
Riptide: Fast End-to-End
Binarized Neural Networks

Josh Fromm, Meghan Cowan, Matthai Philipose, Luis Ceze, and Shwetak Patel

2Canziani et al., “An analysis of deep neural network models for practical applications.” 2016

• Quantize floats to +/-1
• 1.122 * -3.112 ==> 1 * -1
• Notice:

• 1 * 1 = 1
• 1 * -1 = -1
• -1 * 1 = -1
• -1 * -1 = 1

• Replacing -1 with 0, this is
just XNOR
• Retrain model to

convergence

1.2 3.12 -11.2 3.4 -2.12 -132.1 … 0.2 -121.1, …

0b110100…1 0xD0…

64 floats

64 bits

A[:64] . W[:64] == popc(A/64 XNOR W/64)

1-bit Matrix Operations

3Rastegari et al., “Xnor-net: Imagenet classification using binary convolutional neural networks.” 2016

float x[], y[], w[];
...
for i in 1…N:

y[j] += x[i] * w[i];

unsigned long x[], y[], w[];
…
for i in 1…N/64:

y[j] += 64 – 2*popc(not(x_b[i] xor w_b[i]));

2N ops

3N/64 ops

~40x faster
32x smaller

Typically, lose ~10% accuracy

1-bit Matrix Operations: Cost/Benefit

4Rastegari et al., “Xnor-net: Imagenet classification using binary convolutional neural networks.” 2016

32x smaller

float x[], y[], w[];
...
for i in 1…N:

y[j] += x[i] * w[i];

unsigned long x[], y[], w[];
…
for i in 1…N/64:

y[j] += 64 – 2*popc(not(x_b[i] xor w_b[i]));

2N ops

3N/64 ops

~40x faster

Typically, lose ~10% accuracy

1-bit Matrix Operations: Cost/Benefit

5Rastegari et al., “Xnor-net: Imagenet classification using binary convolutional neural networks.” 2016

~40x faster

1-bit Matrix Operations: Cost/Benefit

6

1-bit Matrix Operations: Cost/Benefit

7

Runtime

380 ms

Unoptimized Binary Network

1904 ms

Full Precision Baseline

Implementation Challenges

CPUs have no native support for low bit data types
Need to work on packed data

Need to implement optimizations from scratch
Optimizations tuned for specific CPU

uint1 uint2

Optimized linear algebra libraries
Hardware support for conventional deep learning

No optimized linear algebra libraries like BLAS to leverage

Baselines incredibly well optimized

8

Are Binary Networks Actually Fast?

Majority of work in binarization is simulated

• Which binarization techniques can be implemented efficiently?

• What are the runtime bottlenecks in a binary model?

• How do I deploy a fast binary model on my platform?

To address these questions we introduce Riptide.

9

10

A one-stop solution to training and deploying fast
binary networks on a variety of hardware platforms.

• Addresses implementation issues in mixed polarity
quantization

• Introduces the Fused Glue operation, removing all floating-
point arithmetic from binary models.

• Provides high-performance bitserial operators through TVM.

• Yields 4-12X speedups across various models and bitwidths
while maintaining state-of-the-art accuracy.

• Available open-source today at github.com/jwfromm/Riptide

Implementing Binary Layers

11

features: float array

=

…
kernels: float array

activations: float array

Multiply
Accumulate

Implementing Binary Layers

12

features: float array

=

…
kernels: float array

activations: float array

Multiply
Accumulate

features: int array

QA

Implementing Binary Layers

13

features: float array

=

…
kernels: float array

activations: float array

Multiply
Accumulate

QA

features: int array

QW

…
kernels: int array

Implementing Binary Layers

14

features: float array

=

…
kernels: float array

activations: int array

QA

features: int array

QW

…
kernels: int array

Bitserial
Accumulate

0 1-1

Quantization Function: !𝑥 = 𝑥 > 0

Quantization Polarity

0 1-1

Quantization Function: !𝑥 = 𝑠𝑖𝑔𝑛(𝑥)

Bipolar Quantization Unipolar Quantization

• Implemented with bitwise-xnor and popcount
• Well-suited for weights, which represent

correlation (1) or inverse-correlation (-1)

• Implemented with bitwise-and and popcount
• Well-suited for activations, which represent

pattern-match (1) or no pattern-match (0)
15

Quantization Polarity

• XnorNet (all bipolar) -> 44.2% accuracy
• DorefaNet (bipolar weights unipolar activations) -> 50.0% accuracy

16Zhou et al., “DoReFa-Net: Training Low Bitwidth Convolutional Neural Networks with Low Bitwidth Gradients.” 2016

1 1 0 1 0 1 …A (unipolar)

0 1 0 0 1 0 …W (bipolar)

