
© Copyright 2020 Xilinx

Trained Quantization Thresholds (TQT)

for Accurate and Efficient Fixed-Point Inference of Deep Neural Networks

Sambhav Jain^*, Albert Gural#*, Michael Wu^, Chris Dick^

^Xilinx Inc., #Stanford University (*equal contribution)

March 3, 2020

© Copyright 2020 Xilinx

Background & Motivation

2

© Copyright 2020 Xilinx

Uniform Quantization

input

output

3

© Copyright 2020 Xilinx

Uniform Quantization

input

output

real domain quantized domain

Affine Mapping

4

© Copyright 2020 Xilinx

Uniform Quantization

input

output

real domain quantized domain

Affine Mapping

quantization parameters

5

© Copyright 2020 Xilinx

Threshold Selection

6

© Copyright 2020 Xilinx

Say 4-bit quantizer

 16 quantization levels

 Clipping thresholds: dotted red lines (min, max)

 Poor utilization of available precision

Threshold Selection

7

© Copyright 2020 Xilinx

Threshold Selection

8

Say 4-bit quantizer

 16 quantization levels

 Clipping thresholds: blue lines

 Better utilization of available precision

© Copyright 2020 Xilinx

Threshold Selection

1 Statistical Methods

Calibration

KL divergence minimization

SQNR maximization

Percentile / nSD initialization

…

2 Gradient Descent Methods

Google’s QAT (Jacob et al., 2017)

IBM’s PACT (Choi et al., 2018)

Xilinx’s TQT (Jain et al., 2019)

…

9

© Copyright 2020 Xilinx

Quantizer “Degrees of Freedom”

Hardware Friendliness

Accuracy (Easy Network)

Accuracy (Hard Network)

General case Special case

10

© Copyright 2020 Xilinx

Quantizer “Degrees of Freedom”

General case

asymmetric symmetric

Special case

Hardware Friendliness

Accuracy (Easy Network)

Accuracy (Hard Network)

11

© Copyright 2020 Xilinx

Quantizer “Degrees of Freedom”

General case

asymmetric symmetric

per-channel per-tensor

Special case

Hardware Friendliness

Accuracy (Easy Network)

Accuracy (Hard Network)

12

© Copyright 2020 Xilinx

Quantizer “Degrees of Freedom”

General case

asymmetric symmetric

per-channel per-tensor

real-valued scaling power-of-2 scaling

Special case

Hardware Friendliness

Accuracy (Easy Network)

Accuracy (Hard Network)

13

© Copyright 2020 Xilinx

MobileNets are hard to quantize

asymmetric symmetric

per-channel per-tensor

real-valued scaling power-of-2 scaling

Hardware Friendliness

Degrees of Freedom

(Krishnamoorthi, 2018)

real-valued scaling

14

© Copyright 2020 Xilinx

MobileNets are hard to quantize

asymmetric symmetric

per-channel per-tensor

real-valued scaling power-of-2 scaling

Hardware Friendliness

Degrees of Freedom

(Krishnamoorthi, 2018)

real-valued scaling

15

© Copyright 2020 Xilinx

MobileNets are hard to quantize

asymmetric symmetric

per-channel per-tensor

real-valued scaling power-of-2 scaling

Hardware Friendliness

Degrees of Freedom

(Krishnamoorthi, 2018)

real-valued scaling

16

© Copyright 2020 Xilinx

MobileNets are hard to quantize – Why?

Dynamic range of weights (per-channel) in first depthwise

separable layer of MobileNet v2 (Nagel et al., 2019)

Weight distribution in first depthwise

separable layer of MobileNet v1

17

© Copyright 2020 Xilinx

With TQT: MobileNets can be quantized well

asymmetric symmetric

per-channel per-tensor

real-valued scaling power-of-2 scaling

Hardware Friendliness

Degrees of Freedom

ours

18

© Copyright 2020 Xilinx

Trained Quantization Thresholds

19

© Copyright 2020 Xilinx

Implementation

Forward Pass Backward Pass

20

© Copyright 2020 Xilinx

Implementation

Backward PassForward Pass

21

© Copyright 2020 Xilinx

Implementation

Backward PassForward Pass

(Straight-Through Estimator)

22

In the backward pass, approximate gradients of round/ceil to 1, without approximating round/ceil to be identity

© Copyright 2020 Xilinx

Implementation

Backward PassForward Pass

(Straight-Through Estimator)

23

non-zero!

