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Federated	Learning
Privacy-preserving	training	in	heterogeneous,	(potentially)	massive	networks

Networks	of	remote	devices	
e.g.,	cell	phones

next-word	prediction

Networks	of	isolated	organizations	
e.g.,	hospitals

healthcare
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Example	Applications

Voice	recognition	on	mobile	phones

Adapting	to	pedestrian	behavior	on	autonomous	vehicles

Personalized	healthcare	on	wearable	devices

Predictive	maintenance	for	industrial	machines
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Workflow	&	Challenges

  Wt   Wt

W′ ′ W′ 

  Wt+1

Systems	heterogeneity	
variable	hardware,	network	connectivity,	

power,	etc

Statistical	heterogeneity	
highly	non-identically	distributed	data	

Expensive	communication	
potentially	massive	network;	wireless	

communication

Privacy	concerns	
privacy	leakage	through	parameters	

local	traininglocal	training

Objective:	

server

devices

loss	on	device	k
A	standard	setup:
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min
w

f(w) =
N

∑
k=1

pkFk(w)



A	Popular	Method:	Federated	Averaging	(FedAvg)	[1]

[1]	McMahan,	H.	Brendan,	et	al.	"Communication-efficient	learning	of	deep	networks	from	decentralized	data."	AISTATS,	2017.

Works	well	in	many	settings	!
(especially	non-convex)
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At	each	communication	round:

Server	randomly	selects	a	subset	of	devices	&	
sends	the	current	global	model	 	wt

Each	selected	device	 	updates	 	for	 	epochs	

of	SGD	to	optimize	 	&	sends	the	new	local	
model	back

k wt E
Fk

Server	aggregates	local	models	to	form	a	new	
global	model	wt+1

What	can	go	wrong?



What	are	the	issues?

simple	average	updates

statistical	heterogeneity

highly	non-identically	distributed	data

0% stragglers
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stragglers

systems	heterogeneity

simply	drop	slow	devices	[2]

[2]	Bonawitz,	Keith,	et	al.	"Towards	Federated	Learning	at	Scale:	System	Design."	MLSys,	2019.

0% stragglers

90% stragglers

FedAvg

heuristic	method	

not	guaranteed	to	converge



Outline
Motivation	

FedProx	Method	

Theoretical	Analysis	

Experiments	

Future	Work
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FedProx	—	High	Level

rate	as	a	function	of	statistical	heterogeneityaccount	for	stragglers theory

allow	for	variable	amounts	of	work	
&	safely	incorporate	them

encourage	more		
well-behaved	updates

simply	drop	stragglers

systems	heterogeneity

average	simple	SGD	updates

statistical	heterogeneity

1. convergence	guarantees	
2. more	robust	empirical	performance	 for	federated	learning	in	heterogeneous	networks

Contr
ibutio

ns

FedProx
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FedProx:	A	Framework	For	Federated	Optimization
At	each	communication	round,		

local	objective:	

min
wk

Fk(wk)

Objective:	

min
w

f(w) =
N

∑
k=1

pkFk(w)

Idea	1:	Allow	for	variable	amounts	of	work	to	be	performed	on	
local	devices	to	handle	stragglers
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Idea	2:	Modified	Local	Subproblem:

a proximal term

min
wk

Fk(wk) +
μ
2

wk − wt 2



FedProx:	A	Framework	For	Federated	Optimization

Modified	Local	Subproblem: min
wk

Fk(wk) +
μ
2

wk − wt 2

The	proximal	term	(1)	safely	incorporate	noisy	updates;	(2)	explicitly	

limits	the	impact	of	local	updates	

Generalization	of	FedAvg		

Can	use	any	local	solver	

More	robust	and	stable	empirical	performance	

Strong	theoretical	guarantees	(with	some	assumptions)
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11



Convergence	Analysis

High-level:	converges	despite	these	challenges	
Introduces	notion	of	B-dissimilarity	in	to	characterize	statistical	
heterogeneity:

IID	data:	 	
non-IID	data:	

B = 1
B > 1
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Challenges:	device	subsampling,	non-iid	data,	local	updates

*	used	in	other	contexts,	e.g.,	gradient	diversity	[3]	to	quantify	the	benefits	of	scaling	distributed	SGD

[3]	Yin,	Dong,	et	al.	"Gradient	Diversity:	a	Key	Ingredient	for	Scalable	Distributed	Learning.”	AISTATS,	2018.

𝔼 [∥∇Fk(w)∥2] ≤ ∥∇f(w)∥2B2



Assumption	1:	Dissimilarity	is	bounded

Convergence	Analysis
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Proximal	term	makes	the	method	more	amenable	to	
theoretical	analysis!