0 1 0 -1 0 -1 …Expected
=

Multiple meanings of 0 bits causes mixed polarity to unimplementable

Mixed Polarity Operation

17

Count number of bit
multiplications where output
should be 1

Subtract cases where output
should be -1

• Enables mixed polarity binary networks
• Doubles amount of inner loop compute but does not require additional memory operations
• Mixed polarity may offer compelling points on speedup to accuracy versus pure bipolar

Multibit Quantization

18

0 1

Quantization Function: !𝑥 = 𝑙𝑖𝑛𝑒𝑎𝑟(𝑥)

.3 .6

• Translates naturally to integer representation
• Does not necessarily fit distribution

Zhou et al., “DoReFa-Net: Training Low Bitwidth Convolutional Neural Networks with Low Bitwidth Gradients.” 2016

Multibit Quantization

19

Quantization Function: !𝑥 = 𝐻𝑊𝐺𝑄(𝑥)

Cai et al., “Deep Learning with Low Precision by Half-wave Gaussian Quantization.” 2017

.2 2.1.6 1.1

• Better fit for Gaussian distribution
• Not implementable

Multibit Quantization

20Cai et al., “Deep Learning with Low Precision by Half-wave Gaussian Quantization.” 2017

.2 2.1.6 1.1

Bit pair: 00 01 10 11

Value is based on unique bit pair rather than
combination of bits, (01 + 10 ≠ 11)

Unique bit combinations lost during popcount

Implementing Binary Layers

21

features: float array

=

…
kernels: float array

128

128

256

activations: int array

QA

features: int array

QW

…
kernels: int array

Bitwise
Accumulate

1-bit bipolar quantization

N-bit linear bipolar or
unipolar quantization

Xnor-popcount /
mixed polarity-popcount

Implementing Binary Models

22

Full Precision

Binary

QConvConv QConv QConv QDenseQConv

Implementing Binary Models

23

Full Precision

Binary

QConvConv QConv QConv QDenseQConv

BatchN
orm

Dequantize

W
eightScale

Activation

Q
uantize

Bitpack

Computational Complexity: 4𝐻𝑊𝐹 𝐻𝑊𝐹 4𝐻𝑊𝐹 𝐻𝑊𝐹 5𝐻𝑊𝐹 3𝐻𝑊𝐹 𝑁𝐾𝐾𝐹𝐻𝑊𝐶
43

Estimated Impact of Glue Layers

• Impact of glue layers is too high

• We must derive binarized glue
for decent end-to-end
speedups

24

Weight Scaling

25

Qconv

W

𝛼? = 𝑚𝑒𝑎𝑛(𝑊?)
𝑞 𝑎 = 𝛼?𝑎

Qconv

• Introduced in XnorNet

• Allows scale of weights to be preserved

• Brought accuracy from 27% to 44%

• Now used ubiquitously

Rastegari et al., “Xnor-net: Imagenet classification using binary convolutional neural networks.” 2016

Quantized Weight Scaling

26

Qconv

W

𝛼? = 𝑚𝑒𝑎𝑛(𝑊?)
𝑞 𝑎 = 𝛼?𝑎

Qconv

Rastegari et al., “Xnor-net: Imagenet classification using binary convolutional neural networks.” 2016

• Use approximate power of 2 (AP2)

• Replaces multiply with bitwise shift

• Constant at inference time

• Requires only a single instruction

BatchNormalization

• Centers and scales output activations

• Essential for quantization, used in all binary techniques

• Must derive quantized versions of both centering and scaling

𝜇? =
C
D
∑FGCD (𝑎F) 𝜎?I =

C
D
∑FGCD (𝑎F − 𝜇?)I K𝑎F =

LM N OP

QP
RS T

27Ioffe et al., “Batch Normalization: Accelerating Deep Network Training by Reducing Internal Covariate Shift.” 2015

Binary Scaling

• We can simply compute the AP2 of standard deviation

28

Binary Center

To add a constant to a binarized tensor, we must use Fixed Point
Quantization (FPQ) with the same bits and scale

29

1 1 1 1 0 1 1 0 …

N-bit input to
next layer

wb fractional
bits 𝐵 = 𝑁 + 𝑤𝑏

1
1
2 +

1
4 +

1
8 +⋯

𝑆 = 1 +\
FGC

]^
1

2_ − 1 (`
1
2)

F

= 1 +
1

2_ − 1 (1 −
1
2]^)�̂� = 𝐹𝑃𝑄(𝜇, 𝐵, 𝑆)

Fused Glue Operation

30

𝐵 = 𝑁 + 𝑤𝑏 𝑆 = 1 +
1

2_ − 1 (1 −
1
2]^)

�̂� = 𝐹𝑃𝑄(𝜇, 𝐵, 𝑆)

