Ordering Chaos
Memory-Aware Scheduling for
Irregularly Wired Neural Networks on Edge Devices

Byung Hoon Ahn, Jinwon Lee, Jamie Lin, Hsin-Pai Cheng, Jilei Hou, Hadi Esmaeilzadeh

Qualcomw UC San Diego

Motivation: Enabling Intelligence, Transition from Cloud to Edge

Intelligence moving
from the Cloud to the Edge

Low Latency
Privacy

Reliability

Intelligence is moving from Cloud to Edge
for Low Latency, Privacy, and Reliability

Motivation: How to Make Deep Neural Networks More Efficient?

< h, <
0 Q
/ @ tanh
m / 1 It
/ elem.mult @ igentity
N BN ALy BN sy e -
(addm @ tanh
3 Towrey [EB0Weo Ay) sa .
& 343 AVG Poot 1 fuice=t) 23 DWCa / P __Myelem_mult
5 - - o™ e / swgmay @ g \me
owear !
CC= C =] L= sy ——m A
o = [rom | oy oo | | TN — T quemmat g —
7] BN tanh @sigmoid clem mut @ @ ,mhx ?/ N /
WM‘./Q :‘?s.g o 1 *Yocia sdmoa ton @ D e /
o \ /
ac Q¢ ace é:udpadu \ @ Qoo &aa Qadd Qdd @add §aga @add
AeLl ReLU AN \ elem_moft- = |
o) I}
(oY Ca
@ ®) © @

34-layer residual

pool /2

34-layer plain

VGG-19
image
pool,/2

Normal Cell Reduction Cell

=—I H
él §
§
#channels . é
——> [t e wider -~ - 1

10016114

MB3 3x:
B3 3x:
MB3 3x3
360737
Pooling FC

Tomexe
Tomaxe

20024
21607
21607
21607

deeper
204% 7038 \dense 4‘:—| % P
dense dense| ﬁ --layer_i ﬁ

(b) Efficient CPU model found by ProxylessNAS.

§ £ ¢ £ $ § § § § T T T T T T T T n 5w ononoowm
128 o lution HXW E '.,"higher‘ 7 higher E_E- HHUUUHUEHT %
ox " r:c;(ling Jom T [}reso ution HX _»_resolution _i_ 1 -*-resolutit === &
128 ax ;
f . . (c) Efficient mobile model found by ProxylessNAS.
pooling pooling) baseline (b) width (c) depth (d) resolution (e) compound

scaling scaling scaling scaling

Motivation: Irregularly Wired Neural Networks

@‘\ QLR Q
=)\ SN
o/ B SEAV VSO AW,) Irregular Wirings
N g
/ g’\\\\!)!"}7/@}/\‘ .:'
= %QQ
§9
i N
i 7%
Randomly Wired "
Neural Network SwiftNet
[ICCV’19] [ICCV-W’19]

These Efficient Networks comprise of many Irregular Wirings
We classify them as Irregularly Wired Neural Networks

Motivation: Emerging Class of DNNs for Resource Constrained Scenarios

85A 85A AmoebaNet-A
AmoebaNet-A By NASNet-A
= e ° RandWire DPN-131 R
- a s - cIeRAAIE - SENet
NASﬁet B AmoebaNet-B Pol \ oO DPN-131 OENet NASﬁet 4 Incegtion-%esNet V2°° O PolyNet
$ go Randwire m 00 |ception ResNet V2~ ReNeXt-101 X 80 ion\Va ReNeXt-101
< [|] s .__Inception V
2 s o (o Inception V4 > - O Xception
Xception ResNet-152 Inception V3

% Inception V3 ° % An.10ebaNet—C P OResNet-152
< < g RandWire
@ Inception V2 o Inception V2
2 75 |go 'ncep 2 75 n o
g 8 AmoebaNet-A g NASNct-A
g top left means is better o € top left means is better
- ShuffleNet - ShuffleNet
2 8 MobileNet 2 8 MobileNet
2 70 | o Inception V1 L 70 O Inception V1

