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Threshold Selection
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Say 4-bit quantizer

 16 quantization levels

 Clipping thresholds: dotted red lines (min, max)

 Poor utilization of available precision

Threshold Selection
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Threshold Selection 
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Say 4-bit quantizer

 16 quantization levels

 Clipping thresholds: blue lines

 Better utilization of available precision
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Threshold Selection 

1 Statistical Methods

Calibration

KL divergence minimization

SQNR maximization

Percentile / nSD initialization

…

2 Gradient Descent Methods

Google’s QAT (Jacob et al., 2017)

IBM’s PACT (Choi et al., 2018)

Xilinx’s TQT (Jain et al., 2019)

…
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Quantizer “Degrees of Freedom”
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MobileNets are hard to quantize
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MobileNets are hard to quantize
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MobileNets are hard to quantize – Why?

Dynamic range of weights (per-channel) in first depthwise

separable layer of MobileNet v2 (Nagel et al., 2019)

Weight distribution in first depthwise

separable layer of MobileNet v1
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With TQT: MobileNets can be quantized well
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Trained Quantization Thresholds
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Implementation

Forward Pass Backward Pass
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Implementation
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Implementation

Backward PassForward Pass

(Straight-Through Estimator)
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In the backward pass, approximate gradients of round/ceil to 1, without approximating round/ceil to be identity
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Implementation

Backward PassForward Pass

(Straight-Through Estimator)
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non-zero!
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Implementation

Backward PassForward Pass

(Straight-Through Estimator)
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non-zero!
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Transfer Curves

Threshold Gradient
Input Gradient

Toy L2 loss
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Range Precision Trade-off

(Update Rule)
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Clipped Threshold Gradients

PACT’s threshold gradients:
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Clipped Threshold Gradients

PACT’s threshold gradients

QAT’s threshold gradients (FakeQuant)
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Distributions after TQT retraining

29



© Copyright 2020 Xilinx

Results
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github.com/Xilinx/graffitist
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Tool for Neural Net Optimizations

32

Input Graph
Output Graph

--transforms

Intermediate Graphspattern

matcher

pattern

manipulator

<transform 1> <transform 2> <transform 3>
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Quantization Layer for TQT (unfused)
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Layer Precisions

Conv/FC

Eltwise Add

Concat

Avgpool
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BatchNorm folding (adopt best practices from Jacob et al., 2017)

 Ensure folded batch norms in training and inference graphs are mathematically equivalent

 Apply batch norm corrections (reduce training jitter by switching between batch and moving 
average statistics)

 Freeze batch norm moving mean and variance updates post convergence for improved 
accuracy

Explicitly merging input scales for scale preserving ops such as concat, bias-

add, eltwise-add, and maximum (for leaky relu)

Collapsing concat-of-concat layers into single concat, splicing identity nodes

Modeling average pool layers as depthwise conv layers with reciprocal 

multiplier as weights to enable quantization

Graph Optimizations
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Thank You
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Backup
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Static Mode
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*.pb, *.ckpt
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Step 1: Train on the original input graph (or use pre-trained weights)
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Retrain Mode
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Step 2: Generate quantized training graph; calibrate thresholds
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Retrain Mode
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Step 3: Retrain quantized training graph (learn weights & thresholds)

*.pb, *.ckpt

TQT Retraining
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Retrain Mode
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Step 4: Generate quantized inference graph for compiler

*.pb, *.ckpt

43


