Riptide: Fast End-to-Enad
Binarized Neural Networks

Josh Fromm, Meghan Cowan, Matthai Philipose, Luis Ceze, and Shwetak Patel

w S= Microsoft
OctoML

Inception-v4
80 1 .
ResNet-soo : VGG-16 VGG-19
7571 ResNet-101
. ResNet-34
=
= 70 1 ResNet-18
2 | 0P
© GooglLeNet
2 ENet
5 65 -
—~
: BN-NIN
& o parameter size
" 601 | 5M 35M 65M 95M 125M ---155M
BN-AlexNet
35 AlexNet
50 L) L L] L L] L) L
0 5 10 15 20 25 30 35 40
Operations [G-Ops]
Device / Platform GFLOPS GFLOPS/W Sec/Frame WS/Frame Cost
1 Raspberry Pi-zero 0.32 0.24 56.42 75.01 $22
2 Raspberry Pi3 3.62 0.81 4.97 22.14 $37
3 Snapdragon 835 11.5 1.44 1.56 12.50 $13 (bulk)
4 Haswell i7-4790 181 1.68 0.10 10.71 $380
5 Titan V 15000 60 0.0012 3 $3000

Canziani et al., “An analysis of deep neural network models for practical applications.” 2016

1-bit Matrix Operations

* Quantize floats to +/-1
e 1.122 *-3.112 ==>1*-1

* Notice:
J

\

e 1*1=1
¢ 1*-1=-1
« 1% 1=-1

-121.1, ..

P _ 64 bits
1*-1=1 0b110100..1 OxDO...

* Replacing -1 with 0, this is
Just XNOR == popc(A 6 XNOR W g,)

 Retrain model to
convergence

Rastegari et al., “Xnor-net: Imagenet classification using binary convolutional neural networks.” 2016

1-bit Matrix Operations: Cost/Benefit

float x[1, vI[], wl];

for 1 in 1. N
y[7]
\/ ~40x faster
A 32x smaller
unsigned long x| yll, wil; 3N/64 ops

for i in 1.N/64: (/////

y[J] += 064 - Z2*popc(not(x bl[1] xor w b[1]));

Typically, lose ~10% accuracy

_ B R L . B 4
Rastegari et al., “Xnor-net: Imagenet classification using binary convolutional neural networks.” 2016

1-bit Matrix Operations: Cost/Benefit

float x[1, vI[], wl];

for 1 in 1. N
y[7]
\/ ~40x faster
A 32x smaller
unsigned long x| yll, wil; 3N/64 ops

for i in 1.N/64: (/////

y[J] += 064 - Z2*popc(not(x bl[1] xor w b[1]));

Typically, lose ~10% accuracy

Rastegari et al., “Xnor-net: Imagenet classification using binary convolutional neural networks.” 2016

1-bit Matrix Operations: Cost/Benefit

1-bit Matrix Operations: Cost/Benefit

Runtime

1904 ms

380 ms

Full Precision Baseline Unoptimized Binary Network

Implementation Challenges

No optimized linear algebra libraries like BLAS to leverage

Need to implement optimizations from scratch
Optimizations tuned for specific CPU

CPUs have no native support for low bit data types
Need to work on packed data

Baselines incredibly well optimized

Optimized linear algebra libraries

Math Kernel Hardware support for conventional deep learning

Library

Are Binary Networks Actually Fast?

Majority of work in binarization is simulated
* Which binarization techniques can be implemented efficiently?

 What are the runtime bottlenecks in a binary model?

 How do | deploy a fast binary model on my platform?

To address these questions we introduce Riptide.

Riptide

A one-stop solution to training and deploying fast
binary networks on a variety of hardware platforms.

Addresses implementation issues in mixed polarity
quantization

Introduces the Fused Glue operation, removing all floating-
point arithmetic from binary models.

Provides high-performance bitserial operators through TVM.

Yields 4-12X speedups across various models and bitwidths
while maintaining state-of-the-art accuracy.

