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Resource allocation today

16 GPUs 2200 images/sec )
32 GPUs 4000 images/sec
64 GPUs 5000 images/sec )

Dataset Model Hardware

Users rely on manual trial-and-error process to
find resource efficient cluster size



Manual trial-and-error resource allocation

Cumbersome: difficult to estimate scaling behavior

Diverse hardware topologies, communication algorithm etc.

Time-consuming: each trial restarts entire program
Need to reload libraries, rebuild model, prepare input pipeline etc. ‘ ’

Can take minutes of device idle time

Static allocation: vulnerable to stragglers




Cumbersome Time-consuming Static allocation

Today, users often under- or
over-allocate resources



Resource Elasticity in Distributed Deep Learning

Autoscaling to dynamically search for a resource efficient cluster

Leads to shorter job completion times and lower costs

up to 45% reduction up to 85.1% reduction
in GPU time



Resource elasticity is not a new idea

Distributed Cloud Cluster Distributed
computing services management deep learning
SBEKS aws e ?
admtap A\ Azure §E§E MESOS 1
4%‘) ’

D kubernetes .

Google Cloud



Why is resource elasticity not adopted yet?

Hurdle #1: Lack of applicable scaling heuristics
Hurdle #2: Existing frameworks assume static allocation

Hurdle #3: How to scale the batch size?



Hurdle #1: Lack of applicable scaling heuristics

Existing heuristics are based on dynamic resource demands

x E.g. request more containers if CPU utilization exceeds X% kubernetes
x E.g. kill a worker if it has been idle for X seconds Spofl’(\z

In deep learning workloads, however

Resource utilization is typically consistent across batches, which are short

Workers are rarely idle



Hurdle #2: Existing frameworks assume static allocation

‘Xnet O PyTorch ¢ ® e O
&0 Ty
Models are structured as static graphs :

Communication operations are hard-coded into these graphs
(@) (%

PyTorch has “dynamic” graphs, but dynamic only in inputs

(Device A

[Abadi et al., 2015]

Synchronization primitives assume fixed # devices

E.g. TensorFlow’s SyncReplicasOptimizer, MultiWorkerMirroredStrategy



Hurdle #3: How to scale the batch size?

1) Fix per device batch size, vary global batch size

/ Preserves per device efficiency

x Large batch sizes may compromise convergence behavior Per device: 32  Per device: 32
Global: 128 Global: 256

2) Fix global batch size, vary per device batch size

/ Preserves convergence behavior

x Sacrifices per device efficiency and overall performance Per device: 32  Per device: 16
Global: 128 Global: 128
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Why is resource elasticity not adopted yet?
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Autoscaling System

Scaling heuristics, integration, straggler mitigation



Autoscaling engine for distributed deep learning

Autoscaling decision

™ —
Execution engine
9 Autoscaling engine

Forward / backward pass

Raw Synced
gradients gradients

Parameter synchronization

~ 4

e

Scaling heuristics

Straggler detection

Runtime statistics
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Hurdle #1: Lack of applicable scaling heuristics

Design custom scaling heuristics based on:
1) Throughput scaling efficiency
2) Utility vs cost

Autoscaling engine can run with custom, pluggable heuristics
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Scaling heuristics: Throughput scaling efficiency

Intuition: measure relative to

Num workers: 4 Num workers: 5
Throughput: 400 img/s Throughput: 480 img/s

Throughput scaling efficiency (Skad) = / =0.8
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Scaling heuristics: Throughput scaling efficiency

Intuition: measure relative to

Ska=1 perfect scaling

Ska=0 noimprovement
Throughput: 400 img/s — 480 img/s

Skai< 0 negative scaling Efficiency (ska): / =0.8

Scaling condition #1: sx.q > 5,5 € |0,1]
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Scaling heuristics: Utility vs cost

Intuition: compare user-provided utility function to dollar cost of job

3,

\U(T)

» U(D)

l'—.,T

>T
Job completion time

Cost C'(k) =

Total compute time
X

Price per device per time unit

Scaling condition #2: AU > AC
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Scaling in action

eg. Sk d > S
Find the latest point at which the scaling condition passes ¥
A A

a v a X
5 | 0%
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> >

Num workers Num workers
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Hurdle #2: Existing frameworks assume static allocation

@xnet OPyTorch ¥ Tensor

Give each worker the illusion of local training i&ii&

Workers independently apply black-box function
f that synchronizes gradients griadienIs

Replace function when switching to new allocation grads = f_(grads)

) e.g. Horovod allreduce
Portable across different frameworks / g
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Hurdle #3: How to scale the batch size?

User provides an upper batch size limit

Increase global batch size, fixing per device batch size, until limit

Per device: 32 Per device: 32 Per device: 22
Global: 128 Global: 256 Global: 256

Finding an optimal batch size for arbitrary workloads is an open problem
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Straggler mitigation comes almost for free

Once we detect a straggler, replace it using the same mechanisms

Refer to paper for details of straggler detection
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Evaluation

Job completion time, GPU time, idle time



Experiment setup

CPU cluster: 60 machines

16 Intel Xeon CPUs @ 2.6 GHz (960 fotal)
64GB memory
1 Gbps network

GPU cluster: 8 machines

8 NVIDIA (64 total)
64 Intel Xeon CPUs (2.2GHz)
250GB memory

16 Gbps network
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Autoscaling reduces job completion time

ResNet-50 on CIFAR-10 ResNet-50 on ImageNet
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Avg reduction: 8.23%; Max: 16.0% Avg reduction: 19.4%; Max: 45.0%



Autoscaling reduces GPU time

ResNet-50 on C
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Autoscaling finds target configuration quickly

ResNet-50 on CIFAR-10 ResNet-50 on ImageNet
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Avg: 61.0s; Max: 78.4s Avg: 264s; Max: 583s
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Autoscaling finds target configuration quickly

Number of workers
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Autoscaling has short idle times

CIFAR-10 ImageNet

autoscaling (+) 3.179 6.813
autoscaling (-) 2.612 4.376
checkpoint restart ~ 72.756 81.186

Average idle time during transition (seconds)
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Resource Elasticity in Distributed Deep Learning

Autoscaling to dynamically search for a resource efficient cluster

Leads to shorter job completion times and lower costs
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