@ irregularly wired neural networks @ irregularly wired neural networks

o regular topology neural networks o regular topology neural networks

65 > 65 >
0 10 20 30 40 0 20 40 60 80 100 120 140
Multiply-and-accumulate (Billions) Number of Parameters (Millions)

Certain class of networks require less Resources for same Accuracy
(a.k.a. More Efficient Networks)

Running Example: SwiftNet (ICCV-W’19)

Size (8bits) MACs Peak Mem ACC
249.7KB 57.4M ? 95.13%

Human Presence /

f / MaxPooi2D B
/

1x28x28x32 | 1x28x28x32

Weights(32x1x1x32) Weights(32x1x1x32)

bias32) bias(32) —~
S -ftN t C II C 1x28x28x32 \ ‘W :'~ 8x28x32 1x28x28x32
1x28x28x128

Conv2D

SwiftNet Cell B

1x28x28x32 | 1x28x28x32 1x28x28x64 1x28x28x32 1x28x28x32

Conv2D
Weights(32x1x1x64>
bias(32)

SwiftNet Cell A o
onv2
” welghts (32x1x1x32>
ias(6) bias(32) bias(32)
1x28x28x32 1x28x28x64 1x28x28x32
DepthwiseConv2D Conv2D ‘
" " " 162> 1x28x28x32 Concatenation
ias 32> bias(32> bias(32>
SeperableConv — — S
ConvaD
1x28x28x32

X76x28x32 8x28x32 1x28x28x32

Concatenation §

1x28x28x160

Conv2D
\ CnvZD Cm/Z‘D
? \ bias(48; : bias:

224x224 Input Image 5

Weights(48x1x1x160)
ias(as)

SwiftNet: Using Graph Propagation as Meta-knowledge to Search Highly Representative Neural Architectures: hsinpaic@gti.qualcomm.com; dave.cheng@duke.edu

mailto:hsinpaic@qti.qualcomm.com
mailto:dave.cheng@duke.edu

Running Example: SwiftNet (ICCV-W’19)

Size (8bits) MACs Peak Mem ACC
249.7KB 57.4M 800KB? 95.13%

P : Peak Memory Footprint:
¢ TensorFlowLite 800KB (> 250KB Requirement)

Today’s Frameworks are Oblivious to "Peak Memory Footprint" Issue
When it come to Irregularly Wired Neural Networks

SwiftNet: Using Graph Propagation as Meta-knowledge to Search Highly Representative Neural Architectures: hsinpaic@gti.qualcomm.com; dave.cheng@duke.edu

mailto:hsinpaic@qti.qualcomm.com
mailto:dave.cheng@duke.edu

Running Example: SwiftNet (ICCV-W’19) QI Output Activations

In memory

Size (8bits) MACs Peak Mem ACC
249.7KB 57.4M 200KB 95.13%

Activation memory (KB)
250

200 (=)

150 o0 00 00

100 . o0

50 @

4x improvement in

Peak memory footprint
(c.f., today’s TF Lite scheduler = 800KB)

SwiftNet: Using Graph Propagation as Meta-knowledge to Search Highly Representative Neural Architectures: hsinpaic@gti.qualcomm.com; dave.cheng@duke.edu

mailto:hsinpaic@qti.qualcomm.com
mailto:dave.cheng@duke.edu

We cannot rely on human expert for scheduling all the time

Manual Work Automation
Happy me ©

wEEE & Ky

Laziness drives innovations that improve productivity
- Steven Shapiro

Our Solution

Automated Solution: Serenity (Ordering Chaos)

flag = {‘'no solution’, ‘timeout’, ‘solution’}

Identity Adaptive Soft Dynamic Pro-
Graph Rewriter Budgeting JEMLIEH EEE
Scheduler
Rewrite graph to alleviate Adaptively manage Find memory-optimal
activation memory footprint Rewritten . ., soft budget to speed schedule given an in-
of the graph é\{aa& gg up scheduling put graph Schedule s*
ra

