.91 ± 0.01	0.24 ± 0.01	0.14 ± 0.02	0.94 ± 0.01	0.7 ± 0.01		
Mammogram	0.73 ± 0.02	0.72 ± 0.01	0.72 ± 0.02	0.71 ± 0.02	0.35 ± 0.01	0.66 ± 0.02	0.63 ± 0.02		
Thoracic	0.85 ± 0.01	0.84 ± 0.01	0.84 ± 0.01	0.83 ± 0.02	0.52 ± 0.15	0.85 ± 0.01	0.75 ± 0.03		
Contraceptive	0.63 ± 0.01	0.63 ± 0.01	0.62 ± 0.01	0.62 ± 0.01	0.43 ± 0.01	0.62 ± 0.01	0.55 ± 0.01		
Solar Flare	0.76 ± 0.01	0.75 ± 0.01	0.75 ± 0.01	0.66 ± 0.01	0.46 ± 0.02	0.74 ± 0.01	0.65 ± 0.01		
NYPD	0.87 ± 0.0	0.85 ± 0.0	0.88 ± 0.0	0.75 ± 0.0	0.15 ± 0.01	0.88 ± 0.0	0.58 ± 0.0		
Credit	0.73 ± 0.01	0.7 ± 0.01	0.73 ± 0.01	0.6 ± 0.01	0.39 ± 0.01	0.73 ± 0.01	0.63 ± 0.01		
Australian	0.7 ± 0.01	0.66 ± 0.01	0.68 ± 0.01	0.6 ± 0.01	0.46 ± 0.01	0.69 ± 0.01	0.59 ± 0.01		
Balance	0.73 ± 0.03	0.72 ± 0.03	0.71 ± 0.03	0.64 ± 0.03	0.45 ± 0.05	0.63 ± 0.05	0.64 ± 0.04		
Eye EEG	0.67 ± 0.01	0.62 ± 0.01	0.73 ± 0.01	0.55 ± 0.01	0.52 ± 0.03	0.78 ± 0.01	0.53 ± 0.01		
D + 6 +	NRMS on continuous attributes (NRMS \pm std)								
Data Set	AimNet	HCQ	XGB	MIDAS	GAIN	MF	MICE		
Hospital	0.81 ± 0.04	1.1 ± 0.08	0.92 ± 0.07	440.63 ± 61.35	2.26 ± 1.18	0.89 ± 0.04	1.23 ± 0.09		
Mammogram	0.92 ± 0.02	1.02 ± 0.04	0.98 ± 0.05	1.12 ± 0.08	1.05 ± 0.06	1.01 ± 0.03	1.25 ± 0.07		
Thoracic	0.94 ± 0.01	1.09 ± 0.05	1.03 ± 0.11	5.64 ± 7.16	1.23 ± 0.22	0.99 ± 0.06	1.32 ± 0.12		
Contraceptive	0.9 ± 0.02	1.12 ± 0.04	0.94 ± 0.02	1.11 ± 0.02	1.17 ± 0.05	0.99 ± 0.02	1.23 ± 0.06		
Solar Flare	0.93 ± 0.09	0.98 ± 0.09	1.0 ± 0.1	10772.7 ± 4057.37	1.0 ± 0.09	1.04 ± 0.11	1.16 ± 0.07		
NYPD	0.32 ± 0.01	0.44 ± 0.13	0.28 ± 0.0	0.69 ± 0.03	3.63 ± 0.17	0.22 ± 0.01	0.62 ± 0.01		
Credit	0.97 ± 0.03	1.24 ± 0.03	1.26 ± 0.41	1.15 ± 0.07	1.2 ± 0.08	1.12 ± 0.18	1.34 ± 0.11		
Australian	0.96 ± 0.02	1.23 ± 0.03	1.19 ± 0.2	1.14 ± 0.12	1.27 ± 0.16	1.07 ± 0.13	1.6 ± 0.7		
Eye EEG	0.48 ± 0.0	0.71 ± 0.03	0.47 ± 0.0	0.91 ± 0.01	1.0 ± 0.28	0.44 ± 0.0	0.67 ± 0.01		
Phase	0.52 ± 0.01	0.58 ± 0.0	0.53 ± 0.01	0.97 ± 0.01	1.14 ± 0.26	0.58 ± 0.01	0.73 ± 0.01		
CASP	0.5 ± 0.01	1.5 ± 0.26	0.49 ± 0.01	0.88 ± 0.01	0.83 ± 0.09	0.48 ± 0.01	0.73 ± 0.03		

