Bit Error Robustness for Energy-Efficient DNN Accelerators

<u>David</u> Stutz

Nandhini Chandramoorthy

Matthias Hein

Bernt Schiele

1-Minute Overview: Bit Error Robustness

1-Minute Overview: Bit Error Robustness

1-Minute Overview: Bit Error Robustness

More details:

nlanck institut

Paper & code: davidstutz.de/randbet Contact: david.stutz@mpi-inf.mpg.de

Interested?

More details:

Paper & code: davidstutz.de/randbet
Contact: david.stutz@mpi-inf.mpg.de

Outline:

- 1. Bit errors in DNN accelerators
- 2. Error model and contributions
- 3. Robust quantization, weight clipping, and random bit error training
- 4. Results and energy savings

Energy Consumption in DNN Accelerators

EBERHARD KARLS

planck institut

Energy Consumption in DNN Accelerators

Low-Voltage Operation and Bit Errors

Bit Error Impact on DNNs on CIFAR-10 Axis Changed! 8 8 Bit Quant. CIFAR-10: Robust Test Error RErr in % NORMAL 7 6 54.30.010.050.1 $0.5 \ 1$ 2.50 Bit Error Rate p in % anck institut

Bit Error Model and Contributions

Bit error model:

Uniform (across locations+chips) random bit errors.

Bit Error Model and Contributions

Bit error model:

► Uniform (across locations+chips) random bit errors.

Contributions:

- Robust fixed-point quantization (RQUANT).
- Weight clipping as regularization (CLIPPING).
- Random bit error training (RANDBET).

Simple fixed-point quantization scheme:

$$Q(w_i) = \left\lfloor \frac{w_i}{\Delta} \right\rfloor, Q^{-1}(v_i) = \Delta v_i, \Delta = \frac{q_{\max}}{w^{m-1} - 1}$$

• weight $w_i \in [-q_{\max}, q_{\max}]$, *m* bits (e.g., m = 8)

Simple fixed-point quantization scheme:

$$Q(w_i) = \left\lfloor \frac{w_i}{\Delta} \right\rfloor, Q^{-1}(v_i) = \Delta v_i, \Delta = \frac{q_{\max}}{w^{m-1} - 1}$$

• weight $w_i \in [-q_{\max}, q_{\max}]$, *m* bits (e.g., m = 8)

Simple fixed-point quantization scheme:

$$Q(w_i) = \left\lfloor \frac{w_i}{\Delta} \right\rfloor, Q^{-1}(v_i) = \Delta v_i, \Delta = \frac{q_{\max}}{w^{m-1} - 1}$$

Importance of implementation details:

Quantization Scheme		Err	RErr
(CIFAR-10, BER $p = 0.5\%$)		in %	in %
8 bit	Per-layer	4.36	24.76
	+asymmetric	4.36	40.78
	+unsigned	4.42	17.00
	+rounding (=RQUANT)	4.32	11.28

Simple fixed-point quantization scheme:

$$Q(w_i) = \left\lfloor \frac{w_i}{\Delta} \right\rceil, Q^{-1}(v_i) = \Delta v_i, \Delta = \frac{q_{\max}}{w^{m-1} - 1}$$

Importance of implementation details:

Quantization Scheme		Err	RErr
(CIFAR-10, BER $p = 0.5\%$)		in %	in %
bit	w/o rounding*	5.81	90.36
4	w/ rounding*	5.29	7.71

*Results with weight clipping.

= clipping weights to $[-w_{max}, w_{max}]$ during training. Important:

- $w_{\max} \neq q_{\max}$, but $q_{\max} \leq w_{\max}$
- Does not impact relative errors!

= clipping weights to $[-q_{max}, w_{max}]$ during training. Important:

•
$$w_{\max} \neq q_{\max}$$
, but $q_{\max} \leq w_{\max}$

Does not impact relative errors!

Why does CLIPPING improve bit error robustness?

- Limiting weights and minimizing cross-entropy loss
- Large logits achievable through weight redundancy

Model	Err	RErr
(CIFAR-10, BER $p=1\%$)	in %	in %
RQUANT	4.32	32.05
CLIPPING _{0.15}	4.42	13.08
$CLIPPING_{0.15} \text{+} \text{label smoothing}$	4.67	29.40

= training on random bit errors

Important: train on random bit errors.

Related work frequently trains on *profiled* bit errors.

(Specific to one chip and voltage.)

Model	RErr in %, p in %	
Evaluation on Fixed Pattern	p=1	p = 2.5
Fixed Pattern $p=2.5$	14.14	7.87
Fixed Pattern+CLIPPING _{0.15} $p=2.5$	8.50	7.41
Evaluation on Random Patterns	p=1	p = 2.5
Fixed Pattern+CLIPPING _{0.15} $p=2.5$	12.09	61.59

Low-Voltage and Low-Precision

Bit Error Robustness of DNNs - David Stutz

Generalization Across Chips/Voltages

subset of

"Corner-cases" might exhibit different error patterns.

Chip	Model (CIFAR-10)	RErr in %	
Chip 1		$p \approx 0.86$	$p \approx 2.75$
	RANDBET _{0.05} $p=1.5$	7.04	9.37
Chip 2	(see above)	$p \approx 0.14$	$p \approx 1.08$
	RANDBET _{0.05} $p=1.5$	6.00	9.00

Bit Error Robustness for DNN Accelerators

Conclusion:

- Uniform bit error model.
- Robust quantization.

Bit Error Bobustness of DNNs – David Stutz

- ► Weight clipping and random bit error training.
- Generalization across chips and voltages.

Paper: https://davidstutz.de/randbet

Results on MNIST / CIFAR-100, guarantees, ...

