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 Hi, I am David and I want to talk about our paper on bit error robustness in deep neural networks to enable more energy-efficient accelerators. – This is joint work with Nandhini Chandramoorthy, Matthias Hein and Bernt Schiele. 



Random bit errors:
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 I will start with a short 2-minute overview. – In this paper, we consider the problem of random bit errors induced through low-voltage operation of DNN accelerators. – These accelerators have become popult due to decreased cost and energy consumption and lowering voltage is a recent approach to further reduce energy consumption. – However, by doing so, the memory becoems unreliable. – This is illustrated here: the orange curve shows that energy consumption is redued when reducing supply voltage. – At the same time, the blue curve shows that bit errors in memory start to increase exponentially. 
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Bit error robustness:
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 On the right, these bit errors are shown to have direct impact on the DNN accuracy. – Remember that the DNN weights are saved in a quantized way on the memory. – The orange curve shows that the test error of a 8-bit quantized DNN on CIFAR10 increases significantly even for small bit error rates. – We propose three approaches to reduce the impact of bit errors: a robust fixed-point quantization scheme, weight clipping as regularization and random bit error training. – As shown, the combination of these approaches reduces test error significantly and allows energy savings of up to 30% with a slight increase in test error. 



Random bit errors:

0.8 0.9 1
10−4

10−3

10−2

10−1

1
2.5
10

Supply Voltage, Normalized by Vmin

B
it

E
rr

or
R

at
e
p

in
%

0.6

0.8

1

N
or

m
al

iz
ed

E
ne

rg
y

pe
rS

R
A

M
A

cc
es

s

Bit Error Rate p
Normalized Energy

Bit error robustness:

0 0.01 0.1 0.5 1 2.5
4.3

5

6

7

8

Bit Error Rate p in %

R
ob

us
tT

es
tE

rr
or

R
E

rr
in

%

CIFAR-10

6.18%≈30% reduction

5.37%≈20% reduction

8 Bit Quant.:
NORMAL
RQUANT
+CLIPPING
+RANDBET

More details:

Paper & code: davidstutz.de/randbet
Contact: david.stutz@mpi-inf.mpg.de
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 More information can also be found on my webpage, including code and data. Also feel free to get in touch or check out the poster session. 

http://davidstutz.de/ccat


More details:

Paper & code: davidstutz.de/randbet
Contact: david.stutz@mpi-inf.mpg.de

Outline:
1. Bit errors in DNN accelerators
2. Error model and contributions
3. Robust quantization, weight clipping, and

random bit error training
4. Results and energy savings

Interested?
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 In the following I will go into more detail. – I will start by briefly discussing how bit errors originate in DNN accelerators. – Then, I will present our studied bit error model and outline our contributions. – These are a robust fixed-point quantization scheme, weight clipping as regularization and random bit error training. – All improve bit error robustnes and thereby also energy efficiency. 

http://davidstutz.de/ccat
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 DNN accelerators generally feature on-ship SRAM used as scratchpads to store quantized weights. – Here, data access and movement usually makes up a large part of the accelerators power consumption. – So reducing the voltage of these SRAM arrays has become interesting to reduce energy consumption. – As shown here in orange, energy consumption per SRAM access, on the right, can be reduced significantly at lower voltages. – Note that both axes are normalized with respect to Vmin which is the lowest measured voltage for error-free operation. 
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 However, these SRAM arrays quickly become unreliable when reducing voltage. This is illustrated here for two voltage settings. – These maps show the bit error probability per bit cell for a small portion of the SRAM. – The rate of these bit errors increases quickly when reducing voltage. – In practice, this will directly affect the stored DNN weights. 
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 In fact, the bit error rate increases exponentially, as shown in blue. – Note that the left axis is in log-scale. – This means that the DNN has to endure exponentially increasing rates of bit errors in its weights in order to reduce voltage and energy. 



