Scaling Polyhedral Neural Network Verification on GPUs

François Serre*, Christoph Müller*, Gagandeep Singh, Markus Püschel and Martin Vechev

Verifying the robustness of deep neural networks

Context: adversarial attacks on DNN

Deep neural networks are vulnerable to adverserial examples:

Neural Network f

Neural Network f

	6
-	

There is an active research on robust and targetted and attacks:

1	Imperceptible Adversarial Examples									
	To construct imperceptible adversarial examples for automatic speech recognition system, we use frequency masking, which									
the phenomenon that a louder signal can make other signals at nearby frequencies imperceptible. We display two sets										
	examples below. In each set, there is a clean audio, an adversarial example generated by Carlini's method and our constructed									
	imperceptible adversarial example. Listen to them carefully and choose which one is the clean audio.									
	First Set									
	► 0:06 / 0:06 • E [Reveal Transcription]									
	► 0:06 / 0:06 → • E [Reveal Transcription]									
	► 0:06 / 0:06 → • F [Reveal Transcription]									
ł	http://cseweb.ucsd.edu/~yaq007/imperceptible-robust-adv.html									

We need a way to verify the robustness of a network to such attacks.

Neural network robustness verifier

Exact neural network certification is NP-hard. We need to overapproximate:

Neural network (structure + weights)

Test input

Perturbation size

Our approach is applicable beyond intensity based robustness verification of image classifiers.

Source code

https://github.com/eth-sri/ELINA/tree/master/gpupoly

References

An Abstract Domain for Certifying Neural Networks. Gagandeep Singh, Timon Gehr, Markus Püschel and Martin Vechev Proc. ACM Program. Lang., 2019, pp 41:1-41:30

Towards Stable and Efficient Training of Verifiably Robust Neural Network H, Zhang, H, Chen, C, Xiao, S, Gowal, R, Stangorth, B, Li, D, Boning, C, Hsieh Proc. International Conference on Learning Representations, 2020

* Equal contribution

fserre.github.io

mware^{*} Research

- Approximate on affine layers,

GPU implementation and results

Implementation of GPUPoly

GPUPoly is implemented to run on GPU, as it uses extensively embarassingly parallelizable linear algebra functions.

These functions are custom-made, for compliance with *floating-point soundness*, and to exploit sparsity patterns in case of successive convolutional layers.

Floating-point (FP) soundness

GPUPoly yields certifications that take into account rounding errors that may occur during its own computations, and during inference. Namely, FP arithmetic has finite precision: 1 and 2⁻²⁴ are both representable, but not their

sum.

Need to use directed rounding, and interval arithmetic.

order.

Comparison with Forward interval Analysis and DeepPoly [POPL'19]

Accuracy - higher is better

GPUPoly is as precise as DeepPoly, while being significantly faster on most networks. A notable exception are networks trained with projected gradient descend, for which it has the same runtime as DeepPoly.

Comparison with Crown-IBP [ICLR'20]

Model	#Neurons	Training	ϵ	#Candidates	#Verified		Median runtime	
					CR-IBP	GPUPoly	CR-IBP	GPUPoly
MNIST Datas	set, 10k test	inputs						
6×500	3,010	Normal	8/255	$9,\!844$	0	$7,\!291$	$130 \ \mu s$	$9.06 \mathrm{\ ms}$
ConvBig	$48\mathrm{K}$	DiffAI	3/10	9,703	$5,\!312$	$8,\!809$	$220~\mu s$	$537~\mu s$
ConvSuper	88K	Normal	8/255	$9,\!901$	0	$8,\!885$	$300 \ \mu s$	$266 \mathrm{\ ms}$
$IBP_large_0.2$	$176\mathrm{K}$	CR-IBP	0.258	$9,\!895$	$4,\!071$	$7,\!122$	$190 \ \mu s$	$9.04~\mathrm{ms}$
$IBP_large_0.4$	176K	CR-IBP	3/10	9,820	$9,\!332$	9,338	$190 \ \mu s$	$2.92 \mathrm{\ ms}$
CIFAR 10 Da	taset, 10k t	est inputs						
6×500	$3,\!010$	Normal	1/500	$5,\!607$	0	$4,\!519$	$200 \ \mu s$	$8.04 \mathrm{\ ms}$
ConvBig	$62\mathrm{K}$	DiffAI	8/255	$4,\!599$	$1,\!654$	$2,\!650$	$320~\mu s$	$730~\mu s$
ConvLarge	230K	DiffAI	8/255	$4,\!615$	$1,\!672$	$2,\!838$	$900 \ \mu s$	$4.54 \mathrm{\ ms}$
IBP_large_2_255	230K	CR-IBP	2/255	$7,\!082$	$5,\!450$	$5,\!588$	$820~\mu s$	$12.3 \mathrm{\ ms}$
IBP_large_8_255	230K	CR-IBP	8/255	$4,\!540$	$3,\!289$	$3,\!298$	$270~\mu s$	$3.83 \mathrm{\ ms}$
CIFAR 10 Da	taset, first 1	lk test inp	uts					
ResNetTiny	311K	PGD	1/500	768	0	651	$2.76 \mathrm{\ ms}$	$11.7~\mathrm{s}$
ResNet18	558K	PGD	1/500	823	0	648	$7.13~\mathrm{ms}$	$397~\mathrm{s}$
ResNetTiny	$311 \mathrm{K}$	DiffAI	8/255	371	217	244	$2.93 \mathrm{\ ms}$	$4.03 \mathrm{\ ms}$
SkipNet18	$558 \mathrm{K}$	DiffAI	8/255	321	245	260	$7.29~\mathrm{ms}$	$16.5 \mathrm{\ ms}$
ResNet18	558K	DiffAI	8/255	372	238	268	$7.49~\mathrm{ms}$	$16.9 \mathrm{\ ms}$
ResNet34	$967 \mathrm{K}$	DiffAI	8/255	356	200	229	$13.8 \mathrm{\ ms}$	$34.5 \mathrm{\ ms}$

FP addition is not associatative: the value of $2^{-24} + 1 - 1$ depends on evaluation

Need to use the next representable number for summands.

nnist crown large 0.2, results for 100 random MNIST candidates on a Tesla V10