This is the fused glue operation

All terms are constant at runtime except 𝑎

Only requires two integer operations

Fully Binarized Network

31

Full Precision Binary

QConv QConv

BatchN
orm

Dequantize

W
eightScale

Activation

Q
uantize

Bitpack
Computational Complexity: 4𝐻𝑊𝐹 𝐻𝑊𝐹 4𝐻𝑊𝐹 𝐻𝑊𝐹 5𝐻𝑊𝐹 3𝐻𝑊𝐹 Total = 18𝐻𝑊𝐹

QConv QConv

Bitpack
Computational Complexity: 2𝐻𝑊𝐹 𝐻𝑊𝐹 3𝐻𝑊𝐹 Total = 6𝐻𝑊𝐹

Fused G
lue

Clip

Traditional
Binary
Network

Fully
Binarized
Network

• 3X fewer glue operations

• No floating-point data

• No multiplication or division

FBN Accuracy

• Our system is comparable to
state-of-the-art techniques

• Unipolar quantization yields
higher accuracies as expected

• Effective across various models

32

Measurement Platform

33

Raspberry Pi
ARM Cortex-A53

• Widely available and inexpensive

• Representative of IoT devices
• QualComm Snapdragons
• Azure Sphere

• Resource constrained / in need of acceleration

Separates compute and implementation into a declaration and schedule
Schedules contain knobs that are attuned for the backend

Tensor Expression Language

AutoTVM: Optimize Tensor Operators

Schedule Optimization Space

…

…

Optimizing deep learning compiler

34Chen et al., “TVM: An Automated End-to-End Optimizing Compiler for Deep Learning.” 2018

TVM Schedule Intrinsics

• Tiling: Break computation into chunks for better locality

• Vectorization: Use hardware SIMD instructions for more efficient
operation execution.

• Parallelization: Leverage MIMD facilities such as multiple cores.

• Loop Unrolling: Replicate the body of loops to reduce overhead.

35Chen et al., “Learning to Optimize Tensor Programs.” 2019

Fast Popcount

36

_efg
h

Bytes

2𝑁𝐻𝑊𝐶 Bytes

2𝑁𝐻𝑊𝐶 Bytes

_efg
h

Bytes

BinaryConvInt-16

𝑐j 𝑐I𝑐C 𝑐k 𝑐_.Int-16 Popcount
Accumulation

𝑥j 𝑥C 𝑥I 𝑥k 𝑥m 𝑥n 𝑥o 𝑥p 𝑥h 𝑥q 𝑥_. . .Int-N Bit Packed
Activations

Int-8

Fused Shift/ScaleInt-N

𝑞j 𝑞I𝑞C 𝑞k .Int-16 Quantized
Prepacked Bits

𝑞_

Int-16 Unused

Bit Pack

𝑦j 𝑦C 𝑦I 𝑦k 𝑦m 𝑦n 𝑦o 𝑦p 𝑦h 𝑦q 𝑦_. . .Int-N Bit Packed
Outputs

Int-8

𝑥j 𝑥C 𝑥I 𝑥k 𝑥m 𝑥n 𝑥o 𝑥p 𝑥h 𝑥q 𝑥_. . . _efg
h

Bytes

BinaryConv

𝑐j 𝑐I𝑐C 𝑐k 𝑐_. 2𝑁𝐻𝑊𝐶 Bytes

Int-N Bit Packed
Activations

Int-16 Popcount
Accumulation

Fused Shift/Scale

Int-16

𝑞j 𝑞I𝑞C 𝑞k .Int-16 Quantized
Prepacked Bits

𝑞_ 2𝑁𝐻𝑊𝐶 Bytes

Bit Pack

𝑦j 𝑦C 𝑦I 𝑦k 𝑦m 𝑦n 𝑦o 𝑦p 𝑦h 𝑦q 𝑦_. . .Int-N Bit Packed
Outputs

Int-8

_efg
h

Bytes

Int-16 Unused

Int-8

Int-N

Bitpack Fusion

Impact of Optimizations

• Combination of TVM
optimizations gives 12X
Speedup over baseline

• Each optimization has a
significant impact

• Speedups from bitpack fusion
are due to fewer memory
operations

• With a high-quality
implementation, we can study
our design choices

39

Optimization Ablation Study

• Removing any optimization has
a significant impact on
performance

• Using fused glue gives nearly a
2X speedup, as predicted by
opcount estimates

40

Glue Layer Impact

• Glue consistently takes a similar
amount of time as core
compute layers

• Our fused glue operation
almost completely removes this
cost

41

Impact of Polarity

• Baseline is near optimal

• Quantized layers have much
more memory overhead

• Although unipolar quantization
has twice as many operations, it
is only marginally slower than
bipolar quantization

42

Cumulative Speedup

43

Layerwise Speedup

• Speedup is not consistent
across layers

• May be possible to design a
network of binarizable layers

44

Thank You!

Code:

45

Paper:

Backup Slides

46

47

