# Federated Optimization in Heterogeneous Networks

Tian Li (CMU), Anit Kumar Sahu (BCAI), Manzil Zaheer (Google Research), Maziar Sanjabi (Facebook AI), Ameet Talwalkar (CMU & Determined AI), Virginia Smith (CMU)

tianli@cmu.edu

## **MLSys 2020**





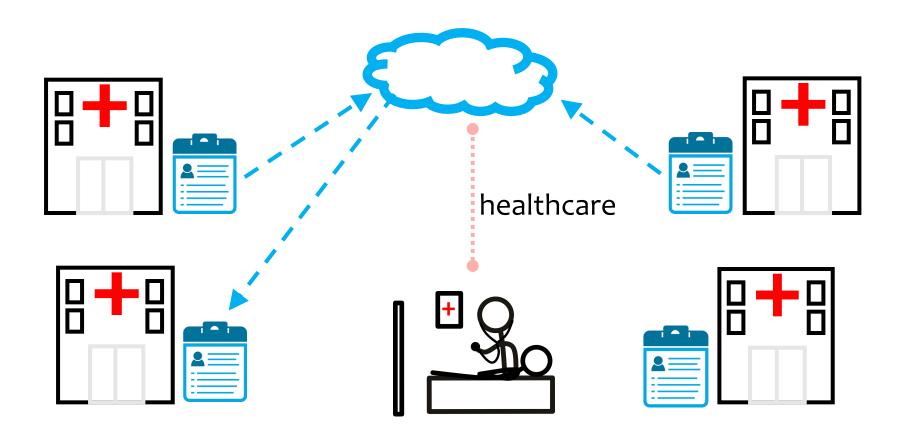
# Federated Learning

## Privacy-preserving training in heterogeneous, (potentially) massive networks

## Networks of remote devices e.g., cell phones



## Networks of isolated organizations e.g., hospitals





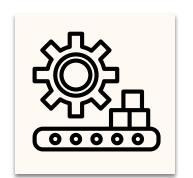
# Example Applications



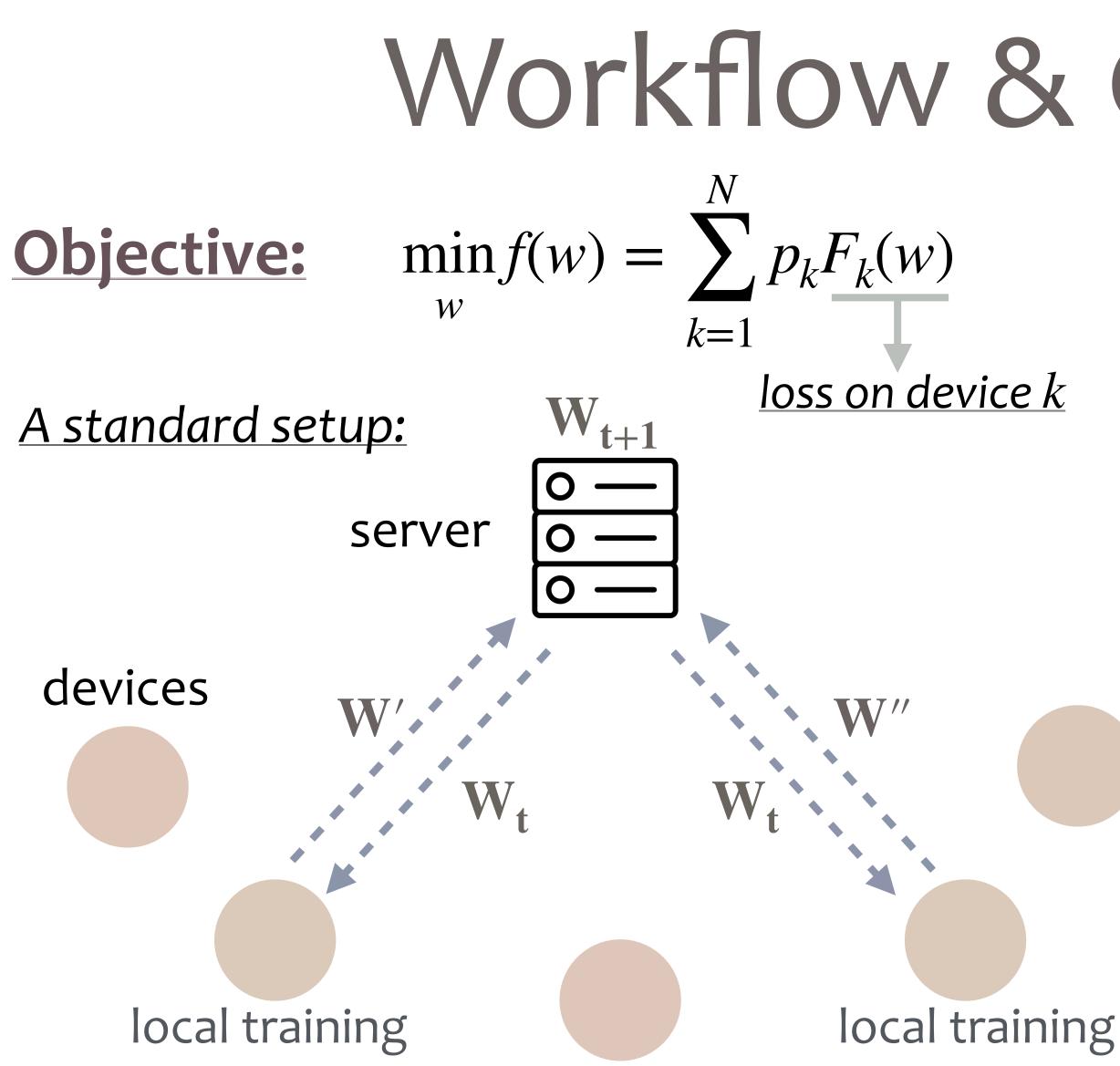
Voice recognition on mobile phones







- Adapting to pedestrian behavior on autonomous vehicles
- Personalized healthcare on wearable devices
- Predictive maintenance for industrial machines