We propose an Automated Approach that:
0 Quickly finds a memory-optimal schedule for a fixed graph

Q Explores another dimension that alleviates the memory footprint of the graph

Search Space: Scheduling = Topological Ordering

?
g §>>
VS g % l l Order of
g (9 Execution
ol 9
SwiftNet Cell A AlexNet, VGGNet, ... ResNet

While Conventional Network (e.g. AlexNet, ...) execution is "streamlined”
Irregularly Wired Neural Network execution is "not streamlined”

Search Space: Scheduling = Topological Ordering

S

= ,\3100

£ 80

0 o 0.04% of schedules
A 5 60 .
03 are optimal
.E 6 40

©

5 9 20

g o

3 0

200 250 300 350 400
Peak Memory Footprint (KB)

SwiftNet Cell A

Search space is exponentially large and
Optimal solutions account for very very small fraction of the entire space

Brute Force Algorithm for Topological Ordering

€ Scheduled

® Schedulable X For memoization

zero-indegree set ——» /CT{ /(E%J)\
?@\@

Graph G

Search Step

<

/?\

g
@ {@%@ ©
~

Redundant zero-indegree set 2

Recursive Topological Ordering

Many zero-indegree sets are redundant
Optimizing this eliminates redundancy

Dynamic Programming Algorithm for Topological Ordering

Q Scheduled

® Schedulable X For memoization

&,

Graph g

©@®

Search Step

\/

e

e SN

A’B’C W

©0© 0O
t

Unique zero-indegree set 2

Dynamic Programming-based Topological Ordering

Dynamic Programming-based Topological Ordering
can speed-up the traversal of schedules significantly

Overlaying Problem Constraints

Q Scheduled To Schedule/Allocate @ To Deallocate

Activation Memory

.

(0) Initial State Q (E) G (1) 0

@O
@

SRS

s=®OOOOODQ

) Schedule/Allocate ® | @ O Q@ 0 ©® @

—— o —

S, =@@©®®®@®

ﬂ
J) outdegree of@: 1-0 Q ﬁ

outdegree of (E): 1 0 q ?
L -

Graph G 2) Deallocate © ® :G OMO G}I

Overlaying these constraints gives
Memory-optimal schedule of the nodes

Dynamic Programming-based Scheduling Q) Outeut Activations

In memory

Size (8bits) MACs Peak Mem ACC
249.7KB 57.4M 200KB 95.13%

5555555555

Activation memory (KB)
250

200 e o000
00000 000 OO
150 00 o 00

100 o O @

so @

4x Improvement in

Peak Memory Footprint
(c.f., today’s TF Lite scheduler = 800KB)

szszszszszsz

SwiftNet: Using Graph Propagation as Meta-knowledge to Search Highly Representative Neural Architectures: hsinpaic@gti.qualcomm.com; dave.cheng@duke.edu

mailto:hsinpaic@qti.qualcomm.com
mailto:dave.cheng@duke.edu

Identity Graph Rewriting

Z; 4t Input Yy Output wij jth Channel of " Kernel
1 T2 In T
\ / xl& 2] /x”
concat Dartlal
Channel-wise . . comv w%?}u
Partitioning conv Wr... W add
Y Y
Hrea = Yisize(z;) + size(y) Hpear = max(size(z;) + size(y

T1 wzl 7 [/
. concat partial
Kernel-wise . depth conv w%’;
Partitioning depth-conv Wt concat
Yy

Hpea = Ysize(z;) + size(y Hpeat = max(size(x;) + size(w;x;)

Graph Rewriting while maintaining the mathematical integrity
allows further reduction in Peak Memory Footprint