Assumption	2:	Modified	local	subproblem	is	convex	&	smooth	

Assumption	3:	Each	local	subproblem	is	solved	to	some	accuracy
Flexible	communication/computation	tradeoff	
Account	for	partial	work	in	the	rates



Rate	is	general:		
Covers	both	convex,	and	non-convex	loss	functions	
Independent	of	the	local	solver;	agnostic	of	the	sampling	method	

The	same	asymptotic	convergence	guarantee	as	SGD	
	Can	converge	much	faster	than	distributed	SGD	in	practice

Convergence	Analysis
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[Theorem]	Obtain	suboptimality	 ,	after	T	rounds,	with:ε

T = O ( f(w0) − f*
ρε )

some constant, a function of (B, μ, …)
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Experiments	
Zero	Systems	heterogeneity	+	Fixed	Statistical	heterogeneity	

Benchmark:		
LEAF	(leaf.cmu.edu)
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FedAvg

FedProx	with	 	leads	to	more	stable	convergence	under	statistical	heterogeneityμ > 0

FedProx, μ > 0



FedAvg FedProx, μ > 0

Similar	benefits	for	all	datasets
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Experiments	
High	Systems	heterogeneity	+	Fixed	Statistical	heterogeneity	
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FedAvg

Allowing	for	variable	amounts	of	
work	to	be	performed	helps	

convergence		
in	the	presence	of	systems	

heterogeneity	

FedProx, μ = 0
FedProx, μ > 0

FedProx	with	 	leads	
to	more	stable	convergence	
under	statistical	&	systems	

heterogeneity

μ > 0



FedAvg FedProx, μ = 0 FedProx, μ > 0
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Similar	benefits	for	all	datasets

In	terms	of	test	accuracy:	

on	average,	22%	absolute	accuracy	
improvement	compared	with	FedAvg		in	

highly	heterogeneous	settings



Experiments		
Impact	of	Statistical	Heterogeneity

Setting	μ	>	0	can	help	to	combat	this

		In	addition,	B-dissimilarity	captures	statistical	heterogeneity	(see	paper)		

Increasing	heterogeneity	leads	to	worse	convergence
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Future	Work
Privacy	&	security	

Better	privacy	metrics	&	
mechanisms	

Personalization	
Automatic	fine-tuning

Productionizing	
Cold	start	problems

Hyper-parameter	tuning	
Set	μ	automatically

Diagnostics		
Determining	
heterogeneity	a	priori	
Leveraging	the	
heterogeneity	for	
improved	performance		

White	paper:	Federated	Learning:	Challenges,	Methods,	and	
Future	Directions,	IEEE	Signal	Processing	Magazine,	2020.	

(also	on	ArXiv)
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Thanks!
																																						

Paper	&	code:	cs.cmu.edu/~litian/
Benchmark:	leaf.cmu.edu

Poster:	#	3,	this	room
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On-device	Intelligence	Workshop,	Wednesday,	this	room



Backup	1
• Relations	with	previous	works	

• proximal	term	
• Elastic	SGD:	employs	a	more	complex	moving	average	to	update	parameters;	

limited	to	SGD	as	a	local	solver;	only	been	analyzed	for	quadratic	problems	
• DANE	and	inexact	DANE:	adds	an	additional	gradient	correction	term,	assume	

full	device	participation	(unrealistic);	discouraging	empirical	performance		
• FedDANE: A Federated Newton-Type Method, Arxiv. 

• Other	works:	different	purposes	such	as	speeding	up	SGD	on	a	single	
machine;	different	analysis	assumptions	(IID,	solving	subproblems	exactly)	

• B-dissimilarity	term	
• For	other	purposes,	such	as	quantifying	the	benefit	in	scaling	SGD	for	IID	data
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• Data	statistics

• Systems	heterogeneity	simulation	

• Fix	a	global	number	of	epochs	E,	and	force	some	devices	to	perform	fewer	
updates	than	 	epochs.	In	particular,	for	varying	heterogeneous	setting,	assign	 	
(chosen	uniformly	random	between	 )	number	of	epochs	to	0%,	50,	and	90%	
of	selected	devices.

E x
[1,E]

Backup	2
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Backup	3

• The	original	FedAvg	algorithm	



Backup	4
• Complete	theorem
Assume	the	functions	 	are	non-convex,	L-Lipschitz	smooth,	and	there	exists	 ,	such	that	

,	with	 .	Suppose	that	 	is	not	a	stationary	solution	and	the	local	
functions	 	are	 -dissimilar,	i.e.,	 	If	 and	 	are	chosen	such	that	

Fk L_ > 0
∇2Fk ⪰ − L_I μ̄ = μ − L_ > 0 wt

Fk B B(wt) ≤ B . μ, K, γt
k

ρt = ( 1
μ

−
γtB
μ

−
B(1 + γt) 2

μ̄ K
−

LB(1 + γt)
μ̄μ

−
L(1 + γt)2B2

2μ̄2
−

LB2(1 + γt)2

μ̄2K (2 2K + 2)) > 0,

then	at	the	iteration	 	of	FedProx,	we	have	the	following	expected	decrease	in	the	global	
objective:

t

𝔼St
[ f(wt+1)] ≤ f(wt) − ρt∥∇f(wt)∥2,

where	 	is	the	set	of	 	devices	chosen	at	iteration	 	and	St K t γt = max
k∈St

γt
k .