# Workflow & Challenges

Systems heterogeneity variable hardware, network connectivity, power, etc

**Statistical heterogeneity** highly non-identically distributed data

**Expensive communication** potentially massive network; wireless communication

Privacy concerns privacy leakage through parameters



## A Popular Method: Federated Averaging (FedAvg) [1]

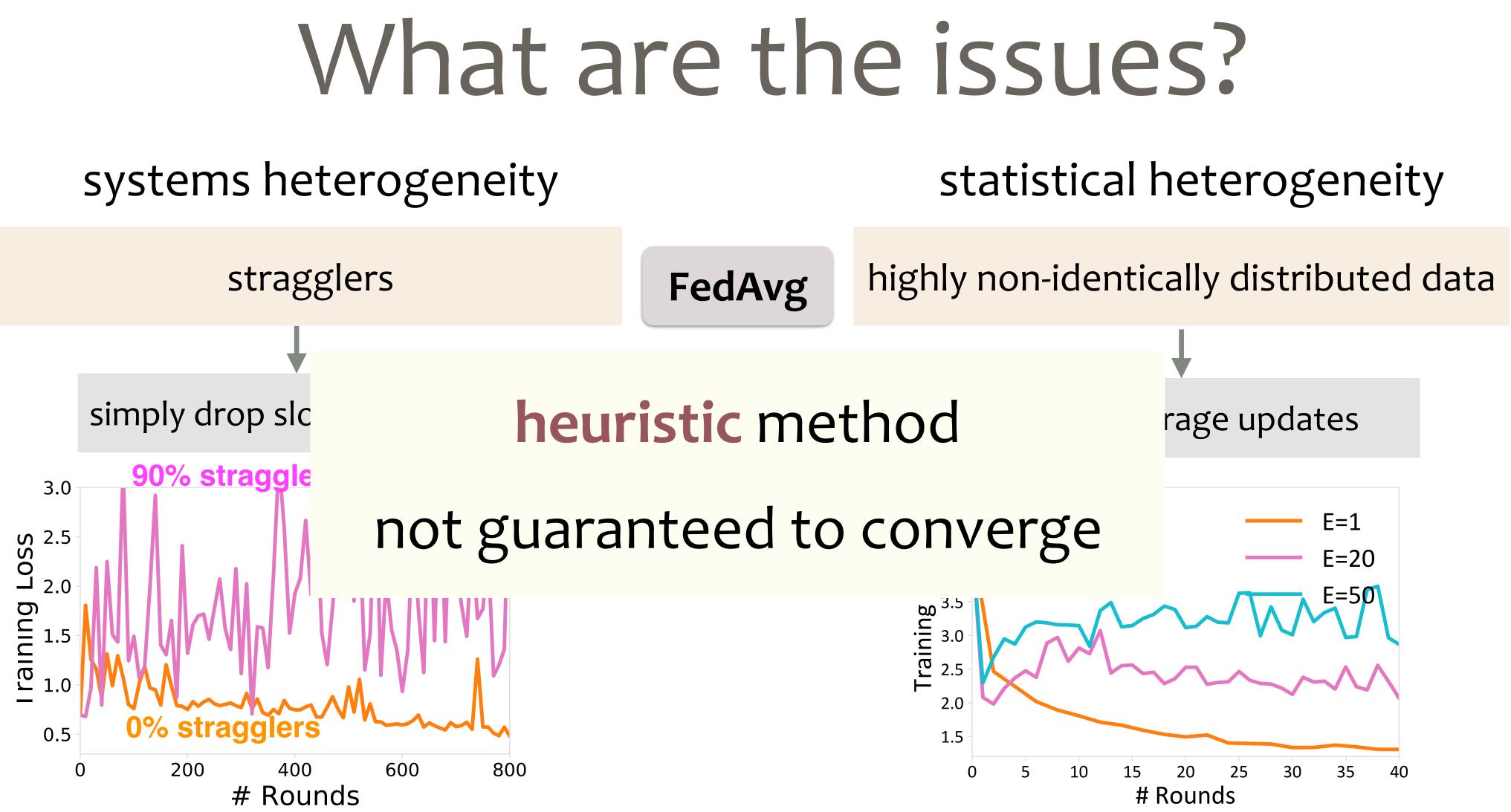
At each communication round

- Server randomly seled sends the current glob.
