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Federated Learning

Privacy-preserving training in heterogeneous, (potentially) massive networks

Networks of remote devices Networks of isolated organizations
e.g., cell phones e.g., hospitals
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Example Applications

Voice recognition on mobile phones

Adapting to pedestrian behavior on autonomous vehicles

Predictive maintenance for industrial machines

Y
oL
Personalized healthcare on wearable devices




Workflow & Challenges

Objective: min f(w) = Z il (w) Systems heterogeneity
W =1 variable hardware, network connectivity,
e
loss on device k S
A standard setup: W, ;4
server [o — Statistical heterogeneity

highly non-identically distributed data

devices Expensive communication

potentially massive network; wireless
communication

Privacy concerns

. privacy leakage through parameters
local training



A Popular Method: Federated Averaging (FedAvg) [1]

At each communication rour”

~ Server randomly sele What can gO Wrong?

sends the current globc , ,
.ell in many settings !

~ Each selected device k upda* .
(especially non-convex)

of SGD to optimize F;, & __iids the new local
model back

© Server aggregates local models to form a new

global model w't!

[1] McMahan, H. Brendan, et al. "Communication-efficient learning of deep networks from decentralized data." AISTATS, 2017.
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What are the issues?

systems heterogeneity statistical heterogeneity

stragglers FedAvg highly non-identically distributed data

v v

simply drop slc heuristic method rage updates

|

90% strag?le

” not guaranteed to converge o
, , E=5(

V V VHVVU 2. A

w V\ = 0

0% stragglers 1.5 ~—
200 4 Ré(l)olj)nds 600 800 0 5 10 13# Rozl(;ndszs 30 35 40

[2] Bonawitz, Keith, et al. "Towards Federated Learning at Scale: System Design." MLSys, 2019.
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FedProx — High Level

systems heterogeneity

l |

allow for variable amounts of work
& safely incorporate them

account for stragglers

FedProx

statistical heterogeneity

l

average simpie™ GD updates

encourage more
well-behaved updates

theory rate asafunction of statistical heterogeneity

1. convergence guarantees
2. more robust empirical performance

for federated learning in heterogeneous networks



FedProx: A Framework For Federated Optimization

Objective: At each communication round,
local objective:
minf(w) = ) piFi(w) min F, (w,)
k=1 W,

Idea 1: Allow for variable amounts of work to be performed on
local devices to handle stragglers

Idea 2: Modified Local Subproblem'

min F,(w;) +— H W, — W H

Wi
a proximal term
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FedProx: A Framework For Federated Optimization

Modified Local Subproblem: min F,(w,) + — H W= W H

Wik
~ The proximal term (1) safely incorporate noisy updates; (2) explicitly
limits the impact of local updates
~ Generalization of FedAvg
~ Can use any local solver
~ More robust and stable empirical performance

~ Strong theoretical guarantees (with some assumptions)
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Convergence Analysis

Challenges: device subsampling, non-iid data, local updates

~ High-level: converges despite these challenges
- Introduces notion of B-dissimilarity in to characterize statistical
heterogeneity:

_ 5 < o) IDdata: B =1
[HVF"(W)” ] — va(W)H b non-lID data: B > 1

* used in other contexts, e.g., gradient diversity [3] to quantify the benefits of scaling distributed SGD

[3] Yin, Dong, et al. ""Gradient Diversity: a Key Ingredient for Scalable Distributed Learning.” AISTATS, 2018.
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Convergence Analysis

< Assumption 1: Dissimilarity is bounded

< Assumption 2: Modified local subproblem is convex & smooth

o Proximal term makes the method more amenable to
theoretical analysis!

- Assumption 3: Each local subproblem is solved to some accuracy

o Flexible communication/computation tradeoff
o Account for partial work in the rates
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Convergence Analysis

[Theorem| Obtain suboptimality &, after T rounds, with:
fow) = f*

pE

\

some constant, a function of (B, u, ...)

I'=0

~ Rate is general:

- Covers both convex, and non-convex loss functions

~ Independent of the local solver; agnostic of the sampling method
- The same asymptotic convergence guarantee as SGD

- (Can converge much faster than distributed SGD in practice

14
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Experiments
Zero Systems heterogeneity + Fixed Statistical heterogeneity

Benchmark: Shakespeare
LEAF (leaf.cmu.edu)
4.0 :
0
3.5
5 FedAvg
3.0 S
= L ’
© 25 . \
— r -
2.0
FedProx, u > 0
0 10 20 30 40

# Rounds

FedProx with 2 > 0 leads to more stable convergence under statistical heterogeneity
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Synthetic Ls MNIST FEMNIST Shakespeare Sentl40

U 4
Vp)
O3 4 1.5
o 1.0 3
c?2 3 1.0
< 2
© 1] 0.5 ;
= 1 0.5
0 50 100 150 200 0 20 40 60 80 100 0 50 100 150 200 0 10 20 30 40 0 200 400 600 800
# Rounds # Rounds # Rounds # Rounds # Rounds
FedAvg FedProx, 1 > 0

