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Motivation: Enabling Intelligence, Transition from Cloud to Edge

Intelligence moving
from the Cloud to the Edge

Low Latency
Privacy

Reliability

Intelligence is moving from Cloud to Edge
for Low Latency, Privacy, and Reliability



Motivation: How to Make Deep Neural Networks More Efficient?
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(b) Efficient CPU model found by ProxylessNAS.
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Motivation: Irregularly Wired Neural Networks

@‘\ QLR Q
=)\ SN
o/ B SEAV VSO AW, ) Irregular Wirings
N g
/ g’\\\\! )!"}7/@}/\‘ .:'
= %QQ
§9
i N
i 7%
Randomly Wired "
Neural Network SwiftNet
[ICCV’19] [ICCV-W’19]

These Efficient Networks comprise of many Irregular Wirings
We classify them as Irregularly Wired Neural Networks



Motivation: Emerging Class of DNNs for Resource Constrained Scenarios
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Certain class of networks require less Resources for same Accuracy
(a.k.a. More Efficient Networks)



Running Example: SwiftNet (ICCV-W’19)
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SwiftNet: Using Graph Propagation as Meta-knowledge to Search Highly Representative Neural Architectures: hsinpaic@gti.qualcomm.com; dave.cheng@duke.edu
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Running Example: SwiftNet (ICCV-W’19)

Size (8bits) MACs Peak Mem ACC
249.7KB 57.4M 800KB? 95.13%

P : Peak Memory Footprint:
¢ TensorFlowLite 800KB (> 250KB Requirement)

Today’s Frameworks are Oblivious to "Peak Memory Footprint" Issue
When it come to Irregularly Wired Neural Networks

SwiftNet: Using Graph Propagation as Meta-knowledge to Search Highly Representative Neural Architectures: hsinpaic@gti.qualcomm.com; dave.cheng@duke.edu
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Running Example: SwiftNet (ICCV-W’19) QI Output Activations

In memory

Size (8bits) MACs Peak Mem ACC
249.7KB 57.4M 200KB 95.13%
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4x improvement in

Peak memory footprint
(c.f., today’s TF Lite scheduler = 800KB)

SwiftNet: Using Graph Propagation as Meta-knowledge to Search Highly Representative Neural Architectures: hsinpaic@gti.qualcomm.com; dave.cheng@duke.edu
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We cannot rely on human expert for scheduling all the time

Manual Work Automation
Happy me ©
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Laziness drives innovations that improve productivity
- Steven Shapiro




Our Solution



Automated Solution: Serenity (Ordering Chaos)

flag = {‘'no solution’, ‘timeout’, ‘solution’}
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We propose an Automated Approach that:
0 Quickly finds a memory-optimal schedule for a fixed graph

Q Explores another dimension that alleviates the memory footprint of the graph



Search Space: Scheduling = Topological Ordering
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While Conventional Network (e.g. AlexNet, ...) execution is "streamlined”
Irregularly Wired Neural Network execution is "not streamlined”



Search Space: Scheduling = Topological Ordering
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Search space is exponentially large and
Optimal solutions account for very very small fraction of the entire space



Brute Force Algorithm for Topological Ordering
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Recursive Topological Ordering

Many zero-indegree sets are redundant
Optimizing this eliminates redundancy



Dynamic Programming Algorithm for Topological Ordering
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Dynamic Programming-based Topological Ordering

Dynamic Programming-based Topological Ordering
can speed-up the traversal of schedules significantly



Overlaying Problem Constraints
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Overlaying these constraints gives
Memory-optimal schedule of the nodes



Dynamic Programming-based Scheduling Q) Outeut Activations

In memory

Size (8bits) MACs Peak Mem ACC
249.7KB 57.4M 200KB 95.13%
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4x Improvement in

Peak Memory Footprint
(c.f., today’s TF Lite scheduler = 800KB)
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SwiftNet: Using Graph Propagation as Meta-knowledge to Search Highly Representative Neural Architectures: hsinpaic@gti.qualcomm.com; dave.cheng@duke.edu
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Identity Graph Rewriting

Z; 4t Input Yy Output wij  jth Channel of " Kernel
1 T2 In T
\ / xl& 2] /x”
concat Dartlal
Channel-wise . . comv w%?}u
Partitioning conv Wr... W add
Y Y
Hrea = Yisize(z;) + size(y) Hpear = max(size(z;) + size(y

