
Scaling Back-Propagation by
Parallel Scan Algorithm

Shang Wang1,2, Yifan Bai1, Gennady Pekhimenko1,2

1 2

The original PPTX file can be downloaded from here.

http://www.cs.toronto.edu/~wangsh46/SCALING BACK-PROPAGATION BY PARALLEL SCAN ALGORITHM.pptx


Executive Summary

The back-propagation (BP) algorithm is popularly used in training deep learning (DL) 
models and implemented in many DL frameworks (e.g., PyTorch and TensorFlow).
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Problem: BP imposes a strong sequential dependency along layers during the 
gradient computations.
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Executive Summary

The back-propagation (BP) algorithm is popularly used in training deep learning (DL) 
models and implemented in many DL frameworks (e.g., PyTorch and TensorFlow).
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Problem: BP imposes a strong sequential dependency along layers during the 
gradient computations.

Key idea: We propose scaling BP by Parallel Scan Algorithm (BPPSA):
• Reformulate BP into a scan operation.
• Scaled by a customized parallel algorithm.

Key Results: Θ(log n) vs. Θ(n) steps on parallel systems.

Up to 108× backward pass speedup (→ 2.17× overall speedup).



Back-propagation1 (BP) Everywhere
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1
Rumelhart et al. “Learning representations by back-propagating 

errors.”, Nature (1986) 



BP’s Strong Sequential Dependency
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Data Parallel Training
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Conceptually simple, widely used. 

Effectively increases the batch size:
• Generalization gap1

• Batch size scaling limit2

1Keskar, Nitish Shirish et al. “On Large-Batch Training for Deep Learning: Generalization Gap and Sharp Minima.” ICLR (2017)
2Shallue, Christopher J. et al. “Measuring the Effects of Data Parallelism on Neural Network Training.” Journal of Machine Learning Research 20 (2019)

Constraint: The model must fit in 
one device.

Respects BP’s strong sequential 
dependency.
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Model Parallel Training
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Used when the model cannot fit in one device.

1Harlap, Aaron et al. “PipeDream: Fast and Efficient Pipeline Parallel DNN Training.” SOSP (2019)
2Huang, Yanping et al. “GPipe: Efficient Training of Giant Neural Networks using Pipeline Parallelism.” NeurIPS (2019)

Prior works on pipeline parallel training1,2 to mitigate such problem, 
but have their own limitations: 
• Linear per-device space complexity.
• Trade-off between “bubble of idleness” vs. potential convergence affect.

Conv Conv Linear

BP’s strong sequential dependency limits scalability. 

𝜵𝒊−𝟐𝒍 𝜵𝒊−𝟏𝒍 𝜵𝒊𝒍 𝜵𝒊+𝟏𝒍



Rethinking BP from an Algorithm Perspective
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Rethinking BP from an Algorithm Perspective
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• Problems with strong sequential dependency were studied in the past 
(80’), but in a much simpler context.

• We propose scaling Back-Propagation by Parallel Scan Algorithm (BPPSA):
• Reformulate BP as a scan operation.
• Scale BP by a customized Blelloch Scan algorithm.
• Leverage sparsity in the Jacobians.



What is a Scan1 Operation?

Input sequence:

Binary, associative operator: +

Exclusive scan:

1 2 3 4 5 6 7 8

0 1 3

8

6 10 15 21 28

Compute partial reductions at each step of the sequence.

Identity: 0

1Blelloch, Guy E. ”Prefix sums and their applications”. Technical Report (1990)
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Linear Scan
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On a single worker: perform scan 
linearly; takes n steps. 

Worker (p): an instance of execution; 
e.g., a core in a multi-core CPU 

Number of Elements (n)

With more workers: Can we achieve 
sublinear steps?
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n

Step: executing the 
operator once.



Blelloch Scan: ① Up-sweep Phase
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Blelloch Scan: ② Down-sweep Phase
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Blelloch Scan: Efficiency
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2logn
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Reformulate BP as a Scan Operation

Input sequence:

Binary, associative operator:

Exclusive scan:

13

Key Insight: matrix multiplication in BP is also binary & associative!

+ Identity: 
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Reformulate BP as a Scan Operation

Input sequence:

Binary, associative operator:

Exclusive scan:

13

A ◊ B = BA

Gi = 𝜵𝒙𝒊
𝒍

Ji+1 =
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Key Insight: matrix multiplication in BP is also binary & associative!

Identity: I
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Reconstructs the Original BP Exactly

Training LeNet-5 on CIFAR-10 (baseline: PyTorch Autograd)

15

Our method produces gradients mathematically equivalent to BP.

The Jacobians are multiplied in a different order → numerical differences.