Dynamic Programming-based Scheduling + Graph Rewriting % Output Activations

In memory

Size (8bits) MACs Peak Mem ACC
249.7KB 57.4M 188KB 95.13%

5555555555

Activation memory (KB)
250

200
0 000

e0e000O® e s
100 ®

150

so @

1x28x28x32 Concatenation

12KB Further Improvement

with Graph Rewriting
(c.f., today’s TF Lite scheduler = 800KB)

szszszszszsz

SwiftNet: Using Graph Propagation as Meta-knowledge to Search Highly Representative Neural Architectures: hsinpaic@gti.qualcomm.com; dave.cheng@duke.edu

mailto:hsinpaic@qti.qualcomm.com
mailto:dave.cheng@duke.edu

Peak memory performance for different scheduling

Human Presence /

5555555555

SwiftNet Cell B

SwiftNet Cell A

SeperableConv

Conv2D

224x224 Input Image \ T

Scheduling Strategy Peak Mem Time
Manual Optimization + Partial Convolution 200KB 2 days
(Automatic) Dynamic Programming-based Scheduling 200KB ?
(Automatic) Dynamic Programming-based Scheduling + Graph Rewriting 188KB ?

Long Compile Time is Not Good for Mental Health

Pruning without Affecting Optimality

@ Scheduled ® Schedulable X For memoization
output activation size

.| ©6 ®s ®6 ®s

/? ?\ @3 @3 O3 @ s
«Hp/p !
%)

©

Graph G v

By setting an appropriate threshold,
some paths can be pruned without affecting optimality

Adaptive Soft Budgeting

n
X
)
2,1
c 1
o £ 1
v = 1

— I
D o :
L c |
S5 :
SE | Prohibitive
LlJ q" L] 1 -
G No Solution Scheduling
E Lg : Time
Q r
£
S
Z

>

Budget

Adaptive Soft Budgeting finds appropriate threshold
reducing the scheduling time significantly

Accelerating Automated Approach: Divide and Conquer

| g1 1A Sg: F@ g*
I | Schedule 1) Na%
R " 10

_ - - Concatenate 10!
| ‘/CED\A :92 Schedule I®|ng :%:
e " o 9

Divide Conquer Combine

@
S
RE

Many Irregularly Wired Neural Networks are Hourglass-shaped
that enables Divide-and-Conquer

Peak memory performance for different scheduling

Human Presence /

5555555555

SwiftNet Cell B

SwiftNet Cell A

SeperableConv

Conv2D

224x224 Input Image \ T

Scheduling Strategy Peak Mem Time
Manual Optimization + Partial Convolution 200KB 2 days
(Automatic) Dynamic Programming-based Scheduling 200KB seconds
(Automatic) Dynamic Programming-based Scheduling + Graph Rewriting 188KB minutes

Evaluation

Evaluation: Benchmark Irregularly Wired Neural Networks

Network Dataset # Weight Top-1
Accuracy*
[:érg,ig ImageNet 574.0M 4.7M 73.3%
[] Neural
Architecture
. Search
SwiftNet
i . . 19
[CVPR-C'19, ICCV-W’19)] Human Presence Detection 57.4M 249.7K 95.1%
CIFAR10 111.0M 1.2M 93.6%
Randomly Wired Random
Neural Networks Network
[ICCV’19] Generators
CIFAR100 160.0M 4.7M 74.5%

* Serenity does not affect accuracy

Evaluation: Reduction in Peak Memory Footprint

> 4.00 - v :

S Higher the better) | OTensorfow Lite

= - é N Dynamic Programming+Memory Allocator

% 3.00 s X & AN m Dynamic Programming+Graph RewritingtMemory Allocator
. 3 ~

N > 8 8 ~N ‘:\J’

8 % ~ ~

(a H o .

c 2.00 = 3 5 % x5

—_ ::::::::_ . (N- ~ N (\!

o N — — -

= 3

= 1.00 - -

U .,

-]