T1 wzl 7 [ /
. concat partial
Kernel-wise . depth conv w%’;
Partitioning depth-conv Wt concat
Yy

Hpea = Ysize(z;) + size(y Hpeat = max(size(x;) + size(w;x;)

Graph Rewriting while maintaining the mathematical integrity
allows further reduction in Peak Memory Footprint



Dynamic Programming-based Scheduling + Graph Rewriting % Output Activations

In memory

Size (8bits) MACs Peak Mem ACC
249.7KB 57.4M 188KB 95.13%
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(c.f., today’s TF Lite scheduler = 800KB)
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SwiftNet: Using Graph Propagation as Meta-knowledge to Search Highly Representative Neural Architectures: hsinpaic@gti.qualcomm.com; dave.cheng@duke.edu
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Peak memory performance for different scheduling

Human Presence /
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Scheduling Strategy Peak Mem Time
Manual Optimization + Partial Convolution 200KB 2 days
(Automatic) Dynamic Programming-based Scheduling 200KB ?
(Automatic) Dynamic Programming-based Scheduling + Graph Rewriting 188KB ?




Long Compile Time is Not Good for Mental Health




Pruning without Affecting Optimality
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By setting an appropriate threshold,
some paths can be pruned without affecting optimality



Adaptive Soft Budgeting
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Adaptive Soft Budgeting finds appropriate threshold
reducing the scheduling time significantly



Accelerating Automated Approach: Divide and Conquer
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Many Irregularly Wired Neural Networks are Hourglass-shaped
that enables Divide-and-Conquer



Peak memory performance for different scheduling
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Scheduling Strategy Peak Mem Time
Manual Optimization + Partial Convolution 200KB 2 days
(Automatic) Dynamic Programming-based Scheduling 200KB seconds
(Automatic) Dynamic Programming-based Scheduling + Graph Rewriting 188KB minutes




Evaluation



Evaluation: Benchmark Irregularly Wired Neural Networks

Network Dataset # Weight Top-1
Accuracy*
[:érg,ig ImageNet 574.0M 4.7M 73.3%
[ ] Neural
Architecture
. Search
SwiftNet
i . . 19
[CVPR-C'19, ICCV-W’19)] Human Presence Detection 57.4M 249.7K 95.1%
CIFAR10 111.0M 1.2M 93.6%
Randomly Wired Random
Neural Networks Network
[ICCV’19] Generators
CIFAR100 160.0M 4.7M 74.5%

* Serenity does not affect accuracy




Evaluation: Reduction in Peak Memory Footprint
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Serenity reduces the Peak Memory Footprint
by 1.68x without Graph Rewriting and 1.86x with Graph Rewriting



Evaluation: Reduction in Off-Chip Memory Communication
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Serenity also reduces off-chip memory communication
by 1.52x, 1.49x, 1.51x, and 1.76x for 32KB, 64KB, 128KB, and 256KB, respectively



Evaluation: Reduction in Off-Chip Memory Communication
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Serenity even eradicates off-chip memory communication



Evaluation: Scheduling Time
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Average scheduling time of Serenity is under a minute for the benchmark models
Can be further improved by Porting from Python to C/C++



Summary and Takeaways

1.

Irregularly Wired Neural Networks are emerging class of Network Architectures with
many upsides in terms of efficiency, but current deep learning frameworks are
oblivious to the Peak Memory Footprint challenge they introduce.

We leverage Dynamic Programming-based Scheduling to find an optimal schedule;
devise a ldentity Graph Rewriting to further reduce Peak Memory Footprint; and
develop Adaptive Soft Budgeting and Divide-and-Conquer to minimize overhead



Future Directions

1 Expanding Applications or Revisiting the classical algorithms or compiler heuristics:
- Problems of optimizing memory communication and inference time can also benefit
from similar dynamic programming formulation

2. Using Machine Learning techniques to find good schedules in one-shot:
- Graph Neural Networks to parse and extract information from the graph
- Reinforcement Learning and other intelligent algorithms for scheduling

3. Exploring Other Dimensions of reducing intermediate activations:
- Quantization and Pruning are popular compression techniques
- Lossy/Lossless compression for intermediate activations are interesting future path



