Riptide: Fast End-to-End Binarized Neural Networks

Josh Fromm, Meghan Cowan, Matthai Philipose, Luis Ceze, and Shwetak Patel

<table>
<thead>
<tr>
<th>Device / Platform</th>
<th>GFLOPS</th>
<th>GFLOPS/W</th>
<th>Sec/Frame</th>
<th>WS/Frame</th>
<th>Cost</th>
</tr>
</thead>
<tbody>
<tr>
<td>1 Raspberry Pi-zero</td>
<td>0.32</td>
<td>0.24</td>
<td>56.42</td>
<td>75.01</td>
<td>$22</td>
</tr>
<tr>
<td>2 Raspberry Pi3</td>
<td>3.62</td>
<td>0.81</td>
<td>4.97</td>
<td>22.14</td>
<td>$37</td>
</tr>
<tr>
<td>3 Snapdragon 835</td>
<td>11.5</td>
<td>1.44</td>
<td>1.56</td>
<td>12.50</td>
<td>$13 (bulk)</td>
</tr>
<tr>
<td>4 Haswell i7-4790</td>
<td>181</td>
<td>1.68</td>
<td>0.10</td>
<td>10.71</td>
<td>$380</td>
</tr>
<tr>
<td>5 Titan V</td>
<td>15000</td>
<td>60</td>
<td>0.0012</td>
<td>0.3</td>
<td>$3000</td>
</tr>
</tbody>
</table>

The diagram shows a scatter plot comparing the top-1 accuracy and operations (G-Ops) for various deep neural network models, including Inception-v3, Inception-v4, ResNet-50, ResNet-101, ResNet-152, VGG-16, and VGG-19. The size of the circles represents the parameter size of each model.
1-bit Matrix Operations

- Quantize floats to +/-1
- $1.122 \times -3.112 \Rightarrow 1 \times -1$
- Notice:
 - $1 \times 1 = 1$
 - $1 \times -1 = -1$
 - $-1 \times 1 = -1$
 - $-1 \times -1 = 1$
- Replacing -1 with 0, this is just XNOR
- Retrain model to convergence

1-bit Matrix Operations: Cost/Benefit

```c
float x[], y[], w[];
...
for i in 1...N:
    y[j] += x[i] * w[i];
    2N ops

unsigned long x[], y[], w[];
...
for i in 1...N/64:
    y[j] += 64 - 2*popc(not(x_b[i] xor w_b[i]));
    3N/64 ops
```

Typically, lose ~10% accuracy

1-bit Matrix Operations: Cost/Benefit

float x[], y[], w[];
...
for i in 1...N:
 y[j] += x[i] * w[i];

unsigned long x[], y[], w[];
...
for i in 1...N/64:
 y[j] += 64 - 2*popc(not(x_b[i] xor w_b[i]));

Typically, lose ~10% accuracy

1-bit Matrix Operations: Cost/Benefit

~40x faster
1-bit Matrix Operations: Cost/Benefit

Runtime

1904 ms
380 ms

Full Precision Baseline
Unoptimized Binary Network
Implementation Challenges

No optimized linear algebra libraries like BLAS to leverage

- Need to implement optimizations from scratch
- Optimizations tuned for specific CPU
- CPUs have no native support for low bit data types
- Need to work on packed data

Baselines incredibly well optimized

- Optimized linear algebra libraries
- Hardware support for conventional deep learning
Are Binary Networks Actually Fast?

Majority of work in binarization is simulated

• Which binarization techniques can be implemented efficiently?

• What are the runtime bottlenecks in a binary model?

• How do I deploy a fast binary model on my platform?

To address these questions we introduce Riptide.
A one-stop solution to training and deploying fast binary networks on a variety of hardware platforms.