Axis Changed!
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 Unfortunately, this results in significant drops in accuracy. – This plot shows the robust test error at specific bit error rates. – The robust test error is the test error computed after injecting bit errors in weights. – Note the change in axes: now, the x axis shows the bit error rate in log-scale. – Note that robust test error increases quickly even for small bit error rates for this 8bit DNN on Cifar-10. 
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p≈0.86% p≈2.75%

I Uniform (across locations+chips) random bit errors.
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 We consider a simple but realistic bit error model: We assume bit errors to be distributed uniformly across spatial location. – While the bit errors can be assumed fixed for a fixed voltage and chip, they are assumed random across chips. – Also, the bit errors at higher voltage, meaning lower bit error rate, are usually a subset of those at lower voltages, as shown there. 



Bit error model:

subset of

p≈0.86% p≈2.75%

I Uniform (across locations+chips) random bit errors.

Contributions:
I Robust fixed-point quantization (RQUANT).
I Weight clipping as regularization (CLIPPING).
I Random bit error training (RANDBET).

Bit Error Model and Contributions
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 Based on this model, we propose a combination of three methods to improve robustness of DNNs against bit errors: a robust fixed-point quantization, weight clipping during training as regularization and training on completely random bit errors. – In contrast to related work, our approach generalizes across chips and voltages and allows to reduce energy consumption with little to no increase in test error. 



Simple fixed-point quantization scheme:

Q(wi) =
⌊wi

∆

⌋
, Q−1(vi) = ∆vi,∆ =

qmax

wm−1 − 1

I weight wi ∈ [−qmax, qmax], m bits (e.g., m = 8)

Robust Quantization (RQUANT)
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 We consider a simple fixed-point quantization scheme commonly used in DNN accelerators. – Here, m bits are used to quantize a weight w-i. – Quantization is defined by Q, dividing the weight by Delta and rounding off to get an integer. – The quantization granularity Delta is defined by the maximum absolute weight value q-max to be quantized. – Dequantization takes the integer v-i and multiplies it by Delta. – The quantization range, which is the interval -q-max to q-max in this case is essential. 



Simple fixed-point quantization scheme:

Q(wi) =
⌊wi

∆

⌋
, Q−1(vi) = ∆vi,∆ =

qmax

wm−1 − 1

I weight wi ∈ [−qmax, qmax], m bits (e.g., m = 8)

Global, qmax = 1 Per-Layer +Asymmetric

Robust Quantization (RQUANT)
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 Chosen globally, that is across the whole DNN, bit errors have sever impact, as shown on the bottom left. – This plot shows the original weights on the x-axis and the weights with bit errors on the y-axis. – Yellow points indicate large absolute error. – In practice, however, determining the quantization range per-layer has become standard, also reducing the impact of bit errors. – We additionally allow asymmetric quantization ranges, further limiting the impact of bit errors. – Note that for 8 bit these difference are only visible in terms of robustness, accuracy remains nearly unchanged. 



Simple fixed-point quantization scheme:

Q(wi) =
⌊wi

∆

⌋
, Q−1(vi) = ∆vi,∆ =

qmax

wm−1 − 1

Importance of implementation details:
Quantization Scheme Err

in %
RErr
in %(CIFAR-10, BER p = 0.5%)

8
bi

t

Per-layer 4.36 24.76
+asymmetric 4.36 40.78
+unsigned 4.42 17.00
+rounding (=RQUANT) 4.32 11.28

Robust Quantization (RQUANT)
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 This is shown here. – Clean test error in the first column remains nearly unchanged. – However, robust test error after injecting bit errors with rate 0.5% can be reduced using the right implementation. – Clearly, asymmetric quantization range seems worse. – However, this is mainly due to quantizing into signed integers. – Finally, using proper rounding to the nearest integer instead of rounding off results in the lowest robust test error. – As these differences are not visible in the clean test error, we hope that future work on quantization will take robustness into account as additional metric. 