Available open-source today at github.com/jwfromm/Riptide

10

Implementing Binary Layers

kernels: float array
features: float array DE M. O activations: float array

.:>%]

Multiply
Accumulate

Implementing Binary Layers

kernels: float array
features: float array features: int array ODom.. O activations: float array

Q .:>% :]

Multiply | |
— = Accumulate .

Implementing Binary Layers

kernels: float array

O aOno.. O

O

kernels: int array

O00no.. O

features: float array features: int array activations: float array

Q .:>% :]

Multiply | |
— = Accumulate .

Implementing Binary Layers

kernels: float array

O oono.. O

O

kernels: int array

O00no.. O

features: float array features: int array activations: int array

Q |:>% : .

Bitserial ||
— = Accumulate .

Quantization Polarity

Bipolar Quantization

_ N

-1 0 1
Quantization Function: X = sign(x)
* Implemented with bitwise-xnor and popcount

* Well-suited for weights, which represent
correlation (1) or inverse-correlation (-1)

Unipolar Quantization

N

-1 0 1

Quantization Function: X = x > 0

* Implemented with bitwise-and and popcount
* Well-suited for activations, which represent
pattern-match (1) or no pattern-match (0)

15

Quantization Polarity

e XnorNet (all bipolar) -> 44.2% accuracy
* DorefaNet (bipolar weights unipolar activations) -> 50.0% accuracy

A (unipolar)

W (bipolar)

Expected

Multiple meanings of 0 bits causes mixed polarity to unimplementable

Mixed Polarity Operation

N—1
a-w= E 2V (popc(a, N w) — pope(a, ANw))
n=0 Count number of bit Subtract cases where output
multiplications where output should be -1
should be 1

* Enables mixed polarity binary networks
* Doubles amount of inner loop compute but does not require additional memory operations
* Mixed polarity may offer compelling points on speedup to accuracy versus pure bipolar

Multibit Quantization

* Translates naturally to integer representation
e Does not necessarily fit distribution

r—

0 3 .6 1

Quantization Function: X = linear(x)

Zhou et al., “DoReFa-Net: Training Low Bitwidth Convolutional Neural Networks with Low Bitwidth Gradients.” 2016 18

Multibit Quantization

T~

2 .6 1.1 2.1

Quantization Function: X = HWGQ(x)

Cai et al., “Deep Learning with Low Precision by Half-wave Gaussian Quantization.” 2017

Better fit for Gaussian distribution
Not implementable

19

Multibit Quantization

| Driginal Data 2 ol11]3 olol1]1
l uint32
I Bitplanes
10|01
: uintl
1
| . 0011 3
I Bitpacked Data = 0011 | = | 3
, uinta 1001 9
[
[\
1 . .
| —~— | Bitserial Dot Product
] 1x|popcount (3&3)| + 2x popcount(3&9) = 4
2 .6 1.1 2.1
o Unique bit combinations lost during popcount
Bit pair: 00 01 10 11

Value is based on unique bit pair rather than
combination of bits, (01 + 10 # 11)

Cai et al., “Deep Learning with Low Precision by Half-wave Gaussian Quantization.” 2017 20

Implementing Binary Layers

features: float array

O

features: int array

N-bit linear bipolar or
unipolar gquantization

kernels: float array

O O00..Od

Q 1-bit bipolar quantization

kernels: int array

O0a0a..O0

activations: int array

'||\256

e -

Bitwise ||
Accumulate .

