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Air Learning Gym Infrastructure
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Demonstration
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Demonstration video:https://www.youtube.com/watch?v=cvO5YOzI0mg  

Source code/project: https://github.com/harvard-edge/airlearning

https://www.youtube.com/watch?v=cvO5YOzI0mg
https://github.com/harvard-edge/airlearning
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ABSTRACT
Air Learning is an interdisciplinary, open-source research infrastructure that aims to soften the boundaries
between aerial robotics, machine learning, controls, and systems architecture. It provides the tooling and various
components necessary for developing an end-to-end learning-based application for aerial robotics starting from
simulation to deployment on a real aerial robot. By having all the key components tightly integrated, we hope
researchers can use this tool to develop novel solutions to several open problems in these domains. We also
hope researchers can use it to explore and understand various trade-offs of their solution due to cross-domain
interactions between algorithms and system. Also since the infrastructure is open-source, the research community
can add new features thus modifying it according to their own requirements and use cases.

1 AIR LEARNING

Air Learning research infrastructure facilitates the holistic
study of end-to-end learning algorithms for aerial robotics.
Autonomous aerial robot design involves navigating the de-
sign space across various boundaries spanning from model-
ing the environment down to the choice of onboard computer
platform available in the robot. Air Learning infrastruc-
ture aims to provide researchers with a cross-domain infras-
tructure that allows them to holistically study and evaluate
reinforcement learning algorithms for autonomous aerial
machines. Air Learning is open sourced and the source
code can be found online at http://bit.ly/2JNAVb6.
Here is an demonstration of practical application built
using Air Learning infrastructure: https://bit.ly/
2sEdmdK

There are four key components to Air Learning:

Air Learning Environment Generator: Availability of
high-quality data is essential for learning algorithms. Air
Learning provides high fidelity photorealistic UE4 based
random and parametrizable environment generator (Fig-
ure 1 (a)). The AirSim plugin is integrated within the project
which models the drone physics and provides different sens-
ing modalities. The Air Learning environment generator is
exposed as an OpenAI gym environment for the easy devel-
opment of reinforcement learning algorithms. The list of
parameters that can be configurable in the current version
of Air Learning is listed in Table 1. Here is a video link that
demonstrates some of the features of environment generator:
https://bit.ly/2R4Fxfq
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Air Learning RL: The environment generator is exposed
as an OpenAI gym interface to facilitate the development
of reinforcement learning algorithms. Stable-baselines (Hill
et al., 2018), an OpenAI baseline fork, is integrated into
Air Learning which allows researchers to use high-quality
implementation of state of the art reinforcement learning
algorithms (Figure 1(b)). This integration allows researchers
to evaluate different RL algorithms for aerial robots with few
lines of code change. The current version of Air Learning is
seeded with DQN (Mnih et al., 2013), PPO (Schulman et al.,
2017), DDPG (Lillicrap et al., 2015), and SAC (Haarnoja
et al., 2018). Here is a video link that demonstrate the
environment generation part with reinforcement learning
training: https://bit.ly/2Nyzxcs

Machine Learning Backend: Policy architecture plays a
crucial role in the performance of the reinforcement learning
algorithm. Air Learning uses Tensorflow/Keras backend
for evaluating different policy architectures. This allows
the researchers to use a wide variety of sensing modalities
provided by AirSim to explore multimodal policies.

“Hardware-in-the-Loop” Evaluation: Air Learning en-
ables the “Hardware-in-the-loop” approach that allows re-
searchers to experiment and evaluate how their algorithm
will perform when onboard compute platform changes.
“Hardware-in-the-loop” methodology can also help system
architects to benchmark or even design efficient systems
targetted for aerial robots. Here is a video demonstration
where the RL policy is evaluated in Ras-Pi3 real-time as if
the aerial robot has Ras-Pi3 as the onboard compute plat-
form: https://bit.ly/2NDRjex

RL Serving/Deployment: Air Learning also provides nec-
essary tooling and methodology flows for deploying the
trained RL policy on a real aerial robot. Once ported, the
researchers can perform a flight test to determine how the
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https://bit.ly/2Nyzxcs
https://bit.ly/2NDRjex


Air Learning: An End-to-End Learning Gym for Aerial Robots

Environment

Reinforcement
Learning 
Algorithm

Algorithm Policy Hardware
Task - Algorithm

Exploration
Algorithm - Policy

Exploration
Policy- Hardware

Exploration

Deploy Interact

(a) (b) (c) (d)

CrazyFlie 

Figure 1. Demonstration of Air Learning infrastructure. For the demonstration, we train a DQN algorithm for dynamic obstacle avoidance.
We explore a tiny DQN policy to fit into the memory available in the crazyyflie. Once we determine the best policy for the crazyflie
hardware, we verify the functionality of the policy in the Air Learning environment. After verification of the functionality in the simulator,
we deploy the learned policy on a real Crazyflie drone to see if it avoids dynamic obstacles. The attendees will get to interact with the
Crazyflie similar to the demonstrator in the video: https://bit.ly/2TAaVnG

RL policy performs in the real world. Currently, our flow is
validated on CrazyFlie nano-drone platform.

2 LIVE INTERACTIVE DEMO

Demo Application: We propose an interactive demonstra-
tion where we take a simple obstacle avoidance task for
a resource-constrained nano-drone and show how various
components in the Air Learning infrastructure can be used to
create a domain randomized environment for the task, train
a RL algorithm, test, and deploy them on a real nano-UAVs.

Through the avoidance task, the attendees will get to experi-
ence two scenarios in our demo: (1) explore the simulation
infrastructure components in Air Learning. (2) explore the
deployment of the learned RL policy onto a CrazyFlie.

Air Learning Simulation Infrastructure: In this part of
the demo, the attendees will get to experience the following:
(1) demonstration of domain randomization and various
parameters available in Air Learning environment generator
as listed below in Table 1 and (2) training an aerial robotics
task with different reinforcement learning algorithms.

Parameter Format Description

Arena Size [length, width, height] Spawns an arena of “length” x “width” x “height”.

Wall Colors [R, G, B] Wall colors in [Red, Green, Blue] color format.

Asset <folder name> Allow any UE4 asset to be imported.

# Static Obstacles Scalar Integer Static obstacles in the arena.

# Dynamic Obstacles Scalar Integer Dynamic obstacle in the arena.

Seed Scalar Integer Seed value used in randomization.

Minimum Distance Scalar Integer Min. distance between arena obstacles.

Goal Position [X, Y, Z] X, Y and Z goal coordinates.

Velocity [Vmax, Vmin] Dynamic obstacle velocity.

Materials <folder name> UE4 material assigned to UE4 asset.

Textures <folder name> UE4 Texture assigned to UE4 asset.

Table 1. List of configurations available in environment generator.

RL Deployment: In this section of demo, attendees can
flash a pre-trained RL policy trained using Air Learning
infrastructure onto a CrazyFlie nano-drone. Once the RL

policy is flashed the attendee will get to fly the drone and
witness how it can avoid humans in close proximity.

3 EQUIPMENTS

The presenter will supply a laptop with HDMI interface.
For the simulation component, the presenters will demo the
content through the laptop. The presenter will also carry
a couple of CrazyFlie and its accessories for the audience
to experience the demo. A pre-trained RL model will be
flashed by the presenter/audience to showcase how the Air
Learning platform can be used for developing RL (end-to-
end learning algorithms), train, test, and finally deploy on a
Crazyflie nano-drones.
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