Similar benefits for all datasets
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Experiments
High Systems heterogeneity + Fixed Statistical heterogeneity

Shakespeare B Allowing for variable amounts of
S - work to be performed helps
4.0 3 A : convergence
N b : S in the presence of systems
@) 3.5 - - . :’: d .
— Y ,'n‘ FedAvg heterogeneity
g3 0 - - . -i-\ ’,‘
k= : ‘
e 2.5 i\ r /\ VRV
=N A ow A Y Y\ 0 FedProx with ;1 > 0 leads
v —
5 0 A\ \ \ \ FedProx, / to more stable convergence
FedProx, u > 0 under statistical & systems
0 10 20 30 40 heterogeneity

# Rounds
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=
o

Training Loss
o

o

0

Synthetic

50 100 150
# Rounds

In terms of test accuracy:

on average, 227 absolute accuracy

|

3

Improvement compared with FedAvg in |

highly heterogeneous settings

Similar benefits for all datasets
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Experiments
Impact of Statistical Heterogeneity

Synthetic-IID ; Synthetic (0,0) Synthetic (0.5,0.5) Synthetic (1,1)

n 2.0 3- 3 -== =0, E=20

o — = =
o157 ‘ H=1, E=20
£ Ay WL, .

= 0.5- IR 11 o 1- e lr*"‘"‘r’ !m’\uju‘ Il"| .}‘I

0 50 100 150 200 200 0 50 100 150 200 0 50 100 150 200
# Rounds # Rounds # Rounds
Increasing heterogeneity leads to worse convergence
Setting u > 0 can help to combat this

- In addition, B-dissimilarity captures statistical heterogeneity (see paper)
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Future Work

Hyper-parameter tuning Privacy & security
o Set u automatically o Better privacy metrics &
Diagnostics mechanisms
o Determining Personalization
heterogeneity a priori o Automatic fine-tuning
o Leveraging the Productionizing
heterogeneity for o Cold start problems

improved performance

White paper: Federated Learning: Challenges, Methods, and
Future Directions, IEEE Signal Processing Magazine, 2020.
(also on ArXiv)

™S
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Thanks!

Poster: # 3, this room

On-device Intelligence Workshop, Wednesday, this room

Benchmark: leaf.cmu.edu

Paper & code: cs.cmu.edu/~litian/
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Backup 1

» Relations with previous works

» proximal term

» Elastic SGD: employs a more complex moving average to update parameters;
limited to SGD as a local solver; only been analyzed for quadratic problems

» DANE and inexact DANE: adds an additional gradient correction term, assume
full device participation (unrealistic); discouraging empirical performance

 FedDANE: A Federated Newton-Iype Method, Arxiv.

» Other works: different purposes such as speeding up SGD on a single
machine; different analysis assumptions (11D, solving subproblems exactly)

* B-dissimilarity term
» For other purposes, such as quantifying the benefit in scaling SGD for 11D data
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Backup 2

* Data statistics Dataset Devices Samples Samples/device
mean stdev
MNIST 1,000 69,035 69 106
FEMNIST 200 18,345 92 159
Shakespeare 143 517,106 3,616 6,808
Sent140 772 40,783 53 32

» Systems heterogeneity simulation

 Fix a global number of epochs E, and force some devices to perform fewer
updates than £ epochs. In particular, for varying heterogeneous setting, assign x

(chosen uniformly random between [1,E]) number of epochs to 0%, 50, and 90%
of selected devices.
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Backup 3

Algorithm 1 FederatedAveraging. The K clients are
indexed by k; B is the local minibatch size, E is the number

e The Original FedAVg algorithm of local epochs, and 7 is the learning rate.
Server executes:

1nitialize wy
for eachroundt =1,2,... do
m < max(C - K, 1)
S; <+ (random set of m clients)
for each client k£ € S; in parallel do
wy, ; + ClientUpdate(k, w;)

Wil € D pe1 Wity

ClientUpdate(k, w): // Run on client k
B < (split Py, into batches of size B)

for each local epoch 7 from 1 to £ do

for batch b € B do
w — w — nVL(w; b)
return w to server




Backup 4

« Complete theorem

Assume the functions F), are non-convex, L-Lipschitz smooth, and there exists L_ > 0, such that
V2Fk > — L_I,with g =u — L_> 0.Suppose that w'is not a stationary solution and the local
functions F are B-dissimilar, i.e., B(w') < B. If u, K, and y; are chosen such that

t 1 B B(+yW2 LBA+7y) L(1+y)2B> LBX1+y')? ( 3R 4 2) o
pl = - - - ,
T K fap 2 p*K

then at the iteration ¢ of FedProx, we have the following expected decrease in the global
objective:

= [fWO] < fow') — pI VA2,

where S, is the set of K devices chosen at iteration f and y’ = max ;.
kEeS,