- Each selected device k upda<sup>+</sup> of SGD to optimize  $F_k$ <sup>8</sup>  $\rightarrow$  and the new local model back
- Server aggregates local models to form a new global model  $w^{t+1}$

[1] McMahan, H. Brendan, et al. "Communication-efficient learning of deep networks from decentralized data." AISTATS, 2017. 5

## What can go wrong? .ell in many settings !

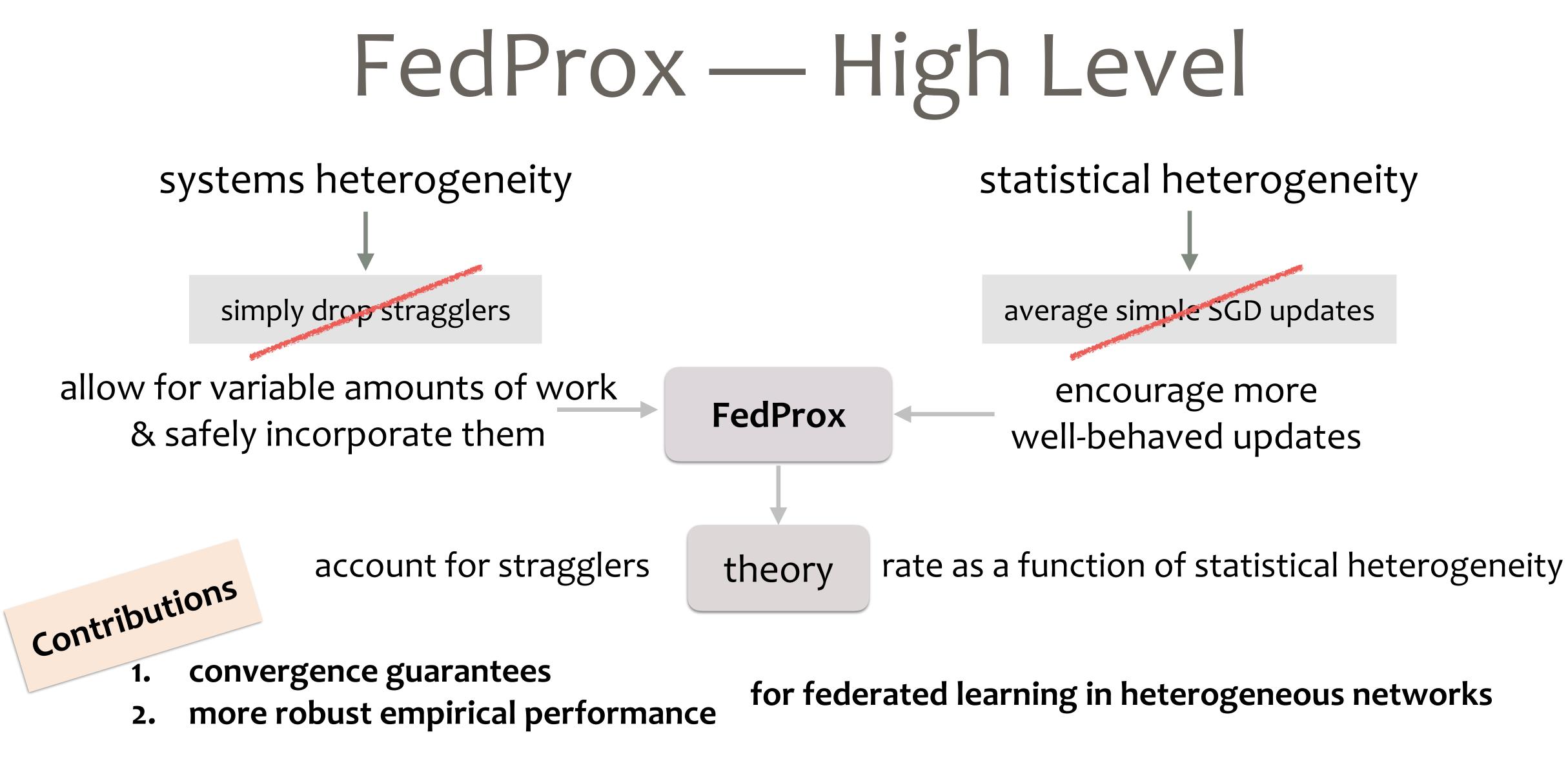
### (especially non-convex)



