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Problem

● Missing data is a persistent problem in many fields

○ Sciences

○ Data mining

○ Finance

● Missing data can reduce downstream statistical power

● Most models require complete data
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Modern ML for Data Cleaning: HoloClean

● Framework for holistic data repairing driven by probabilistic inference

● Unifies qualitative (integrity constraints and external sources) with 
quantitative data repairing methods (statistical inference)

Available at www.holoclean.io
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http://www.holoclean.io


Missing Values in Real Data sets
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Challenges

● Values may not be missing completely at random (MCAR/i.i.d.) but 
systematically

● Mixed types (discrete and continuous) introduce mixed distributions

● Drawbacks of current methods:

○ Heuristic-based (impute mean/mode)

○ Requires predefined rules

○ Complex ML models that are difficult to train, slow, hard to interpret

5



Contribution

A simple attention architecture that 
exploits structure across attributes

Our results:

● >54% lower run time than baselines 

● Missing at random (MCAR) : 3%  higher 
accuracy and 26.7%  reduction in 
normalized-RMS

● Systematic:  43% higher accuracy and 
7.4% reduction in normalized-RMS
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How does AimNet improve on the 
MVI problem?

Key idea:
Exploit the structure in data

model that learns schema-level 
relationships between attributes

dot product attention
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Architecture overview

(1) Model mixed data 
● Encode w/ non-linear 

layers (continuous)
● Embedding lookup 

(discrete)

(2) Identify relevant context
● Attention helps identify 

schema-level importance

(3) Prediction
● Inverse of encoding 

(continuous)
● Softmax over possible 

values (discrete)

Step 2

Step 1

Step 3

8Learned via self-supervision: mask and predict observed values 



How do we encode mixed types?

Convert context values to vector embeddings.

Continuous values Discrete values

[-12, 3.5]

[0.1, 1.2, -5, 2, 15]

(City, Chicago)

[1, 0, -1.3, 5, -7]

Input:
raw data

Output: 
embeddings

Dense layer (5x2)

Dense layer (5x5) (Name, Joe) [0, 2, -1, 2.5, 1]

(City, Chicago) [1, 0, -1.3, 5, -7]

(Zip Code, 10010) ...
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Attention layer

Attention where Q/K are derived from attributes 
rather than values

(City, Chicago)
[1, 0, -1.3, 5, -7]

(V
City

)

(Zip code, 60603)
[1.2, 0.5, -2, 3, 5] 

(V
Zip code

)

(Age, 35) 
[0, 1, 2, 3, -1.5]

(V
age

)

[0.09,       0.90,       0.01]
softmax(QK

County
T)Target: County

(K)

[-1, 5, 0.5, 1.2, -2]
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Output: 
context vector



Prediction

Input: context vector [-1, 5, 0.5, 1.2, -2]

Salary (continuous)

Output: 100600

County A:   [0, 100, 0, 0, 0]T

County B:   [0, 0, 0, 0, 50]T

County (discrete)

[0.99, 0.01]

Output: County A

softmax

matmul

Dense layer (1x5)

Dense layer (5x5)
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Activation



Questions

● Can AimNet impute missing completely at random (MCAR/i.i.d.) values?

● Does AimNet's emphasis on structure help it with systematic bias in missing 
values?

● Can we interpret the structure that AimNet learns in the data?
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Experimental setup

● 14 real data sets
● Missing types

○ MCAR/i.i.d.
○ Systematic

● Evaluation
○ Accuracy (discrete)
○ normalized-RMS (continuous)

● Training: self-supervised learning where targets = observable values

Mostly discrete

Mostly continuous
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Experiment results

● >54% lower run time than baselines 

● Missing at random (MCAR) : 3%  higher accuracy and 26.7%  reduction in normalized-RMS

● Systematic:  43% higher accuracy and 7.4% reduction in normalized-RMS

Attention identifies structure between attributes that helps it deal with 

systematic bias in missing values
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MCAR (20%)

AimNet outperforms 
on both discrete and 
continuous 
attributes on almost 
all data sets

● 3% in accuracy
● 26.7% in NRMS

HCQ XGB MIDAS GAIN MF MICE

HoloClean with 
quantization

XGBoost Denoising 
Autoencoder

GAN Random 
Forest

Linear regression with 
multiple iterations
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Chicago taxi data set

● Benchmark in TFX data validation pipeline 

● Pickup/dropoff info, fare, company

● Naturally-occurring missing values w/ ground truth

● Systematic bias between companies

16All within "17031040401" census tract 



Chicago taxi: naturally-occurring missing data

● Values are missing systematically (not i.i.d.)
● Attention learns relationship between 

Census Tract and Latitude/Longitude
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Chicago taxi results

AimNet outperforms baselines by a huge margin

● Accuracy: 73% vs 27% (XGB)

● Run time: 53 mins. vs 124 mins (HoloClean w/ Quantization)
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What if we inject systematic errors into other real data sets?

AimNet still outperforms baselines in almost all cases
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Does the attention layer actually help?

50 classes5 classes
20

200 classes

As the domain size increases, attention leads to better performance

● Learns schema-level dependencies



Architecture summary

● Encode: learns projections for continuous and embeddings for discrete 

data

● Structure: new variation of attention to learn structural dependencies 

between attributes

● Prediction: mixed-type prediction using projections (continuous) and 

softmax classification (discrete)
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Conclusion

● A simple attention-based architecture modestly outperforms existing 

methods on i.i.d. missing values

● AimNet outperforms state of the art in the presence of systematically 
missing values by a large margin

● Attention mechanism learns structural properties of the data which 

improves MVI with systematic bias
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Appendix
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Hyperparameter Sensitivity
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Multi-task and Single-task
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MCAR (40% missing) results
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MCAR (60% missing) results
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Census Tracts form Voronoi-like cells
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