Xnor-popcount /
mixed polarity-popcount

128

128

21

Implementing Binary Models

b

22

Implementing Binary Models

Computational Complexity:

)
™
QO
c
Y]
-}
=
N
()

9|eaSIYSIaWN

A4HWF HWF

WJONYd21eg

A4HWF

UOI1BAINDY

HWF

. Full Precision

Binary

SHWF 3HWF

NKKFHWC

43

23

Estimated Impact of Glue Layers

70
w
£ 60
.
S

50
o
© * Impact of glue layers is too high
o 40
.
2 30 * We must derive binarized glue
S for decent end-to-end
.g 20 speedups
@)

. -

43X 20X
Assumed Conv Layer Speedup from Blnarlzatlon

24

Weight Scaling

O
J

= | %= mean(|Wi|)

q(a) = aga

Rastegari et al., “Xnor-net: Imagenet classification using binary convolutional neural networks.” 2016

Introduced in XnorNet
Allows scale of weights to be preserved
Brought accuracy from 27% to 44%

Now used ubiquitously

25

Quantized Weight Scaling

@ * Use approximate power of 2 (AP2)

@ * Replaces multiply with bitwise shift
E> @ = mean(|Wy) :> * Constant at inference time
q(a) = ara

* Requires only a single instruction

:1P2<l) — 21‘01111(1(10g2(|17|))
wh = —logs(AP2(ay,))

qgla) = (a+ (1 < (wb—1))) > wb

Rastegari et al., “Xnor-net: Imagenet classification using binary convolutional neural networks.” 2016 26

BatchNormalization

* Centers and scales output activations
 Essential for quantization, used in all binary techniques

* Must derive quantized versions of both centering and scaling

1) 1 A a,—u
Hke = - i=1(a;) o = —=Xi=1(a; —)’ a; = [—l =

m 2
o+ €

Binary Scaling

* We can simply compute the AP2 of standard deviation

:1P.2(l> — 21‘(;)1111(1(1()g2(|1‘|))

AP2(w) = 2ronndliosalle) wb = —logs(AP2(ay,))
wh = —logs(AP2(ay,)) |:: >
sb = loga(AP2(y/ 0% +€))
qg(a) = (a+ (1 < (wb—1))) > wb
q(a) = (a+ (1 < (wb—1))) > (wb + sb)

28

Binary Center

To add a constant to a binarized tensor, we must use Fixed Point
Quantization (FPQ) with the same bits and scale

Algorithm 9: Fixed point quantization (FPQ) function.

Input: a tensor X to quantize to B bits with scale S
Output: B-bit quantized tensor Y

1 X = clip(X, -5, 9)

2 g= ﬁ // Compute granularity

3Y = 1‘()1111(1(%)

N-bit input to wb fractional

(i =

next layer bits [> B=N+wb
A A
[| \
| J | J
! ! wb
1 1 1
1 —+4= = /)"
2 28" S 1+;2N 1(/2)
1 1
_1+2N 1(1_W

FPQwB,S) “71

Fused Glue Operation

A—lp.Z(l) _ 21’01111(1(10g2(|.r|))

wh = —logy(AP2(av))

sh = Zng(AP2(W>) =

q(a) = (a+ (1 < (wb—1))) > (wb + sb)

This is the fused glue operation
All terms are constant at runtime except a

Only requires two integer operations

A—KP.Z(I) — 21‘01111(:1(1(,);]2(|.1'|))

wb

= —logs(AP2(ay,))

sb = loga(AP2(y/ 0% +€))

B=N+wb S=1+

2N —1

fi =FPQ(uB,S)

(1< (wb—1))—f1

q(a)

(a +cb) > (wb + sb)

