
Predictive Precompute with
Recurrent Neural Networks

Hanson Wang
Zehui Wang
Yuanyuan Ma

MLSys 2020

On client: prefetching
• Improve the latency of user interactions in the Facebook

app by precomputing data queries before the interactions
occur

On server: cache warmup
• Improve cache hit-rates in Facebook backend services by

precomputing cache values hours in advance

2

Defining Precompute

3

Defining Precompute: Prefetching

User opens
the tab

Wait for data
to arrive…

4

Defining Precompute: Prefetching

Data gets
precomputed

at startup time

Data is
immediately

available!

• Naïvely precomputing 100% of the time is too expensive

• Facebook spends non-trivial % of compute on this

• Idea: Predict user behavior to avoid wasting resources

• Classification problem: P(tab access) at session start

• Apply threshold on top of probability to make precompute
decisions (can be tuned to product constraints)

5

Predictive Precompute

6

Formulation as an ML problem

time

Session 1 (10mins)

Context (C1)
hour of day = 9

notifications = 1
user age = 25

…

access
A1 = 1

Session 2 (10mins)

Context (C2)
hour of day = 11

notifications = 0
user age = 25

…

no access
A2 = 0

Access
prediction

P(A1)

Access
prediction

P(A2)
In general, we want to estimate:

P(An | C1, A1, C2, A2, …, Cn)

Simple features can be taken from current context (Ci)

• Time-based (hour of day, day of week)

• User-based (age, country)

• Session-based (notification count)

• How to incorporate previous contexts and accesses?

7

Formulation as an ML problem
Features

Historical usage features must be “engineered” for traditional models

Formulation as an ML problem
Historical Features

time

Session 1
A1 = 1

Context (C1)
hour of day = 9

notifications = 1
…

Session 2
A1 = 1

Context (C2)
hour of day = 11

notifications = 1
…

Session 3
A3 = 0

Context (C3)
hour of day = 13

notifications = 0
…

Historical usage features must be “engineered” for traditional models

Formulation as an ML problem
Historical Features

time

Session 1
A1 = 1

Context (C1)
hour of day = 9

notifications = 1
…

Session 2
A1 = 1

Context (C2)
hour of day = 11

notifications = 1
…

Session 3
A3 = 0

Context (C3)
hour of day = 13

notifications = 0
…

Number of accesses in the past 7 days = 1
Access rate in the past 7 days = 50%

Historical usage features must be “engineered” for traditional models

Formulation as an ML problem
Historical Features

time

Session 1
A1 = 1

Context (C1)
hour of day = 9

notifications = 1
…

Session 2
A1 = 1

Context (C2)
hour of day = 11

notifications = 1
…

Session 3
A3 = 0

Context (C3)
hour of day = 13

notifications = 0
…

Number of accesses in the past 14 days with notifications = 2
Access rate in the past 14 days with notifications = 100%

11

Historical features dominate feature importance…

Referrer page

User's overall access rate (1 day)

User's overall access rate (28 day)

Notification count

User’s access rate with current referrer page (28 days)

User’s access rate with current notification count (28 days)

User’s access rate with current notification count and referrer page (28 days)

Sample feature importance
from a GBDT model

(quality drops >15% without access rates)

“Recipe” for historical features:

• Select an aggregation type (count, access rate, time elapsed…)

• Select a time range (1 day, 7 days, 28 days…)

• (Optional) Filter on a subset of context attributes
(with / without notifications, at the current hour of the day, …)

💥 Combinatorial explosion of features!

💰 Aggregation features make inference expensive!

12

Formulation as an ML problem
Features

Traditional models

• Simple baseline: output the lifetime access rate for each user

• Most basic historical feature, surprisingly effective

• Logistic Regression, Gradient-boosted Decision Trees

• Consumes concatenated vector of engineered features

13

Formulation as an ML problem
Models

Alt-text: The pile gets soaked with
data and starts to get mushy over
time, so it's technically recurrent.

— xkcd #1838

Recurrent neural networks address problems with historical features:

Complex, non-linear interactions between features can be
captured through a hidden state “memory” for each user.

Hidden state updates are incremental in nature.
Storage consumption is bounded by the number of dimensions.