Simple fixed-point quantization scheme:

Q(wi) =
⌊wi

∆

⌉
, Q−1(vi) = ∆vi,∆ =

qmax

wm−1 − 1

Importance of implementation details:
Quantization Scheme Err

in %
RErr
in %(CIFAR-10, BER p = 0.5%)

4
bi

t w/o rounding* 5.81 90.36
w/ rounding* 5.29 7.71

*Results with weight clipping.

Robust Quantization (RQUANT)
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 I want to emphasize that these difference become more and more important for low-precision quantization. – Even for 4 bit quantization, implementation details such as proper rounding can make the difference between a random classifier and a well-performing one. – Note that these results are already taking into account weight clipping, which I will discuss next. 
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 Overall, proper fixed-point quantization can reduce robust test error. – However, for medium to large bit error rates, robust test error still increases significantly, as shown in brown. 



= clipping weights to [−wmax, wmax] during training.

Important:
I wmax 6= qmax, but qmax ≤ wmax

I Does not impact relative errors!

Weight Clipping as Regularization (CLIPPING)
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 Thus, we combine robust fixed-point quantization with a simple regularization scheme: weight clipping. – Weight clipping limits the weights to the intercal -w-max to w-max during training. – This is done by simply clipping weights after each update. – Note that w-max also limits the quantization range. – However, quantization range can still be smaller. – I also want to emphasize that the relative errors induced by bit errors are not impacted. – For example, a bit error in the most significant bit always induces a change by half the quantization range, irrespective of the global scale of weights. 



= clipping weights to [−qmax, wmax] during training.

Important:
I wmax 6= qmax, but qmax ≤ wmax

I Does not impact relative errors!
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 The impact of weight clipping is illustrated here. – The weights are constraiend significantly to -0.1 to 0.1, on the right. – Nevertheless, the DNN is able to achieve nearly as large logits as the original network, on the left. – Interestingly, the logit distribution is nearly preserved when injecting bit errors, in red. – This is in contrast to the reference model. – Overall, this also improves robustness to bit errors. 



Why does CLIPPING improve bit error robustness?
I Limiting weights and minimizing cross-entropy loss
I Large logits achievable through weight redundancy

Model Err
in %

RErr
in %(CIFAR-10, BER p=1%)

RQUANT 4.32 32.05
CLIPPING0.15 4.42 13.08
CLIPPING0.15+label smoothing 4.67 29.40

Weight Clipping as Regularization (CLIPPING)
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 The robustness improvement is summarized in this tabe, reducing robust test error on 1% bit error rate from 32 to 13%. – So why is weight clipping so effective. – We suspect that limiting the weights while minimizing cross-entropy loss results in more redundant weight distributions. – This is because we need large logits, but large logits can only be achieved by utilizing more weights. – As simple experiment, we remove the requirement of large logits by employing label smoothing. – As we suspect, robust test error increases again, as hgihlighted in red. 
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 Overall, weight clipping is very simply to apply but reduces robust test error significantly. – Note that even for larger bit error rates, robust test error is now below 8%, as shown in blue. – It is important that we combine weight clipping with our robust quantization scheme to obtain these improvements. 



= training on random bit errors

𝑣(𝑡) = 𝐵𝐸𝑟𝑟𝑝(𝑣
𝑡 ) 𝑤𝑞

(𝑡)
= 𝑄−1(𝑣(𝑡))𝑣(𝑡) = 𝑄 𝑤(𝑡)

Inject errorsQuantize

Dequantize

Δ(𝑡) = ∇𝑤

𝑏

𝐿 𝑓 𝑥𝑏 , 𝑤𝑞
(𝑡)

, 𝑦𝑏

Forward and backward pass for 

unperturbed  &  perturbed models

weight update with average of 

gradients

𝑤(𝑡+1) = 𝑤(𝑡) − 𝛾(Δ(𝑡) + ෩Δ(𝑡))