[2] Bonawitz, Keith, et al. "Towards Federated Learning at Scale: System Design." MLSys, 2019.

# Ontivation FedProx Method Theoretical Analysis Experiments Future Work

# Outline





## FedProx: A Framework For Federated Optimization

$$\underbrace{\text{Objective:}}_{w} M = \sum_{k=1}^{N} p_k F_k(w)$$

Idea 2: Modified Local Subproblem:

$$\min_{w_k} F_k(w_k) - w_k$$

### At each communication round, **local objective:** $\min F_k(w_k)$ $\mathcal{W}_k$

- Idea 1: Allow for variable amounts of work to be performed on local devices to handle stragglers

$$\frac{\mu}{2} \parallel w_k - w^t \parallel^2$$

a proximal term



## FedProx: A Framework For Federated Optimization

- Modified Local Subproblem: m V
- limits the impact of local updates
- Generalization of FedAvg
- Can use any local solver
- More robust and stable empirical performance
- Strong theoretical guarantees (with some assumptions)

$$\inf_{v_k} F_k(w_k) + \frac{\mu}{2} \left\| w_k - w^t \right\|^2$$

The proximal term (1) safely incorporate noisy updates; (2) explicitly



Ontivation FedProx Method Theoretical Analysis Experiments Future Work

# Outline

# Convergence Analysis

- High-level: **converges** despite these challenges  $\bigcirc$
- Introduces notion of **B-dissimilarity** in to characterize statistical  $\bigcirc$ heterogeneity:

## $\mathbb{E}\left[\|\nabla F_k(w)\|^2\right] \leq \|\nabla f(w)\|^2$

[3] Yin, Dong, et al. "Gradient Diversity: a Key Ingredient for Scalable Distributed Learning." AISTATS, 2018.

**Challenges:** device subsampling, non-iid data, local updates

$$w)\|^2 B^2$$

### IID data: B = 1non-IID data: B > 1

### \* used in other contexts, e.g., gradient diversity [3] to quantify the benefits of scaling distributed SGD



# Convergence Analysis

- Assumption 1: Dissimilarity is bounded
- Assumption 2: Modified local subproblem is convex & smooth Proximal term makes the method more amenable to
  - theoretical analysis!
- Assumption 3: Each local subproblem is solved to some accuracy Flexible communication/computation tradeoff Account for partial work in the rates



# Convergence Analysis

### Rate is general: $\bigcirc$

- Covers both convex, and non-convex loss functions  $\bigcirc$
- Independent of the local solver; agnostic of the sampling method  $\bigcirc$
- - Can converge much faster than distributed SGD in practice