- Addresses implementation issues in mixed polarity quantization
- Introduces the Fused Glue operation, removing all floating-point arithmetic from binary models.
- Provides high-performance bitserial operators through TVM.
- Yields 4-12X speedups across various models and bitwidths while maintaining state-of-the-art accuracy.
- Available open-source today at github.com/jwfromm/Riptide
Implementing Binary Layers

\[\text{features: float array} \otimes \text{kernels: float array} = \text{activations: float array} \]

- Multiply
- Accumulate
Implementing Binary Layers

features: float array

features: int array

kernels: float array

Multiply

Accumulate

= activations: float array
Implementing Binary Layers

features: float array
QH

kernels: float array

... ...

features: int array

kernels: int array

activations: float array

Multiply Accumulate

=
Implementing Binary Layers

features: float array

kernels: float array

activations: int array

features: int array

kernels: int array

Bitserial Accumulate

=
Quantization Polarity

Quantization Function: $\bar{x} = \text{sign}(x)$

- Bipolar Quantization
 - Implemented with bitwise-xnor and popcount
 - Well-suited for weights, which represent correlation (1) or inverse-correlation (-1)

- Unipolar Quantization
 - Implemented with bitwise-and and popcount
 - Well-suited for activations, which represent pattern-match (1) or no pattern-match (0)
Quantization Polarity

- XnorNet (all bipolar) -> 44.2% accuracy
- DorefaNet (bipolar weights unipolar activations) -> 50.0% accuracy

A (unipolar) \(\times \) 1 1 0 1 0 1 ...
W (bipolar) = 0 1 0 0 1 0 ...
Expected = 0 1 0 -1 0 -1 ...

Multiple meanings of 0 bits causes mixed polarity to unimplementable

Mixed Polarity Operation

\[a \cdot w = \sum_{n=0}^{N-1} 2^N (\text{popc}(a_n \land w) - \text{popc}(a_n \land \neg w)) \]

- Enables mixed polarity binary networks
- Doubles amount of inner loop compute but does not require additional memory operations
- Mixed polarity may offer compelling points on speedup to accuracy versus pure bipolar
Multibit Quantization

Quantization Function: $\tilde{x} = \text{linear}(x)$

- Translates naturally to integer representation
- Does not necessarily fit distribution

Multibit Quantization

Quantization Function: $\tilde{x} = HWGQ(x)$

- Better fit for Gaussian distribution
- Not implementable

Cai et al., “Deep Learning with Low Precision by Half-wave Gaussian Quantization.” 2017
Multibit Quantization

Value is based on unique bit pair rather than combination of bits, \((01 + 10 \neq 11)\)

Cai et al., "Deep Learning with Low Precision by Half-wave Gaussian Quantization." 2017
Implementing Binary Layers

- **features**: float array
- **kernels**: float array
- **activations**: int array

- **features**: int array
- **kernels**: int array
- **Bitwise Accumulate**

1-bit bipolar quantization

N-bit linear bipolar or unipolar quantization

Xnor-popcount / mixed polarity-popcount
Implementing Binary Models

- **Conv**
- QConv
- QConv
- QConv
- QConv
- QDense

Legend:
- Full Precision
- Binary
Implementing Binary Models

Computational Complexity: $\frac{NKKFHWNC}{43}$
Estimated Impact of Glue Layers

- Impact of glue layers is too high
- We must derive binarized glue for decent end-to-end speedups
Weight Scaling

\[\alpha_k = mean(|W_k|) \]

\[q(a) = \alpha_k a \]

- Introduced in XnorNet
- Allows scale of weights to be preserved
- Brought accuracy from 27% to 44%
- Now used ubiquitously

Quantized Weight Scaling

\[q(a) = \alpha_k a \]

- Use approximate power of 2 (AP2)
- Replaces multiply with bitwise shift
- Constant at inference time
- Requires only a single instruction

\[AP2(x) = 2^{\text{round}(\log_2(|x|))} \]
\[wb = -\log_2(AP2(\alpha_k)) \]
\[q(a) = (a + (1 \ll (wb - 1))) \gg wb \]

BatchNormalization

• Centers and scales output activations

• Essential for quantization, used in all binary techniques

• Must derive quantized versions of both centering and scaling

\[
\mu_k = \frac{1}{m} \sum_{i=1}^{m} (a_i) \\
\sigma_k^2 = \frac{1}{m} \sum_{i=1}^{m} (a_i - \mu_k)^2 \\
\hat{a}_i = \frac{a_i - \mu_k}{\sqrt{\sigma_k^2 + \epsilon}}
\]