෩Δ(𝑡) = ∇𝑤

𝑏

𝐿 𝑓 𝑥𝑏 , 𝑤𝑞
𝑡

, 𝑦𝑏

𝑤𝑞
𝑡
= 𝑄−1( 𝑣(𝑡))

𝑤(𝑡)

Random bit error training (RANDBET)
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 On top of our robust quantization and weight clipping we additionally employ random bit error training. – As illustrated here, in random bit error training, we quantize the weights in each iteration - as in quantization-aware training. – Then, we inject bit errors in the quantizted weights and compute the gradient on both the clean and the perturbed quantized weights. – The weights are then updated based on the average gradient. – Note that it is important to use random bit errors during training. – Related work, however, often uses profiled bit errors corresponding to one chip during training. 



Important: train on random bit errors.

Related work frequently trains on profiled bit errors.
(Specific to one chip and voltage.)

Model RErr in %, p in %
Evaluation on Fixed Pattern p=1 p=2.5

Fixed Pattern p=2.5 14.14 7.87
Fixed Pattern+CLIPPING0.15 p=2.5 8.50 7.41
Evaluation on Random Patterns p=1 p=2.5

Fixed Pattern+CLIPPING0.15 p=2.5 12.09 61.59

Random bit error training (RANDBET)
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 The disadvantage of training on bit errors profiled, that is specific, to one accelerator is shown here. – While large bit error rates can be endured more easily, this does not generalize to higher voltages. – This is shown here, where we train on a fixed bit error training for 2.5% bit error rates. – However, robust test error increases, in red, when lowering bit error rates. – This is even though the bit errors at lower bit error rate are a subset of those for 2.5%. – Oviously, shown at the bottom, the model does also not generalize to previously unseen bit error patterns. – As result, this approach is unable to generalize across voltages (meaning other bit error rates) or chips. 
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 Overall, random bit error training further reduces robust test error. – This is emphasized for large bit error rates. 
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 For example, 20% energy reduction is possible at an increase of only 1% in test error. – Higher energy savings are possible with higher increases in test error. 
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Low-Voltage and Low-Precision
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 This also works for lower precision. – By reducing precision to 4 bits, we already save energy by requiring less memory, but can additionally lower voltage without a significant increase in test error compared to 8 bits. 



subset of

p≈0.14% p≈1.08%

I “Corner-cases” might exhibit different error patterns.

Chip Model (CIFAR-10) RErr in %
Chip 1 p≈0.86 p≈2.75

RANDBET0.05 p=1.5 7.04 9.37
Chip 2 (see above) p≈0.14 p≈1.08

RANDBET0.05 p=1.5 6.00 9.00

Generalization Across Chips/Voltages

Bit Error Robustness of DNNs – David Stutz



 Finally, I want to show that our approach also generalizes to profiled bit errors from real accelerators. – We experimented with two chips. The first chip closely follows out bit error model, meaning uniform bit errors. – Here, robust test error stays low, even for larger bit error rates of roguhly 2.75%. – The second chip has bit errors strongly aligned along columns. – This is shown above and a severe deviation from our bit error model. – Nevertheless, our approach generalizes well to smaller bit error rates in this case. 



Conclusion:
I Uniform bit error model.
I Robust quantization.
I Weight clipping and random bit error training.
I Generalization across chips and voltages.

Paper: https://davidstutz.de/randbet
I Results on MNIST / CIFAR-100, guarantees, ...

Bit Error Robustness for DNN Accelerators
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 In conclusion, we consider a uniform bit error model that realistically captures the nature of low-voltage induced bit errors across voltages and chips. – We propose robust quantization, weight clipping and random bit error training to improve robustness considerably. – In our paper, we provide additional results on MNIST and Cifar-100 as well as some simple guarantees. – Check out the paper online and get in touch or drop by the poster session. 

https://davidstutz.de/randbet

