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• Quantize floats to +/-1
• 1.122 * -3.112  ==> 1 * -1
• Notice:

• 1 *  1 =  1
• 1 * -1 = -1
• -1 *  1 = -1
• -1 * -1  =  1

• Replacing -1 with 0, this is 
just XNOR
• Retrain model to 

convergence

1.2  3.12  -11.2  3.4  -2.12 -132.1  … 0.2   -121.1, …

0b110100…1  0xD0…  

64 floats

64 bits

A[:64] . W[:64] == popc(A/64 XNOR W/64)

1-bit Matrix Operations

3Rastegari et al., “Xnor-net: Imagenet classification using binary convolutional neural networks.” 2016



float x[], y[], w[];
...
for i in 1…N:

y[j] += x[i] * w[i];

unsigned long x[], y[], w[];
…
for i in 1…N/64:

y[j] += 64 – 2*popc(not(x_b[i] xor w_b[i]));

2N ops

3N/64 ops

~40x faster
32x smaller

Typically, lose ~10% accuracy

1-bit Matrix Operations: Cost/Benefit

4Rastegari et al., “Xnor-net: Imagenet classification using binary convolutional neural networks.” 2016



32x smaller
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~40x faster

1-bit Matrix Operations: Cost/Benefit
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1-bit Matrix Operations: Cost/Benefit

7

Runtime

380 ms

Unoptimized Binary Network

1904 ms

Full Precision Baseline



Implementation Challenges

CPUs have no native support for low bit data types
Need to work on packed data

Need to implement optimizations from scratch
Optimizations tuned for specific CPU

uint1 uint2

Optimized linear algebra libraries
Hardware support for conventional deep learning

No optimized linear algebra libraries like BLAS to leverage

Baselines incredibly well optimized
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Are Binary Networks Actually Fast?

Majority of work in binarization is simulated

• Which binarization techniques can be implemented efficiently?

• What are the runtime bottlenecks in a binary model?

• How do I deploy a fast binary model on my platform?

To address these questions we introduce Riptide.
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A one-stop solution to training and deploying fast 
binary networks on a variety of hardware platforms.

• Addresses implementation issues in mixed polarity 
quantization

• Introduces the Fused Glue operation, removing all floating-
point arithmetic from binary models.

• Provides high-performance bitserial operators through TVM.

• Yields 4-12X speedups across various models and bitwidths
while maintaining state-of-the-art accuracy.

• Available open-source today at github.com/jwfromm/Riptide



Implementing Binary Layers
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features: float array

=

…
kernels: float array

activations: float array

Multiply 
Accumulate



Implementing Binary Layers
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features: int array
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Implementing Binary Layers
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kernels: float array
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Implementing Binary Layers
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features: float array

=

…
kernels: float array

activations: int array

QA

features: int array

QW

…
kernels: int array

Bitserial
Accumulate



0 1-1

Quantization Function: !𝑥 = 𝑥 > 0

Quantization Polarity

0 1-1

Quantization Function: !𝑥 = 𝑠𝑖𝑔𝑛(𝑥)

Bipolar Quantization Unipolar Quantization

• Implemented with bitwise-xnor and popcount
• Well-suited for weights, which represent 

correlation (1) or inverse-correlation (-1)

• Implemented with bitwise-and and popcount
• Well-suited for activations, which represent 

pattern-match (1) or no pattern-match (0)
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Quantization Polarity

• XnorNet (all bipolar) -> 44.2% accuracy
• DorefaNet (bipolar weights unipolar activations) -> 50.0% accuracy

16Zhou et al., “DoReFa-Net: Training Low Bitwidth Convolutional Neural Networks with Low Bitwidth Gradients.” 2016

1  1  0  1  0  1  …A (unipolar)

0  1  0  0  1  0  …W (bipolar)

0  1  0 -1  0 -1  …Expected
=

Multiple meanings of 0 bits causes mixed polarity to unimplementable



Mixed Polarity Operation

17

Count number of bit 
multiplications where output 
should be 1

Subtract cases where output 
should be -1

• Enables mixed polarity binary networks
• Doubles amount of inner loop compute but does not require additional memory operations
• Mixed polarity may offer compelling points on speedup to accuracy versus pure bipolar



Multibit Quantization
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0 1

Quantization Function: !𝑥 = 𝑙𝑖𝑛𝑒𝑎𝑟(𝑥)

.3 .6

• Translates naturally to integer representation
• Does not necessarily fit distribution

Zhou et al., “DoReFa-Net: Training Low Bitwidth Convolutional Neural Networks with Low Bitwidth Gradients.” 2016



Multibit Quantization
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Quantization Function: !𝑥 = 𝐻𝑊𝐺𝑄(𝑥)

Cai et al., “Deep Learning with Low Precision by Half-wave Gaussian Quantization.” 2017

.2 2.1.6 1.1

• Better fit for Gaussian distribution
• Not implementable



Multibit Quantization

20Cai et al., “Deep Learning with Low Precision by Half-wave Gaussian Quantization.” 2017

.2 2.1.6 1.1

Bit pair:       00             01                   10                11

Value is based on unique bit pair rather than 
combination of bits, (01 + 10 ≠ 11)

Unique bit combinations lost during popcount



Implementing Binary Layers
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features: float array

=

…
kernels: float array

128

128

256

activations: int array

QA

features: int array

QW

…
kernels: int array

Bitwise 
Accumulate

1-bit bipolar quantization

N-bit linear bipolar or 
unipolar quantization

Xnor-popcount / 
mixed polarity-popcount



Implementing Binary Models
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Full Precision

Binary

QConvConv QConv QConv QDenseQConv



Implementing Binary Models
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Full Precision

