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Users rely on manual trial-and-error process to 
find resource efficient cluster size

Hardware

Resource allocation today

Dataset Model

32 GPUs

64 GPUs

4000 images/sec

5000 images/sec
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16 GPUs 2200 images/sec



Manual trial-and-error resource allocation

Time-consuming: each trial restarts entire program

Cumbersome: difficult to estimate scaling behavior

Diverse hardware topologies, communication algorithm etc.

Need to reload libraries, rebuild model, prepare input pipeline etc.

Can take minutes of device idle time
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Static allocation: vulnerable to stragglers

?
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Today, users often under- or 
over-allocate resources

?

Time-consuming Static allocationCumbersome



Resource Elasticity in Distributed Deep Learning

Leads to shorter job completion times and lower costs

Autoscaling to dynamically search for a resource efficient cluster

up to 45% reduction up to 85.1% reduction 
in GPU time
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Resource elasticity is not a new idea

Cluster
management

Cloud 
services

Distributed 
computing

Distributed 
deep learning
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Why is resource elasticity not adopted yet?

Hurdle #1: Lack of applicable scaling heuristics

Hurdle #2: Existing frameworks assume static allocation

Hurdle #3: How to scale the batch size?
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Hurdle #1: Lack of applicable scaling heuristics

Existing heuristics are based on dynamic resource demands

E.g. kill a worker if it has been idle for X seconds

In deep learning workloads, however

Resource utilization is typically consistent across batches, which are short

Workers are rarely idle

E.g. request more containers if CPU utilization exceeds X%
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Hurdle #2: Existing frameworks assume static allocation

Models are structured as static graphs

[Abadi et al., 2015]

Synchronization primitives assume fixed # devices

Communication operations are hard-coded into these graphs

PyTorch has “dynamic” graphs, but dynamic only in inputs

E.g. TensorFlow’s SyncReplicasOptimizer, MultiWorkerMirroredStrategy
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Large batch sizes may compromise convergence behavior
[Keskar et al., 2016; Goyal et al., 2017; Hoffer et al., 2017]

Hurdle #3: How to scale the batch size?

1) Fix per device batch size, vary global batch size
Preserves per device efficiency

Per device: 32
Global: 128

Per device: 32
Global: 256

Sacrifices per device efficiency and overall performance

2) Fix global batch size, vary per device batch size
Preserves convergence behavior

Per device: 32
Global: 128

Per device: 16
Global: 128
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Why is resource elasticity not adopted yet?

Hurdle #1: Lack of applicable scaling heuristics

Hurdle #2: Existing frameworks assume static allocation

Hurdle #3: How to scale the batch size?
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Autoscaling System
Scaling heuristics, integration, straggler mitigation



Autoscaling engine for distributed deep learning

Add 2 workers
Replace worker 1

Worker 1: 434 images/sec
Worker 2: 608 images/sec
Worker 3: 592 images/sec
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Hurdle #1: Lack of applicable scaling heuristics

Design custom scaling heuristics based on:

1) Throughput scaling efficiency

2) Utility vs cost

...
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Autoscaling engine can run with custom, pluggable heuristics



Scaling heuristics: Throughput scaling efficiency

Intuition: measure extra per worker throughput relative to 
existing per worker throughput

Num workers: 4
Throughput: 400 img/s

Num workers: 5
Throughput: 480 img/s

Throughput scaling efficiency (sk,d) = (480 - 400) / (400 / 4) = 0.8
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Scaling heuristics: Throughput scaling efficiency

Throughput: 400 img/s → 480 img/s
Efficiency (sk,d): (480 - 400) / (400 / 4) = 0.8

sk,d = 1     perfect scaling

sk,d = 0     no improvement

sk,d < 0     negative scaling

Intuition: measure extra per worker throughput relative to 
existing per worker throughput

Scaling condition #1:
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Total compute time
×

Price per device per time unit

Scaling heuristics: Utility vs cost

Intuition: compare user-provided utility function to dollar cost of job

Job completion time

$
Cost         =

Scaling condition #2:
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Scaling in action

Find the latest point at which the scaling condition passes

Num workers

Th
ro

ug
hp

ut

Num workers
Th

ro
ug

hp
ut
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e.g.



Hurdle #2: Existing frameworks assume static allocation

Give each worker the illusion of local training

e.g. Horovod allreduce
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Workers independently apply black-box function 
f that synchronizes gradients

grads = f(grads)Replace function when switching to new allocation grads = f
2
(grads)

gradients

Portable across different frameworks



Hurdle #3: How to scale the batch size?

User provides an upper batch size limit

Increase global batch size, fixing per device batch size, until limit

Per device: 32
Global: 128

Per device: 32
Global: 256

Per device: 22
Global: 256

Finding an optimal batch size for arbitrary workloads is an open problem
[Hoffer et al., 2018; Shallue et al., 2018; Smith et al., 2018]
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Straggler mitigation comes almost for free

Once we detect a straggler, replace it using the same mechanisms

Refer to paper for details of straggler detection
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Evaluation
Job completion time, GPU time, idle time



CPU cluster: 60 machines
16 Intel Xeon CPUs @ 2.6 GHz (960 total)

64GB memory

1 Gbps network

Experiment setup

GPU cluster: 8 machines
8 NVIDIA V100 GPUs (64 total)

64 Intel Xeon CPUs (2.2GHz)

250GB memory

16 Gbps network
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Autoscaling reduces job completion time

ResNet-50 on CIFAR-10 ResNet-50 on ImageNet

Avg reduction: 8.23%; Max: 16.0% Avg reduction: 19.4%; Max: 45.0%

45%
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Autoscaling reduces GPU time

ResNet-50 on CIFAR-10 ResNet-50 on ImageNet

Avg reduction: 58.6%; Max: 85.1% Avg increase: 7.39%; Max: 14.7%

85.1%

25



Autoscaling finds target configuration quickly

ResNet-50 on CIFAR-10 ResNet-50 on ImageNet

Avg: 61.0s; Max: 78.4s Avg: 264s; Max: 583s
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Autoscaling finds target configuration quickly

Avg: 61.0s; Max: 78.4s Avg: 264s; Max: 583s
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<6% of total time
<2% of total time
(train until convergence)



Autoscaling has short idle times

Average idle time during transition (seconds)
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Resource Elasticity in Distributed Deep Learning

Leads to shorter job completion times and lower costs

Autoscaling to dynamically search for a resource efficient cluster

up to 45% reduction up to 85.1% reduction 
in GPU time
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