Binary Scaling

• We can simply compute the AP2 of standard deviation

\[AP2(x) = 2^{\text{round}(\log_2(|x|))} \]

\[wb = -\log_2(AP2(\alpha_k)) \]

\[sb = \log_2(AP2(\sqrt{\sigma_k^2 + \epsilon})) \]

\[q(a) = (a + (1 \ll (wb - 1))) \gg (wb + sb) \]
Binary Center

To add a constant to a binarized tensor, we must use Fixed Point Quantization (FPQ) with the same bits and scale.

Algorithm 9: Fixed point quantization (FPQ) function.

Input: a tensor X to quantize to B bits with scale S

Output: B-bit quantized tensor Y

1. $\hat{X} = \text{clip}(X, -S, S)$
2. $g = \frac{S}{2^{b-1}}$ // Compute granularity
3. $Y = \text{round}(\frac{\hat{X}}{g})$

$$\hat{\mu} = \text{FPQ}(\mu, B, S)$$

N-bit input to next layer
wb fractional bits

$$B = N + wb$$

$$S = 1 + \sum_{i=1}^{wb} \frac{1}{2^{2N-1}} \left(\frac{1}{2}\right)^i$$

$$= 1 + \frac{1}{2^{2N-1}} \left(1 - \frac{1}{2^{wb}}\right)$$
Fused Glue Operation

\[AP2(x) = 2^{\text{round}(\log_2(|x|))} \]
\[wb = -\log_2(AP2(\alpha_k)) \]
\[sb = \log_2(AP2(\sqrt{\sigma_k^2 + \epsilon})) \]
\[q(a) = (a + (1 \ll (wb - 1))) \gg (wb + sb) \]

This is the fused glue operation

All terms are constant at runtime except \(a \)

Only requires two integer operations

\[B = N + wb \]
\[S = 1 + \frac{1}{2^N - 1} \left(1 - \frac{1}{2^{wb}} \right) \]
\[\hat{\mu} = FPQ(\mu, B, S) \]
\[cb = (1 \ll (wb - 1)) - \hat{\mu} \]
\[q(a) = (a + cb) \gg (wb + sb) \]
Fully Binarized Network

Traditional Binary Network

Computational Complexity: $4HWF\ HWF\ 4HWF\ HWF\ 5HWF\ 3HWF\ \text{Total} = 18HWF$

- QConv
- Dequantize
- WeightScale
- BatchNorm
- Activation
- Quantize
- Bitpack
- QConv

Fully Binarized Network

Computational Complexity: $2HWF\ HWF\ 3HWF\ \text{Total} = 6HWF$

- QConv
- Fused Glue
- Clip
- Bitpack
- QConv

- 3X fewer glue operations
- No floating-point data
- No multiplication or division
FBN Accuracy