Binary

QConvConv QConv QConv QDenseQConv

BatchN
orm

Dequantize

W
eightScale

Activation

Q
uantize

Bitpack

Computational Complexity: 4𝐻𝑊𝐹 𝐻𝑊𝐹 4𝐻𝑊𝐹 𝐻𝑊𝐹 5𝐻𝑊𝐹 3𝐻𝑊𝐹 𝑁𝐾𝐾𝐹𝐻𝑊𝐶
43



Estimated Impact of Glue Layers

• Impact of glue layers is too high

• We must derive binarized glue 
for decent end-to-end 
speedups
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Weight Scaling
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Qconv

W

𝛼? = 𝑚𝑒𝑎𝑛( 𝑊? )
𝑞 𝑎 = 𝛼?𝑎

Qconv

• Introduced in XnorNet

• Allows scale of weights to be preserved

• Brought accuracy from 27% to 44%

• Now used ubiquitously

Rastegari et al., “Xnor-net: Imagenet classification using binary convolutional neural networks.” 2016



Quantized Weight Scaling
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Qconv

W

𝛼? = 𝑚𝑒𝑎𝑛( 𝑊? )
𝑞 𝑎 = 𝛼?𝑎

Qconv

Rastegari et al., “Xnor-net: Imagenet classification using binary convolutional neural networks.” 2016

• Use approximate power of 2 (AP2)

• Replaces multiply with bitwise shift

• Constant at inference time

• Requires only a single instruction



BatchNormalization

• Centers and scales output activations

• Essential for quantization, used in all binary techniques

• Must derive quantized versions of both centering and scaling

𝜇? =
C
D
∑FGCD (𝑎F) 𝜎?I =

C
D
∑FGCD (𝑎F − 𝜇?)I K𝑎F =

LM N OP

QP
RS T

27Ioffe et al., “Batch Normalization: Accelerating Deep Network Training by Reducing Internal Covariate Shift.” 2015



Binary Scaling

• We can simply compute the AP2 of standard deviation

28



Binary Center

To add a constant to a binarized tensor, we must use Fixed Point 
Quantization (FPQ) with the same bits and scale
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1  1  1  1  0  1  1  0 …

N-bit input to 
next layer 

wb fractional 
bits 𝐵 = 𝑁 + 𝑤𝑏
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Fused Glue Operation
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𝐵 = 𝑁 + 𝑤𝑏 𝑆 = 1 +
1

2_ − 1 (1 −
1
2]^)

�̂� = 𝐹𝑃𝑄(𝜇, 𝐵, 𝑆)

This is the fused glue operation

All terms are constant at runtime except 𝑎

Only requires two integer operations



Fully Binarized Network
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Full Precision Binary

QConv QConv

BatchN
orm

Dequantize

W
eightScale

Activation

Q
uantize

Bitpack
Computational Complexity: 4𝐻𝑊𝐹 𝐻𝑊𝐹 4𝐻𝑊𝐹 𝐻𝑊𝐹 5𝐻𝑊𝐹 3𝐻𝑊𝐹 Total = 18𝐻𝑊𝐹

QConv QConv

Bitpack
Computational Complexity: 2𝐻𝑊𝐹 𝐻𝑊𝐹 3𝐻𝑊𝐹 Total = 6𝐻𝑊𝐹

Fused G
lue

Clip

Traditional 
Binary 
Network

Fully 
Binarized 
Network

• 3X fewer glue operations

• No floating-point data

• No multiplication or division



FBN Accuracy

• Our system is comparable to 
state-of-the-art techniques

• Unipolar quantization yields 
higher accuracies as expected

• Effective across various models

32



Measurement Platform

33

Raspberry Pi
ARM Cortex-A53

• Widely available and inexpensive

• Representative of IoT devices
• QualComm Snapdragons
• Azure Sphere

• Resource constrained / in need of acceleration



Separates compute and implementation into a declaration and schedule
Schedules contain knobs that are attuned for the backend

Tensor Expression Language

AutoTVM: Optimize Tensor Operators

Schedule Optimization Space

…

…

Optimizing deep learning compiler

34Chen et al., “TVM: An Automated End-to-End Optimizing Compiler for Deep Learning.” 2018



TVM Schedule Intrinsics

• Tiling: Break computation into chunks for better locality

• Vectorization: Use hardware SIMD instructions for more efficient 
operation execution.

• Parallelization: Leverage MIMD facilities such as multiple cores.

• Loop Unrolling: Replicate the body of loops to reduce overhead.

35Chen et al., “Learning to Optimize Tensor Programs.” 2019



Fast Popcount
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Impact of Optimizations

• Combination of TVM 
optimizations gives 12X 
Speedup over baseline

• Each optimization has a 
significant impact

• Speedups from bitpack fusion 
are due to fewer memory 
operations

• With a high-quality 
implementation, we can study 
our design choices 
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Optimization Ablation Study

• Removing any optimization has 
a significant impact on 
performance

• Using fused glue gives nearly a 
2X speedup, as predicted by 
opcount estimates
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Glue Layer Impact

• Glue consistently takes a similar 
amount of time as core 
compute layers

• Our fused glue operation 
almost completely removes this 
cost
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Impact of Polarity

• Baseline is near optimal

• Quantized layers have much 
more memory overhead

• Although unipolar quantization 
has twice as many operations, it 
is only marginally slower than 
bipolar quantization
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Cumulative Speedup
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Layerwise Speedup

• Speedup is not consistent 
across layers

• May be possible to design a 
network of binarizable layers
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Thank You!

Code:
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Paper:



Backup Slides
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