30

Fully Binarized Network [l rurerecsion [T sinary

Traditional
Binary
Network

)
D
o)
c
Q
-
=
N
M

9[e2SIY3IdM
wJoNYyodleg
UOoIleAlldYy

Computational Complexity: 4HWF HWF A4HWF HWF S5HWF 3HWF Total = 18HWF

Ful Iy » 3X fewer glue operations

Binarized
Network

* No floating-point data

* No multiplication or division

Computational Complexity: 2HWF HWF 3HWF Total = 6HWF

31

I FBN Accuracy

Model Name 1-bit 2-bit 3-bit full precision
ImageNet top-1 accuracy

1 AlexNet Xnor-Net [48] 442% — — 56.6%
2 AlexNet BNN [12] 27.9% — — —

3 AlexNet DoReFaNet [63] 43.6% 49.8% 48.4% 55.9%
4 AlexNet QNN [27] 43.3% 51.0% — 56.6%
5 AlexNet HWGQ [4] —RT% — 585%
6 VGGNet HWGQ [4]) 611% — 69.8%
7 AlexNet Riptide-unipolar (ours) 44.5% 52.5% 53.6% 56.5%
8 AlexNet Riptide-bipolar (ours) 42.8% 50.4% 52.4% 56.5%
9 VGGNet Riptide-unipolar (owrs) P 64.2% 67.1% 72.7%
10 VGGNet Riptide-bipolar (ours) 54.4% 61.5% 65.2% 72.7%
11 ResNetl8 Riptide-unipolar (ours) 47.9% 584% 61.8% 70.9%

Our system is comparable to
state-of-the-art techniques

Unipolar quantization yields
higher accuracies as expected

Effective across various models

32

Measurement Platform

* Widely available and inexpensive

* Representative of loT devices
v * QualComm Snapdragons
* Azure Sphere
Raspberry Pi
ARM Cortex-A53 * Resource constrained / in need of acceleration

33

mlvMm

Optimizing deep learning compiler

Tensor Expression Language

Schedule Optimization Space

AutoTVM: Optimize Tensor Operators

\.

J

Separates compute and implementation into a declaration and schedule

Schedules contain knobs that are attuned for the backend

Chen et al., “TVM: An Automated End-to-End Optimizing Compiler for Deep Learning.” 2018

34

TVM Schedule Intrinsics

* Tiling: Break computation into chunks for better locality

* Vectorization: Use hardware SIMD instructions for more efficient
operation execution.

 Parallelization: Leverage MIMD facilities such as multiple cores.

* Loop Unrolling: Replicate the body of loops to reduce overhead.

Fast Popcount

LLVM 8.0
vmovl .8 g0, do
vmovl .8 qz2, dl
x8 | vand q0, g0, g2
vcent. 8 g0, go
vpaddl.S8 g0, go
vadd.1l6 qgql, g0, g0
vstl.16 gl, addr
Total: 49

Synthesized

<8 vand. 8 d0, dO, dl
vcent. 8 do, do
vadd. 8 do, 4o, dl
vadd. 8 do, 40, dl
vadd. 8 d0, 40, dl
vadd. 8 d0, dO, dl
vpadd. 8 do, 40, dl
vpadd. 8 do, 4o, dl
vpadal.8 gl, {dO,dl}
vstl.16 gl, addr

Total: 24

36

Int-N Bit Packed
Activations

Int-16 Popcount
Accumulation

Int-16 Quantized
Prepacked Bits

Int-N Bit Packed
Outputs

—

NHWC
Bytes

Xo| X1 | X2 | X3 | Xg | X | Xg| X7 | Xg | X9 XN
Int-16 @BinaryConv

Co C1 Co C3 Cn
Int-16 Unused Int-N @ Fused Shift/ScaIe

A

7~

"~

ﬂ

—

ﬂ

Int-8

E

—

CI3I\
@ Bit Pack

B

2NHW C Bytes

2NHW C Bytes

Yo

V1

Y2

Y3

Y4

Y5

Ve

Y7

Y8

Yo

YN

NHWC
Bytes

Int-N Bit Packed | Ty [xp [a3 [wa [205 | &6 [27 [g | 20| . | . | . Xy | NHWE & tes
Activations
int1e T ﬂBinaryConv
Int-16 Popcount f g 7 1T - . .
Accumulation ¢ 1 [2 3 ' N | 2NHWC Bytes

Int-16 Unused Int-N @ Fused Shift/Scale

Int-16 Quantized |]
q q q . q
Prepacked Bits CIoi‘ 1!' 2!‘ 3.\ !\ NI ZNHWC Bytes
,,,,, 1}3}3 @ Bit Pack