Model each user’s session history as a sequential prediction task.

15

Neural networks to the rescue

Recurrent Network Architecture

GRU GRU
h1 h2

h0

MLP

f1h0

P(A1)

t
t1 t2

t1 + δ

T(0)

MLP

P(A2)

t2 + δ

f2h1 T(t2 - t1)

A1f1 T(∆t1) A2f2 T(∆t2)

MLP

P(A3)

f3h1 T(t3 - t1)

t3

t3 + δ

GRU

A3f3 T(∆t3)

h3

Recurrent Network Architecture

GRU GRU
h1 h2

h0

MLP

f1h0

P(A1)

t
t1 t2

t1 + δ

T(0)

MLP

P(A2)

t2 + δ

f2h1 T(t2 - t1)

A1f1 T(∆t1) A2f2 T(∆t2)

MLP

P(A3)

f3h1 T(t3 - t1)

t3

t3 + δ

GRU

A3f3 T(∆t3)

h3

Predictions
(P(Ai), online)

Hidden states
(hi, async)

Session 1 Session 2 Session 3

Session 1 Session 2 Session 3

Recurrent Network Architecture

GRU GRU
h1 h2

h0

MLP

f1h0

P(A1)

t
t1 t2

t1 + δ

T(0)

MLP

P(A2)

t2 + δ

f2h1 T(t2 - t1)

A1f1 T(∆t1) A2f2 T(∆t2)

MLP

P(A3)

f3h1 T(t3 - t1)

t3

t3 + δ

GRU

A3f3 T(∆t3)

h3

Prediction Layer
h1: last known hidden state
f3: feature vector
t3: time of prediction
T(t3 – t1): time since h1, encoded

Recurrent Network Architecture

GRU GRU
h1 h2

h0

MLP

f1h0

P(A1)

t
t1 t2

t1 + δ

T(0)

MLP

P(A2)

t2 + δ

f2h1 T(t2 - t1)

A1f1 T(∆t1) A2f2 T(∆t2)

MLP

P(A3)

f3h1 T(t3 - t1)

t3

t3 + δ

GRU

A3f3 T(∆t3)

h3

Hidden Layer
f3: feature vector
A3: true label for session 3
h2: previous hidden state
T(Δt3): time since h2, encoded

Recurrent Network Architecture

GRU GRU
h1 h2

h0

MLP

f1h0

P(A1)

t
t1 t2

t1 + δ

T(0)

MLP

P(A2)

t2 + δ

f2h1 T(t2 - t1)

A1f1 T(∆t1) A2f2 T(∆t2)

MLP

P(A3)

f3h1 T(t3 - t1)

t3

t3 + δ

GRU

A3f3 T(∆t3)

h3

Model session +
update delays (δ)

Recurrent Network Architecture

GRU GRU
h1 h2

h0

MLP

f1h0

P(A1)

t
t1 t2

t1 + δ

T(0)

MLP

P(A2)

t2 + δ

f2h1 T(t2 - t1)

A1f1 T(∆t1) A2f2 T(∆t2)

MLP

P(A3)

f3h1 T(t3 - t1)

t3

t3 + δ

GRU

A3f3 T(∆t3)

h3

Hidden state updates
are decoupled

from predictions

Recurrent Network Architecture

GRU GRU
h1 h2

h0

MLP

f1h0

P(A1)

t
t1 t2

t1 + δ

T(0)

MLP

P(A2)

t2 + δ

f2h1 T(t2 - t1)

A1f1 T(∆t1) A2f2 T(∆t2)

MLP

P(A3)

f3h1 T(t3 - t1)

t3

t3 + δ

GRU

A3f3 T(∆t3)

h3

1-layer fully-connected
network (256 neurons)

Latent cross1 is helpful:
hi ◦ (1 + Linear(fi))

GRU with 128
hidden dims

[1] Beutel, A., Covington, P., Jain, S., Xu, C., Li, J., Gatto, V., and Chi, E. H (2018). Latent cross: Making use of context in recurrent recommender systems.