Empirically show that such differences do not effect convergence.



Jacobians are Memory & Compute Hungry

A full Jacobian can be prohibitively expensive to handle.
• e.g., 1st convolution in VGG-11 on CIFAR-10 images occupy 768 MB of memory.
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Jacobians are Memory & Compute Hungry

A full Jacobian can be prohibitively expensive to handle.
• e.g., 1st convolution in VGG-11 on CIFAR-10 images occupy 768 MB of memory.
• Generated one row at a time by passing basis vectors into Op_Grad() (the VJP 

function).
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Jacobians are Memory & Compute Hungry

A full Jacobian can be prohibitively expensive to handle.
• e.g., 1st convolution in VGG-11 on CIFAR-10 images occupy 768 MB of memory.
• Generated one row at a time by passing basis vectors into Op_Grad() (the VJP 

function).
Conventional ML algorithms avoid using Jacobians directly (including BP).
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The Jacobians of Many Operators are Sparse
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Guaranteed ZerosPossible ZerosNon-zeros

Conv2d ReLU MaxPool2D

First three ops of VGG-11 on CIFAR-10 Convolution ReLU Max Pooling

Sparsity 0.99157 0.99998 0.99994

Deterministic pattern.

Potentially better SpGEMM
performance.

Guaranteed zeros:

Known ahead of training time.



Fast Sparse Jacobians Generation

Therefore, instead of calculating the Jacobians row-wise,

generate directly into Compressed Sparse Row (CSR):

1 2 0 3

0 1 2 2 4

Conv2d, W

data

indices

indptr

First three ops of VGG-11 on CIFAR-10 Convolution ReLU Max Pooling

Jacobian Calculation Speedup 8.3×103 x 1.2×106 x 1.5×105 x
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Complexity Analysis
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Θ(log n) CBP Θ(n)vs. 

BPPSA BP

Per-step Complexity (C): runtime of each step.

CBPPSA

Runtime:



Complexity Analysis

Performance benefits:
1. Large n: deep network, long sequential dependency.
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Complexity Analysis

Performance benefits:
1. Large n: deep network, long sequential dependency.
2. Reducing per-step complexity: SpGEMM.
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Constant per-device space complexity!

Θ(log n) CBP Θ(n)vs. 

BPPSA BP

A B

BA

Up-sweep

A

B

B

AB

Down-sweep

In-place

Per-step Complexity (C): runtime of each step.

CBPPSA

Runtime:



Methodology: Benchmark

Task: Bitstream Classification
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Model: RNN

V100

ℎ𝑡
𝑘
= tanh 𝑊𝑖ℎ𝑥𝑡

𝑘
+ 𝑏𝑖ℎ +𝑊ℎℎℎ𝑡−1

𝑘
+ 𝑏ℎℎ

0 1 0 0 1 0 0 1 1 0

C=4

𝑥𝑡
𝑘
~ 𝐵𝑒𝑟𝑛𝑜𝑢𝑙𝑙𝑖(0.05 + 𝐶 𝑘 × 0.1)



Methodology: Environment
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Baseline:

Implementation: custom CUDA 10 kernels.

Hardware: RTX 2070

1.2

7.6.2

RTX 2080 Ti

7.5.1

1.1
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Training curve of BPPSA v.s. the baseline
when batch size B=16, sequence length T=1000:
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Numerical differences do not effect 
convergence.
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Training curve of BPPSA v.s. the baseline
when batch size B=16, sequence length T=1000:
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Numerical differences do not effect 
convergence.

2.17× speedup on the overall training time.
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Sequence length (T) reflects the 
model length n.

BPPSA scales with the model 
length (n);
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model length n.
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length (n);

108× = 

until being bounded by the 
number of workers (p).



Sensitivity Analysis: Number of Workers

24

Fraction of GPU per sample (1/B) 
reflects the number of workers p.

BPPSA scales with the number of 
workers (p).
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More Results in the Paper

• End-to-end benchmarks of GRU training on IRMAS.
• A more realistic version of the RNN results.

• Pruned VGG-11 retraining on CIFAR-10.
• Microbenchmark via FLOP measurements.

• Evaluate the effectiveness of leveraging the Jacobians’ sparsity in CNNs.
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Conclusion
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BP imposes a strong sequential dependency among layers during the 
gradient computations, limiting its scalability on parallel systems.

We propose scaling Back-Propagation by Parallel Scan Algorithm (BPPSA):
• Reformulate BP as a scan operation.
• Scale by a customized Blelloch scan algorithm.
• Leverage sparsity in the Jacobians.

Key Results: Θ(log n) vs. Θ(n) steps on parallel systems.

Up to 108× speedup on the backward pass (→ 2.17× overall speedup).