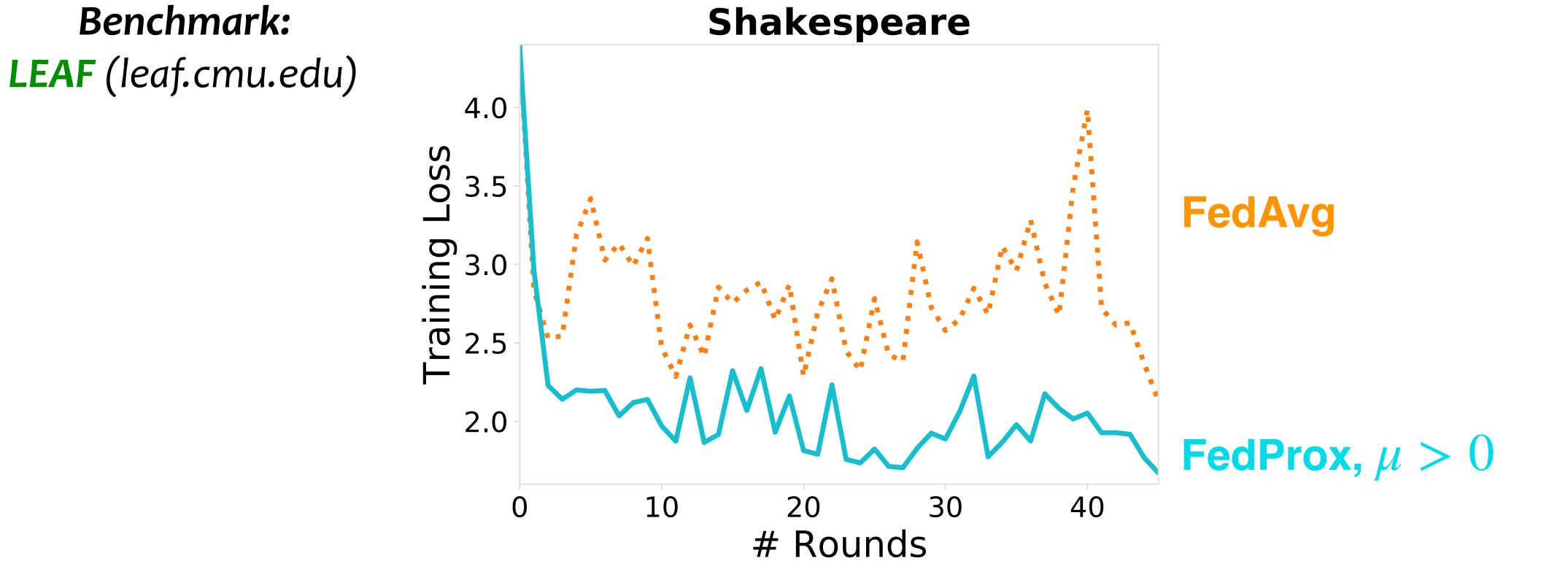
- **[Theorem]** Obtain suboptimality  $\varepsilon$ , after T rounds, with:
  - $T = O\left(\frac{f(w^0) f^*}{\rho\varepsilon}\right)$ some constant, a function of  $(B, \mu, ...)$

## The same asymptotic convergence guarantee as SGD

Ontivation FedProx Method Orthogonal Content of the second s Experiments Future Work

