Resource Elasticity in
Distributed Deep Learning

, Haoyu Zhang®, Michael J. Freedman

Princeton University, *Google Al

MLSys 2020

Resource allocation today

16 GPUs 2200 images/sec)
32 GPUs 4000 images/sec
64 GPUs 5000 images/sec)

Dataset Model Hardware

Users rely on manual trial-and-error process to
find resource efficient cluster size

Manual trial-and-error resource allocation

Cumbersome: difficult to estimate scaling behavior

Diverse hardware topologies, communication algorithm etc.

Time-consuming: each trial restarts entire program
Need to reload libraries, rebuild model, prepare input pipeline etc. ‘ ’

Can take minutes of device idle time

Static allocation: vulnerable to stragglers

Cumbersome Time-consuming Static allocation

Today, users often under- or
over-allocate resources

Resource Elasticity in Distributed Deep Learning

Autoscaling to dynamically search for a resource efficient cluster

Leads to shorter job completion times and lower costs

up to 45% reduction up to 85.1% reduction
in GPU time

Resource elasticity is not a new idea

Distributed Cloud Cluster Distributed
computing services management deep learning
SBEKS aws e ?
admtap A\ Azure §E§E MESOS 1
4%‘) ’

D kubernetes .

Google Cloud

Why is resource elasticity not adopted yet?

Hurdle #1: Lack of applicable scaling heuristics
Hurdle #2: Existing frameworks assume static allocation

Hurdle #3: How to scale the batch size?

Hurdle #1: Lack of applicable scaling heuristics

Existing heuristics are based on dynamic resource demands

x E.g. request more containers if CPU utilization exceeds X% kubernetes
x E.g. kill a worker if it has been idle for X seconds Spofl’(\z

In deep learning workloads, however

Resource utilization is typically consistent across batches, which are short

Workers are rarely idle

Hurdle #2: Existing frameworks assume static allocation

‘Xnet O PyTorch ¢ ® e O
&0 Ty
Models are structured as static graphs :

Communication operations are hard-coded into these graphs
(@) (%

PyTorch has “dynamic” graphs, but dynamic only in inputs

(Device A

[Abadi et al., 2015]

Synchronization primitives assume fixed # devices

E.g. TensorFlow’s SyncReplicasOptimizer, MultiWorkerMirroredStrategy

Hurdle #3: How to scale the batch size?

1) Fix per device batch size, vary global batch size

/ Preserves per device efficiency

x Large batch sizes may compromise convergence behavior Per device: 32 Per device: 32
Global: 128 Global: 256

2) Fix global batch size, vary per device batch size

/ Preserves convergence behavior

x Sacrifices per device efficiency and overall performance Per device: 32 Per device: 16
Global: 128 Global: 128

10

Why is resource elasticity not adopted yet?

11

Autoscaling System

Scaling heuristics, integration, straggler mitigation

Autoscaling engine for distributed deep learning

Autoscaling decision

™ —
Execution engine
9 Autoscaling engine

Forward / backward pass

Raw Synced
gradients gradients

Parameter synchronization

~ 4

e

Scaling heuristics

Straggler detection

Runtime statistics

13

Hurdle #1: Lack of applicable scaling heuristics

Design custom scaling heuristics based on:
1) Throughput scaling efficiency
2) Utility vs cost

Autoscaling engine can run with custom, pluggable heuristics

14

Scaling heuristics: Throughput scaling efficiency

Intuition: measure relative to

Num workers: 4 Num workers: 5
Throughput: 400 img/s Throughput: 480 img/s

Throughput scaling efficiency (Skad) = / =0.8

15

Scaling heuristics: Throughput scaling efficiency

Intuition: measure relative to

Ska=1 perfect scaling

Ska=0 noimprovement
Throughput: 400 img/s — 480 img/s

Skai< 0 negative scaling Efficiency (ska): / =0.8

Scaling condition #1: sx.q > 5,5 € |0,1]

16

Scaling heuristics: Utility vs cost

Intuition: compare user-provided utility function to dollar cost of job

3,

\U(T)

» U(D)

l'—.,T

>T
Job completion time

Cost C'(k) =

Total compute time
X

Price per device per time unit

Scaling condition #2: AU > AC

17

Scaling in action

eg. Sk d > S
Find the latest point at which the scaling condition passes ¥
A A

a v a X
5 | 0%

o o

L L

= =

> >

Num workers Num workers

18

Hurdle #2: Existing frameworks assume static allocation

@xnet OPyTorch ¥ Tensor

Give each worker the illusion of local training i&ii&

Workers independently apply black-box function
f that synchronizes gradients griadienIs

Replace function when switching to new allocation grads = f_(grads)

) e.g. Horovod allreduce
Portable across different frameworks / g

19

Hurdle #3: How to scale the batch size?