— Prd =

Int-N Bit Packed
oo Yo [ya | Y2 | Vs | Ya|Ys | Ve | Y7 |ve|Ye| - | - |- yu || e
utputs

Bytes

Bitpack Fusion

Impact of Optimizations

e Combination of TVM
optimizations gives 12X
Speedup over baseline

=
o

(0¢]

e Each optimization has a
significant impact

Relative Speedup
(e)]

e Speedups from bitpack fusion
are due to fewer memory
operations

N

* With a high-quality
implementation, we can study
our design choices

Optimization

39

Optimization Ablation Study

12

10.64

=
o

o

e Removing any optimization has

a significant impact on
performance

e Using fused glue gives nearly a
2X speedup, as predicted by
opcount estimates

Relative Speedup
(@)]

4
2
0
X
s OV O (o JRCLS
¢V Ne“T oa ?66‘?

One-Off Optimization

40

Glue Layer Impact

-1.0

B Bitserial Layer

B Glue Layer
10 - ~~~ Cumulative Glue Fraction _
0.8
2
= 8- o * Glue consistently takes a similar
£ -0.6% amount of time as core
v o = compute layers
£ =
)
2 -
£ 4- > * Our fused glue operation
| 5 almost completely removes this
5 _ . -0.2 cost
0- 0.0
0 1 2 3 4 5 6 7 8 out

41

Impact of Polarity

Baseline Unipolar Bipolar

25 [

e Baseline is near optimal

20
= * Quantized layers have much
£ more memory overhead
o 15
k=
§ Although unipolar quantization
x 10 has twice as many operations, it
is only marginally slower than
: bipolar quantization

-

42

Cumulative Speedup

Polarity = Unipolar Polarity = Bipolar

12

10
o
>
D

o 8
o
n
S

5 6
o
[}
[d

4

2

0

Squeezenet Vggnet Alexnet Squeezenet Vggnet Alexnet
Model Model

Bitwidth

s]
2
s 3

43

I Layerwise Speedup

Relative Speedup

20.0 -

17.5 -

e e
© N U
o Ul o
I | |

~
Ul
I

0.0 -

Bitwidth
mmm] Bit
w2 Bit
mmm 3 Bit
s FP32

/

..i.f‘ll.

——

\

-

lill. ||

\

h\ i

- 140

- 120

- 100

- 80

- 60

- 40

Cumulative Runtime (ms)

e Speedup is not consistent
across layers

* May be possible to design a
network of binarizable layers

44

Thank You!

Code: Paper:

(=] S [
At

)
e

46

o

Model Name 1-bit 2-bit 3-bit full precision

ImageNet top-1 accuracy / Runtime (ms)

1 AlexNet Xnor-Net [48] 44.2% | — — [— — [— 56.6% | —

2 AlexNet BNN [12] 27.9% | — — [— — [— — [—

3 AlexNet DoReFaNet [63] 43.6% | — 49.8% | — 48.4% | — 55.9% [—

4 AlexNet QNN [27] 43.3% | — 51.0% / — — [— 56.6% [—

5 AlexNet HWGQ [4] — /] — 52.7% | — —]/ — 58.5% [—

6 VGGNet HWGQ [4] — /- 64.1% | — —) — 69.8% | —

7 AlexNet Riptide-unipolar (ours) 44.5% /1504 52.5% / 196.8 53.6% / 282.8 56.5% / 1260.0
8 AlexNet Riptide-bipolar (ours) 42.8% / 122.7 50.4% / 154.6 52.4% /207.0 56.5% / 1260.0
9 VGGNet Riptide-unipolar (ours) 56.8% /243.8 64.2% /387.2 67.1% /610.0 72.7% / 2420.0
10 VGGNet Riptide-bipolar (ours) 54.4% / 184.1 61.5% / 2714 65.2% / 4235 72.7% / 2420.0
11 ResNetl8 Riptide-unipolar (ours) 47.9% / 76.2 58.4% / 112.0 61.8% / 152.3 70.9% / 380.8