<table>
<thead>
<tr>
<th>Model</th>
<th>Name</th>
<th>1-bit</th>
<th>2-bit</th>
<th>3-bit</th>
<th>full precision</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>AlexNet</td>
<td>44.2%</td>
<td>—</td>
<td>—</td>
<td>56.6%</td>
</tr>
<tr>
<td>2</td>
<td>AlexNet</td>
<td>27.9%</td>
<td>—</td>
<td>—</td>
<td>—</td>
</tr>
<tr>
<td>3</td>
<td>AlexNet</td>
<td>43.6%</td>
<td>49.8%</td>
<td>48.4%</td>
<td>55.9%</td>
</tr>
<tr>
<td>4</td>
<td>AlexNet</td>
<td>43.3%</td>
<td>51.0%</td>
<td>—</td>
<td>56.6%</td>
</tr>
<tr>
<td>5</td>
<td>AlexNet</td>
<td>52.7%</td>
<td>—</td>
<td>—</td>
<td>58.5%</td>
</tr>
<tr>
<td>6</td>
<td>VGGNet</td>
<td>64.1%</td>
<td>—</td>
<td>—</td>
<td>69.8%</td>
</tr>
<tr>
<td>7</td>
<td>AlexNet</td>
<td>44.5%</td>
<td>52.5%</td>
<td>53.6%</td>
<td>56.5%</td>
</tr>
<tr>
<td>8</td>
<td>AlexNet</td>
<td>42.8%</td>
<td>50.4%</td>
<td>52.4%</td>
<td>56.5%</td>
</tr>
<tr>
<td>9</td>
<td>VGGNet</td>
<td>64.2%</td>
<td>67.1%</td>
<td>72.7%</td>
<td></td>
</tr>
<tr>
<td>10</td>
<td>VGGNet</td>
<td>54.4%</td>
<td>61.5%</td>
<td>65.2%</td>
<td>72.7%</td>
</tr>
<tr>
<td>11</td>
<td>ResNet18</td>
<td>47.9%</td>
<td>58.4%</td>
<td>61.8%</td>
<td>70.9%</td>
</tr>
</tbody>
</table>

- Our system is comparable to state-of-the-art techniques
- Unipolar quantization yields higher accuracies as expected
- Effective across various models
Measurement Platform

Raspberry Pi
ARM Cortex-A53

- Widely available and inexpensive
- Representative of IoT devices
 - Qualcomm Snapdragons
 - Azure Sphere
- Resource constrained / in need of acceleration
Separates compute and implementation into a declaration and schedule.
Schedules contain knobs that are attuned for the backend.

Tensor Expression Language
Schedule Optimization Space
AutoTVM: Optimize Tensor Operators

Chen et al., “TVM: An Automated End-to-End Optimizing Compiler for Deep Learning.” 2018
TVM Schedule Intrinsics

- **Tiling**: Break computation into chunks for better locality

- **Vectorization**: Use hardware SIMD instructions for more efficient operation execution.

- **Parallelization**: Leverage MIMD facilities such as multiple cores.

- **Loop Unrolling**: Replicate the body of loops to reduce overhead.
Fast Popcount

LLVM 8.0

x8	vmovl.8	q0, d0
vmovl.8	q2, d1	
vand	q0, q0, q2	
vcnt.8	q0, q0	
vpaddl.8	q0, q0	
vadd.16	q1, q0, q0	
vst1.16	q1, addr	

Total: 49

Synthesized

x8	vand.8	d0, d0, d1
vcnt.8	d0, d0	
vadd.8	d0, d0, d1	
vpadal.8	q1, {d0,d1}	
vst1.16	q1, addr	

Total: 24
Int-N Bit Packed Activations

x_0 \ x_1 \ x_2 \ x_3 \ x_4 \ x_5 \ x_6 \ x_7 \ x_8 \ x_9 \ \ \ \ \ x_N

\[\frac{NHWC}{8}\] Bytes

Int-16 Popcount Accumulation

c_0 \ c_1 \ c_2 \ c_3 \ \ \ \ \ c_N

2\[NHWC\] Bytes

Int-16 Quantized Prepacked Bits

q_0 \ q_1 \ q_2 \ q_3 \ \ \ \ \ q_N

2\[NHWC\] Bytes

Int-N Bit Packed Outputs

y_0 \ y_1 \ y_2 \ y_3 \ y_4 \ y_5 \ y_6 \ y_7 \ y_8 \ y_9 \ \ \ \ \ y_N

\[\frac{NHWC}{8}\] Bytes

BinaryConv

Fused Shift/Scale

Bit Pack

Bitpack Fusion
Impact of Optimizations

- Combination of TVM optimizations gives 12X Speedup over baseline
- Each optimization has a significant impact
- Speedups from bitpack fusion are due to fewer memory operations
- With a high-quality implementation, we can study our design choices
Optimization Ablation Study

- Removing any optimization has a significant impact on performance.
- Using fused glue gives nearly a 2X speedup, as predicted by opcount estimates.
Glue Layer Impact