• 1M user histories over a 30 day period

• ~60 sessions per user on average, ~10% positive rate

• Only compute loss on last 21 days

• All evaluation metrics use last 7 days

• Training takes about ~8 hours on GPU (PyTorch)

• Faster with BPPSA?

23

Training details

Facebook company

Results

24

Precision: (true positives) / (predicted positives)

• What percentage of precomputed results are accessed?

• Inversely correlated to additional compute cost.

Recall: (true positives) / (total positives)

• What percentage of accesses used precomputed results?

• Directly correlated to product latency improvements.

25

Precision and Recall for Precompute

Precision-Recall Curves: FB Mobile Tab

10%

20%

30%

40%

50%

60%

70%

80%

90%

100%

0% 3% 6% 9% 12
%

15
%

18
%

21
%

24
%

27
%

30
%

33
%

36
%

39
%

42
%

45
%

48
%

51
%

54
%

57
%

60
%

63
%

66
%

69
%

72
%

75
%

78
%

81
%

84
%

87
%

90
%

93
%

96
%

99
%

P
re

ci
si

on

Recall

Baseline Logistic Regression GBDT RNN

Precision-Recall Curves: FB Mobile Tab

10%

20%

30%

40%

50%

60%

70%

80%

90%

100%

0% 3% 6% 9% 12
%

15
%

18
%

21
%

24
%

27
%

30
%

33
%

36
%

39
%

42
%

45
%

48
%

51
%

54
%

57
%

60
%

63
%

66
%

69
%

72
%

75
%

78
%

81
%

84
%

87
%

90
%

93
%

96
%

99
%

P
re

ci
si

on

Recall

Baseline Logistic Regression GBDT RNN

Recall at Precision = 50%

In practice, we
typically try to hit a
precision target.

Numerical comparison: FB Mobile Tab

Model Type PR-AUC R@50%

Baseline 0.470 0.413

Logistic Regression 0.546 0.596

GBDT 0.578 0.616

Recurrent Neural Network 0.596 0.642

Improvement 3.11% 4.22%

~3.4% increase in successful prefetches

Numerical comparison: Mobile Phone Use2

Public benchmark from Pielot, M., Cardoso, B., Katevas, K., Serra, J., Matic, A., and Oliver, N (2017).
Beyond interruptibility: Predicting opportune moments to engage mobile phone users.

Model Type PR-AUC R@50%

Baseline 0.591 0.811

Logistic Regression 0.683 0.906

GBDT 0.686 0.917

Recurrent Neural Network 0.767 0.977

Improvement 11.8% 6.54%

Online Testing

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0 10 20 30 40 50 60

P
R

-A
U

C

Days since experiment start

RNN

GBDT

Results are stable over long time periods

31

System Architecture

20% 80%
Locally Globally

Server

0. Prefetch request

32

System Architecture

20% 80%
Locally Globally

Server Key Value
Store

1. Fetch hidden state0. Prefetch request

33

System Architecture

20% 80%
Locally Globally

Server

Inference
Service

Key Value
Store

2. Compute
prediction

1. Fetch hidden state0. Prefetch request

34

System Architecture

20% 80%
Locally Globally

Server

Inference
Service

Key Value
Store

2. Compute
prediction

1. Fetch hidden state

Logging
Service

3. Log features
and labels

0. Prefetch request

35

System Architecture

20% 80%
Locally Globally

Server

Inference
Service

Key Value
Store

2. Compute
prediction

1. Fetch hidden state

Logging
Service

3. Log features
and labels

4. Compute new
hidden states

5. Record new
hidden state

0. Prefetch request

Facebook company

Traditional Methods

36

•Manually engineered features
• 10-100s of aggregation feature

lookups per prediction
•Multiple KBs of storage required

per user
• ~0.1ms model latency

•Minimal feature engineering
• 1 key-value lookup per

prediction
• Tunable (128 dim ~= 0.5KB)

small storage cost per user
• ~1ms model latency

10x overall reduction in
compute costs

RNN Method

Facebook company 37

Precompute tasks, like application prefetching and cache
warmup, can be modeled well through ML

Recurrent neural networks achieve superior modeling
performance while reducing feature engineering time

RNNs also have surprisingly favorable characteristics when used
in large-scale systems

Summary

Thank you