User provides an upper batch size limit

Increase global batch size, fixing per device batch size, until limit

Per device: 32 Per device: 32 Per device: 22
Global: 128 Global: 256 Global: 256

Finding an optimal batch size for arbitrary workloads is an open problem

20

Straggler mitigation comes almost for free

Once we detect a straggler, replace it using the same mechanisms

Refer to paper for details of straggler detection

21

Evaluation

Job completion time, GPU time, idle time

Experiment setup

CPU cluster: 60 machines

16 Intel Xeon CPUs @ 2.6 GHz (960 fotal)
64GB memory
1 Gbps network

GPU cluster: 8 machines

8 NVIDIA (64 total)
64 Intel Xeon CPUs (2.2GHz)
250GB memory

16 Gbps network

23

Autoscaling reduces job completion time

ResNet-50 on CIFAR-10 ResNet-50 on ImageNet

E —
» 1500 Y 5000 ‘ ‘
o :

é 100 2 ool @@ static . |
5 S X autoscaling
o 1300 O 4000| -
o Te]
N 1200 [
@ 2 3500/
9 1100 =
5. £ 3000}
g 1000} , S
& @@ static o 2500/

900} - 2
8 > autoscaling P
g 800 = ‘ ‘ | ‘ £ 2000
E 4 8 12 16 20 24 = 32 40 48 56 64

Starting number of workers Starting number of workers

Avg reduction: 8.23%; Max: 16.0% Avg reduction: 19.4%; Max: 45.0%

Autoscaling reduces GPU time

ResNet-50 on C

IFAR-10

35000
30000y
25000¢

GPU time (s)

5000y

0

@@ static
¥ autoscaling

20000y}
15000¢
10000}

5 10 15 20
Starting number of workers

25

Avg reduction: 58.6%; Max: 85.1%

GPU time (s)

180000

ResNet-50 on ImageNet

170000¢
160000;
150000¢
140000

130000
120000
110000

T

@@ static
X autoscaling

100000

32 40 48 56 64
Starting number of workers

Avg increase: 7.39%; Max: 14.7%

25

Autoscaling finds target configuration quickly

ResNet-50 on CIFAR-10 ResNet-50 on ImageNet
4 |] 64
%X 8
'g o9 12 é 56
2 Bl 16| 3 ™
5 A 20 5 48 |
GLJ “ 24 | E 2 ” 40
= 7 € 40 ' o0 43
= 2 Bl 56
32 A=A 64|
0 20 40 60 80 100 120 140 160 180 0 100 200 300 400 500 600 700 800
Time elapsed (s) Time elapsed (s)
Avg: 61.0s; Max: 78.4s Avg: 264s; Max: 583s

26

Autoscaling finds target configuration quickly

Number of workers

) 2 &
o0 12|
Bl 16
A—A 20
V¥ 24|]

0

20 40 60 80 100 120 140 160 180
Time elapsed (s)

Avg: 61.0s; Max: 78.4s

Number of workers

64

56

48

40

32y

32|
X 40
-0 48|
Bl 56
kA 64

0

100 200 300 400 500 600 700 800
Time elapsed (s)

Avg: 264s; Max: 583s

27

Autoscaling has short idle times

CIFAR-10 ImageNet

autoscaling (+) 3.179 6.813
autoscaling (-) 2.612 4.376
checkpoint restart ~ 72.756 81.186

Average idle time during transition (seconds)

28

Resource Elasticity in Distributed Deep Learning

Autoscaling to dynamically search for a resource efficient cluster

Leads to shorter job completion times and lower costs

0 / o [
up to 45% reduction up to 85.1% reduction
2 . in GPU time
c @@ static
O 4500 .
3 »X autoscaling 35000
ﬂ 4000 30000. | @@ static
L 3500 X autoscaling
o} % 25000
£ 3000 2 20000
E 2500} Z 15000
) [+
£ 2000 O 10000
o O [= 32 20 48 56 64 —
L4 °® .. Starting number of workers
([J . 0 5 10 15 20 25
o o .. Starting number of workers
e O 29