O

Q

X 0.00 - - -

Normal CellA CellB CellC CellA CellB CellA CellB CellC Geomean
DARTS SwiftNet RandWire RandWire
ImageNet Human Presence CIFAR1O CIFAR100

Serenity reduces the Peak Memory Footprint
by 1.68x without Graph Rewriting and 1.86x with Graph Rewriting

Evaluation: Reduction in Off-Chip Memory Communication

on-chip memory size
0 32KB [64KB 128KB _ _ m256KB

ion
H
3

] .5@<
[]
> n
o 1
'

-_%'}-t; SERENITY removes off-chip communication ;
O x <
L'E3.00 / 3 \:
o2 x o G
E o S A
c EZ 00 — x ¢ X ﬁ X xa
s3” D0 PET L
= AR oo~ SE
o> - el gl
= 21.00 ot ot i) o e e e e e] =
29 L<<< f
= LM | 222z | It 3 %
0.00 | i L - HEE :
Normal CellA CellB CellC CellA CellB Cell A CellB CellC Geomean
DARTS SwiftNet RandWire RandWire
ImageNet Human Presence CIFAR10 CIFAR100

Serenity also reduces off-chip memory communication
by 1.52x, 1.49x, 1.51x, and 1.76x for 32KB, 64KB, 128KB, and 256KB, respectively

Evaluation: Reduction in Off-Chip Memory Communication

on-chip memory size
0 32KB [64KB 128KB W 256KB

SERENITY removes off-chip communication

iy
o
=3

ion

chip

Reduction in Off-
Memory Communicat

< 2

0 = e

3.00 3 5 A ¢

1

x x x X N s
NANNS [X
oo ; 2 < 5 <O
AN = NS
2.00 — = LN < LN

s .E . ‘_i‘_iFi

§ | =

8 |

§ =

§ |

. _1.30x

=
o
<)
(]

only SEReNITY fits on-chi

only SEReNITY fits on

only

0.00 o : o .
Normal CellA CellB CellC CellA CellB CellA CellB CellC Geomean
DARTS SwiftNet RandWire RandWire

ImageNet Human Presence CIFAR10 CIFAR100

Serenity even eradicates off-chip memory communication

Evaluation: Scheduling Time

m

& 1000 o

c — i

8 o0 OO " un

@ o o >3

) hd » “w o w o S X

v 100 N LR Ao N N

E = s R RS

= [ﬂ ﬂ N

on wn s .. i

_g PR = sl i, ! i,

D — B Dynamic Programming+Memory Allocator

S]. m Dynamlc Programmmg+Graph Rewr|t|ng+Memory Allocator
Normal CeII A CeII B CellC CellA CellB Cell A CellB CellC Mean
DARTS SwiftNet RandWire RandWire
ImageNet Human Presence CIFAR10 CIFAR100

Average scheduling time of Serenity is under a minute for the benchmark models
Can be further improved by Porting from Python to C/C++

Summary and Takeaways

1.

Irregularly Wired Neural Networks are emerging class of Network Architectures with
many upsides in terms of efficiency, but current deep learning frameworks are
oblivious to the Peak Memory Footprint challenge they introduce.

We leverage Dynamic Programming-based Scheduling to find an optimal schedule;
devise a ldentity Graph Rewriting to further reduce Peak Memory Footprint; and
develop Adaptive Soft Budgeting and Divide-and-Conquer to minimize overhead

Future Directions

1 Expanding Applications or Revisiting the classical algorithms or compiler heuristics:
- Problems of optimizing memory communication and inference time can also benefit
from similar dynamic programming formulation

2. Using Machine Learning techniques to find good schedules in one-shot:
- Graph Neural Networks to parse and extract information from the graph
- Reinforcement Learning and other intelligent algorithms for scheduling

3. Exploring Other Dimensions of reducing intermediate activations:
- Quantization and Pruning are popular compression techniques
- Lossy/Lossless compression for intermediate activations are interesting future path