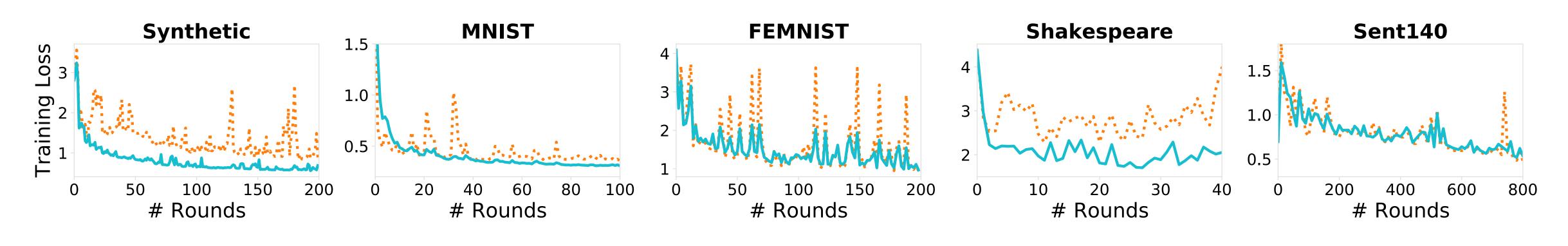
# Outline

## Experiments Zero Systems heterogeneity + Fixed Statistical heterogeneity



**FedProx with**  $\mu > 0$  leads to more stable convergence under statistical heterogeneity





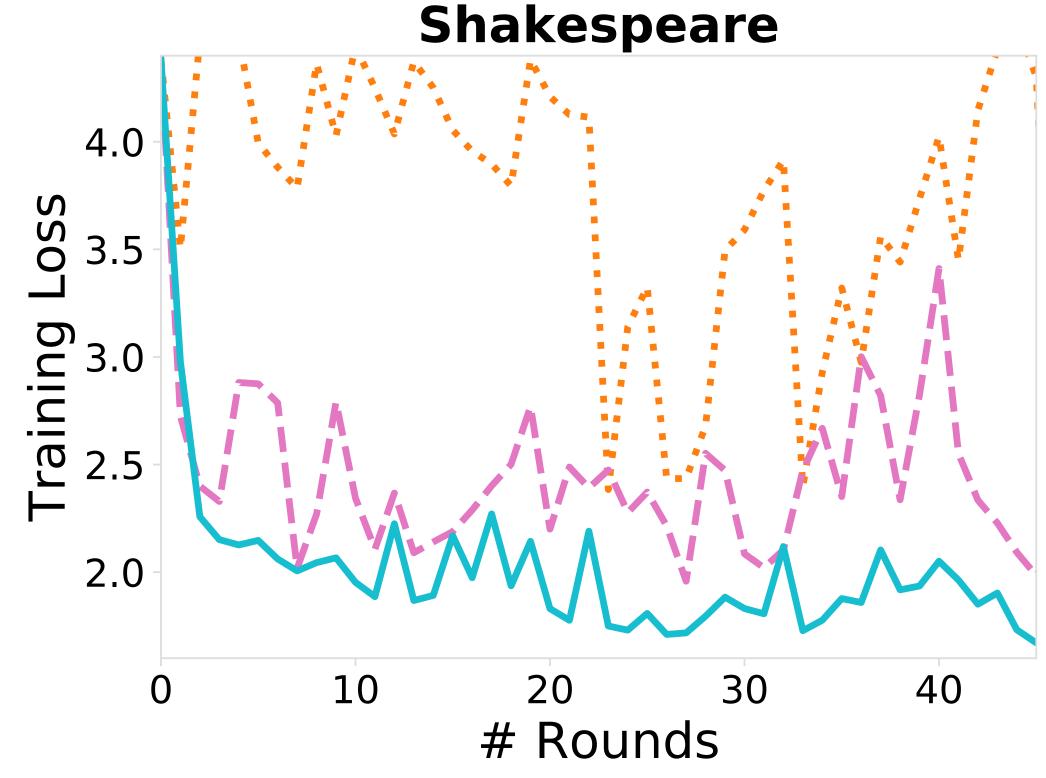
•••••• FedAvg

## Similar benefits for all datasets

- FedProx,  $\mu > 0$ 

## Experiments High Systems heterogeneity + Fixed Statistical heterogeneity

FedAvg



### Allowing for variable amounts of work to be performed helps convergence in the presence of systems heterogeneity

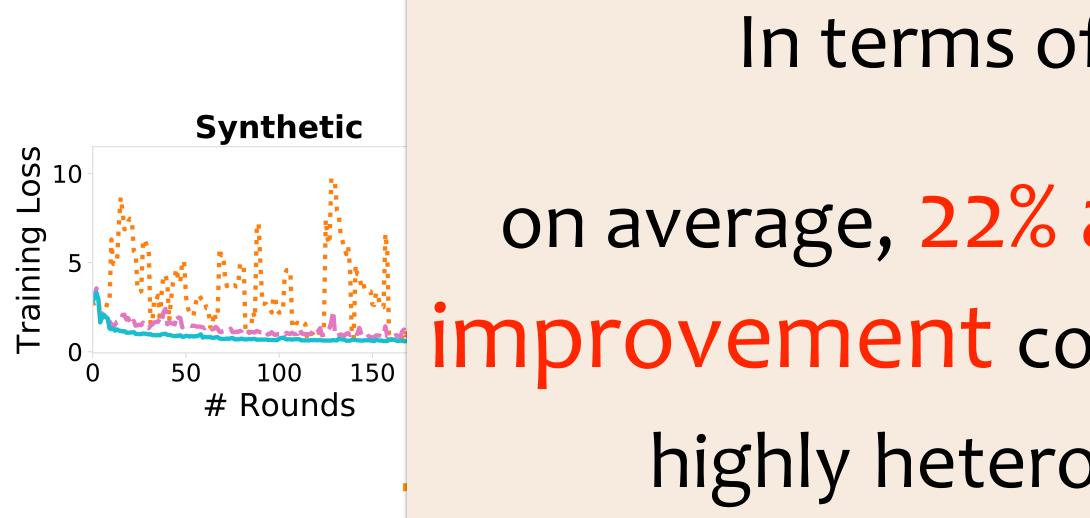
FedProx,  $\mu = 0$ FedProx,  $\mu > 0$ 

**FedProx with**  $\mu > 0$  leads to more stable convergence under statistical & systems heterogeneity









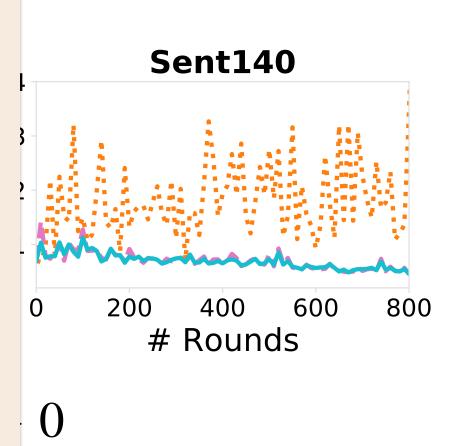
## Similar benefits for all datasets

In terms of test accuracy:

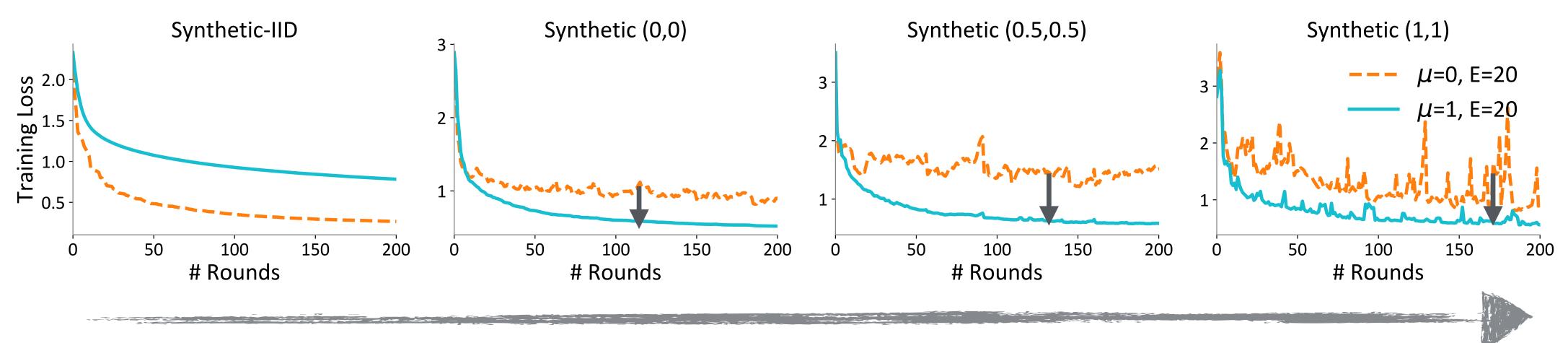
## on average, 22% absolute accuracy

improvement compared with FedAvg in

highly heterogeneous settings



## Experiments Impact of Statistical Heterogeneity



Increasing heterogeneity leads to worse convergence

Setting  $\mu$  > 0 can help to combat this

In addition, B-<u>dissimilarity</u> captures <u>statistical heterogeneity (see paper)</u>

# Ontivation FedProx Method Orthogonal Content of the second s Experiments Future Work

# Outline

# Future Work

 Hyper-parameter tuning
 Set μ automatically
 Diagnostics
 Determining heterogeneity a priori
 Leveraging the heterogeneity for improved performance

> White paper: Federated Learning: Challenges, Methods, and Future Directions, IEEE Signal Processing Magazine, 2020. (also on ArXiv)