MCAR (60% missing) results

Data Set	Accuracy on discrete attributes (ACC \pm std)						
	AimNet	HCQ	XGB	MIDAS	GAIN	MF	MICE
Tic-Tac-Toc	0.48 ± 0.01	0.48 ± 0.0	0.47 ± 0.01	0.43 ± 0.01	0.39 ± 0.01	0.44 ± 0.01	0.4 ± 0.01
Hospital	0.86 ± 0.01	0.86 ± 0.01	0.68 ± 0.01	0.24 ± 0.0	0.11 ± 0.01	0.79 ± 0.01	0.37 ± 0.01
Mammogram	0.69 ± 0.01	0.69 ± 0.01	0.68 ± 0.01	0.68 ± 0.01	0.34 ± 0.02	0.62 ± 0.02	0.58 ± 0.02
Thoracic	0.85 ± 0.01	0.84 ± 0.01	0.83 ± 0.0	0.84 ± 0.01	0.51 ± 0.13	0.84 ± 0.01	0.72 ± 0.04
Contraceptive	0.62 ± 0.01	0.62 ± 0.01	0.61 ± 0.01	0.61 ± 0.01	0.42 ± 0.02	0.6 ± 0.01	0.53 ± 0.01
Solar Flare	0.72 ± 0.01	0.72 ± 0.01	0.71 ± 0.01	0.66 ± 0.01	0.45 ± 0.03	0.7 ± 0.01	0.61 ± 0.01
NYPD	0.77 ± 0.0	0.76 ± 0.0	0.79 ± 0.0	0.67 ± 0.0	0.15 ± 0.0	0.78 ± 0.0	0.45 ± 0.0
Credit	0.69 ± 0.01	0.66 ± 0.01	0.68 ± 0.01	0.6 ± 0.01	0.38 ± 0.02	0.68 ± 0.01	0.57 ± 0.01
Australian	0.67 ± 0.01	0.65 ± 0.01	0.65 ± 0.01	0.59 ± 0.01	0.45 ± 0.02	0.65 ± 0.01	0.54 ± 0.02
Balance	0.67 ± 0.03	0.64 ± 0.04	0.63 ± 0.03	0.51 ± 0.06	0.46 ± 0.04	0.54 ± 0.03	0.55 ± 0.04
Eye EEG	0.63 ± 0.01	0.6 ± 0.01	0.66 ± 0.01	0.54 ± 0.01	0.52 ± 0.03	0.67 ± 0.01	0.52 ± 0.01
Data Set	NRMS on continuous attributes (NRMS \pm std)						
	AimNet	HCQ	XGB	MIDAS	GAIN	MF	MICE
Hospital	0.9 ± 0.04	1.16 ± 0.12	1.01 ± 0.08	139.97 ± 24.15	3.79 ± 0.36	0.95 ± 0.05	1.27 ± 0.09
Mammogram	0.94 ± 0.02	1.05 ± 0.06	1.0 ± 0.05	1.13 ± 0.06	1.1 ± 0.11	1.01 ± 0.04	1.28 ± 0.08
Thoracic	0.99 ± 0.02	1.13 ± 0.05	1.17 ± 0.11	3.54 ± 5.28	1.18 ± 0.09	1.07 ± 0.04	1.43 ± 0.2
Contraceptive	0.94 ± 0.01	1.15 ± 0.04	1.01 ± 0.02	1.12 ± 0.02	1.31 ± 0.14	1.14 ± 0.04	1.29 ± 0.05
Solar Flare	0.98 ± 0.06	1.01 ± 0.06	1.05 ± 0.09	4454.64 ± 1610.59	1.07 ± 0.17	1.13 ± 0.14	1.24 ± 0.19
NYPD	0.56 ± 0.0	0.58 ± 0.04	0.45 ± 0.0	0.8 ± 0.01	3.51 ± 0.14	0.42 ± 0.01	0.98 ± 0.0
Credit	0.99 ± 0.01	1.33 ± 0.19	1.23 ± 0.25	1.14 ± 0.11	1.24 ± 0.11	1.13 ± 0.13	1.43 ± 0.26
Australian	0.98 ± 0.01	1.37 ± 0.26	1.29 ± 0.42	1.1 ± 0.04	1.25 ± 0.12	1.13 ± 0.19	1.38 ± 0.09
Eye EEG	0.59 ± 0.0	0.82 ± 0.04	0.57 ± 0.0	0.97 ± 0.01	1.61 ± 0.24	0.57 ± 0.0	0.79 ± 0.0
Phase	0.64 ± 0.0	0.71 ± 0.01	0.65 ± 0.0	1.0 ± 0.0	1.45 ± 0.51	0.71 ± 0.01	0.91 ± 0.01
CASP	0.58 ± 0.01	2.06 ± 0.51	0.59 ± 0.01	0.94 ± 0.01	1.2 ± 0.22	0.62 ± 0.0	0.88 ± 0.03

Census Tracts form Voronoi-like cells