• Glue consistently takes a similar amount of time as core compute layers

• Our fused glue operation almost completely removes this cost
Impact of Polarity

- Baseline is near optimal
- Quantized layers have much more memory overhead
- Although unipolar quantization has twice as many operations, it is only marginally slower than bipolar quantization
Cumulative Speedup

Polarity = Unipolar

Relative Speedup

Squeezenet	Vggnet Model	Alexnet
10 | 8 | 6

Polarity = Bipolar

Relative Speedup

Squeezenet	Vggnet Model	Alexnet
12 | 10 | 8

Bitwidth
- 1
- 2
- 3
Layerwise Speedup

- Speedup is not consistent across layers
- May be possible to design a network of binarizable layers
Thank You!

Code:

Paper:
Backup Slides
<table>
<thead>
<tr>
<th>Model</th>
<th>Name</th>
<th>1-bit</th>
<th>2-bit</th>
<th>3-bit</th>
<th>full precision</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>ImageNet top-1 accuracy / Runtime (ms)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1</td>
<td>AlexNet Xnor-Net [48]</td>
<td>44.2%</td>
<td>—</td>
<td>—</td>
<td>56.6%</td>
</tr>
<tr>
<td>2</td>
<td>AlexNet BNN [12]</td>
<td>27.9%</td>
<td>—</td>
<td>—</td>
<td>—</td>
</tr>
<tr>
<td>3</td>
<td>AlexNet DoReFaNet [63]</td>
<td>43.6%</td>
<td>49.8%</td>
<td>48.4%</td>
<td>55.9%</td>
</tr>
<tr>
<td>4</td>
<td>AlexNet QNN [27]</td>
<td>43.3%</td>
<td>51.0%</td>
<td>—</td>
<td>56.6%</td>
</tr>
<tr>
<td>5</td>
<td>AlexNet HWGQ [4]</td>
<td>—</td>
<td>52.7%</td>
<td>—</td>
<td>58.5%</td>
</tr>
<tr>
<td>6</td>
<td>VGGNet HWGQ [4]</td>
<td>—</td>
<td>64.1%</td>
<td>—</td>
<td>69.8%</td>
</tr>
<tr>
<td>7</td>
<td>AlexNet Riptide-unipolar (ours)</td>
<td>44.5%</td>
<td>52.5%</td>
<td>53.6%</td>
<td>56.5%</td>
</tr>
<tr>
<td></td>
<td></td>
<td>150.4</td>
<td>196.8</td>
<td>282.8</td>
<td>1260.0</td>
</tr>
<tr>
<td>8</td>
<td>AlexNet Riptide-bipolar (ours)</td>
<td>42.8%</td>
<td>50.4%</td>
<td>52.4%</td>
<td>56.5%</td>
</tr>
<tr>
<td></td>
<td></td>
<td>122.7</td>
<td>154.6</td>
<td>207.0</td>
<td>1260.0</td>
</tr>
<tr>
<td>9</td>
<td>VGGNet Riptide-unipolar (ours)</td>
<td>56.8%</td>
<td>64.2%</td>
<td>67.1%</td>
<td>72.7%</td>
</tr>
<tr>
<td></td>
<td></td>
<td>243.8</td>
<td>387.2</td>
<td>610.0</td>
<td>2420.0</td>
</tr>
<tr>
<td>10</td>
<td>VGGNet Riptide-bipolar (ours)</td>
<td>54.4%</td>
<td>61.5%</td>
<td>65.2%</td>
<td>72.7%</td>
</tr>
<tr>
<td></td>
<td></td>
<td>184.1</td>
<td>271.4</td>
<td>423.5</td>
<td>2420.0</td>
</tr>
<tr>
<td>11</td>
<td>ResNet18 Riptide-unipolar (ours)</td>
<td>47.9%</td>
<td>58.4%</td>
<td>61.8%</td>
<td>70.9%</td>
</tr>
<tr>
<td></td>
<td></td>
<td>76.2</td>
<td>112.0</td>
<td>152.3</td>
<td>380.8</td>
</tr>
</tbody>
</table>