## Privacy & security

# Better privacy metrics & mechanisms

## Personalization

### Automatic fine-tuning

## Productionizing

Cold start problems

## Poster: # 3, this room

## **On-device Intelligence Workshop, Wednesday, this room Benchmark:** leaf.cmu.edu Paper & code: cs.cmu.edu/~litian/

# Thanks!

# Backup 1

- Relations with previous works
  - proximal term
  - **B-dissimilarity term**  $\bullet$

• Elastic SGD: employs a more complex moving average to update parameters; limited to SGD as a local solver; only been analyzed for quadratic problems

• DANE and inexact DANE: adds an additional gradient correction term, assume full device participation (unrealistic); discouraging empirical performance

FedDANE: A Federated Newton-Type Method, Arxiv.

• Other works: different purposes such as speeding up SGD on a single machine; different analysis assumptions (IID, solving subproblems exactly)

• For other purposes, such as quantifying the benefit in scaling SGD for IID data

# Backup 2

| • | <b>Data statistics</b> | Dataset     | Devices | Samples | Samples/device |       |
|---|------------------------|-------------|---------|---------|----------------|-------|
|   |                        |             |         |         | mean           | stdev |
|   |                        | MNIST       | 1,000   | 69,035  | 69             | 106   |
|   |                        | FEMNIST     | 200     | 18,345  | 92             | 159   |
|   |                        | Shakespeare | 143     | 517,106 | 3,616          | 6,808 |
|   |                        | Sent140     | 772     | 40,783  | 53             | 32    |

### Systems heterogeneity simulation

of selected devices.

• Fix a global number of epochs E, and force some devices to perform fewer updates than E epochs. In particular, for varying heterogeneous setting, assign x (chosen uniformly random between [1,E]) number of epochs to 0%, 50, and 90%

### The original FedAvg algorithm

# Backup 3

**Algorithm 1** FederatedAveraging. The K clients are indexed by k; B is the local minibatch size, E is the number of local epochs, and  $\eta$  is the learning rate.

### Server executes:

initialize  $w_0$ for each round  $t = 1, 2, \ldots$  do  $m \leftarrow \max(C \cdot K, 1)$  $S_t \leftarrow (\text{random set of } m \text{ clients})$ for each client  $k \in S_t$  in parallel do  $w_{t+1}^k \leftarrow \text{ClientUpdate}(k, w_t)$  $w_{t+1} \leftarrow \sum_{k=1}^{K} \frac{n_k}{n} w_{t+1}^k$ 

**ClientUpdate**(k, w): // Run on client k  $\mathcal{B} \leftarrow (\text{split } \mathcal{P}_k \text{ into batches of size } B)$ for each local epoch i from 1 to E do for batch  $b \in \mathcal{B}$  do  $w \leftarrow w - \eta \nabla \ell(w; b)$ 

return w to server

# Backup 4

Complete theorem

Assume the functions  $F_k$  are non-convex, L-Lipschitz smooth, and there exists  $L_2 > 0$ , such that  $\nabla^2 F_k \geq -L_I$ , with  $\bar{\mu} = \mu - L_I > 0$ . Suppose that  $w^t$  is not a stationary solution and the local functions  $F_k$  are B-dissimilar, i.e.,  $B(w^t) \leq B$ . If  $\mu, K$ , and  $\gamma_k^t$  are chosen such that

$$\rho^{t} = \left(\frac{1}{\mu} - \frac{\gamma^{t}B}{\mu} - \frac{B(1+\gamma^{t})\sqrt{2}}{\bar{\mu}\sqrt{K}} - \frac{LB(1+\gamma^{t})}{\bar{\mu}\mu} - \frac{L(1+\gamma^{t})^{2}B^{2}}{2\bar{\mu}^{2}} - \frac{LB^{2}(1+\gamma^{t})^{2}}{\bar{\mu}^{2}K} \left(2\sqrt{2K} + 2\right)\right) > 0,$$

then at the iteration t of FedProx, we have the following expected decrease in the global objective:

$$\mathbb{E}_{S_t}[f(w^{t+1})] \le f(w^t) - \rho^t \|\nabla f(w^t)\|^2,$$

where  $S_t$  is the set of K devices chosen at iteration t and  $\gamma^t = \max \gamma_k^t$ .

 $k \in S_t$