© Copyright 2020 Xilinx

Implementation

Backward PassForward Pass

(Straight-Through Estimator)

24

non-zero!

© Copyright 2020 Xilinx

Transfer Curves

Threshold Gradient
Input Gradient

Toy L2 loss

25

© Copyright 2020 Xilinx

Range Precision Trade-off

(Update Rule)

26

© Copyright 2020 Xilinx

Clipped Threshold Gradients

PACT’s threshold gradients:

27

© Copyright 2020 Xilinx

Clipped Threshold Gradients

PACT’s threshold gradients

QAT’s threshold gradients (FakeQuant)

28

© Copyright 2020 Xilinx

Distributions after TQT retraining

29

© Copyright 2020 Xilinx

Results

30

© Copyright 2020 Xilinx

github.com/Xilinx/graffitist

31

© Copyright 2020 Xilinx

Tool for Neural Net Optimizations

32

Input Graph
Output Graph

--transforms

Intermediate Graphspattern

matcher

pattern

manipulator

<transform 1> <transform 2> <transform 3>

© Copyright 2020 Xilinx

Quantization Layer for TQT (unfused)

33

© Copyright 2020 Xilinx

Layer Precisions

Conv/FC

Eltwise Add

Concat

Avgpool

34

© Copyright 2020 Xilinx

BatchNorm folding (adopt best practices from Jacob et al., 2017)

 Ensure folded batch norms in training and inference graphs are mathematically equivalent

 Apply batch norm corrections (reduce training jitter by switching between batch and moving
average statistics)

 Freeze batch norm moving mean and variance updates post convergence for improved
accuracy

Explicitly merging input scales for scale preserving ops such as concat, bias-

add, eltwise-add, and maximum (for leaky relu)

Collapsing concat-of-concat layers into single concat, splicing identity nodes

Modeling average pool layers as depthwise conv layers with reciprocal

multiplier as weights to enable quantization

Graph Optimizations

35

© Copyright 2020 Xilinx

Thank You

© Copyright 2020 Xilinx

Backup

37

© Copyright 2020 Xilinx

Quantized

Training Graph

Quantized

Inference Graph
Calibration Set

Training

Platform (TF)

Dataset

Input Graph

TQT - Components

38

© Copyright 2020 Xilinx

Static Mode

Input Graph

Quantized

Inference Graph
Calibration Set

Training

Platform (TF) *.ckpt

Quantized

Training Graph

*.pb, *.ckpt

Dataset

39

© Copyright 2020 Xilinx

*.pb, *.ckpt

Quantized

Training Graph

Quantized

Inference Graph
Calibration Set

*.pb

*.ckpt

*.pb, *.ckpt

Step 1: Train on the original input graph (or use pre-trained weights)

Training

Platform (TF)

Dataset

Input Graph

Retrain Mode

40

© Copyright 2020 Xilinx

Retrain Mode

Training

Platform (TF)

Input Graph

Dataset

Quantized

Training Graph

Quantized

Inference Graph
Calibration Set

*.pb

*.ckpt

*.pb, *.ckpt

Step 2: Generate quantized training graph; calibrate thresholds

*.pb, *.ckpt

41

© Copyright 2020 Xilinx

Retrain Mode

Training

Platform (TF)

Input Graph

Dataset

Quantized

Training Graph

Quantized

Inference Graph
Calibration Set

*.pb

*.ckpt

*.pb, *.ckpt

Step 3: Retrain quantized training graph (learn weights & thresholds)

*.pb, *.ckpt

TQT Retraining

42

© Copyright 2020 Xilinx

Retrain Mode

Training

Platform (TF)

Input Graph

Dataset

Quantized

Training Graph

Quantized

Inference Graph
Calibration Set

*.pb

*.ckpt

*.pb, *.ckpt

Step 4: Generate quantized inference graph for compiler

*.pb, *.ckpt

43

