
Resource Elasticity in
Distributed Deep Learning

Andrew Or, Haoyu Zhang*, Michael J. Freedman
Princeton University, *Google AI

MLSys 2020

Users rely on manual trial-and-error process to
find resource efficient cluster size

Hardware

Resource allocation today

Dataset Model

32 GPUs

64 GPUs

4000 images/sec

5000 images/sec

2

16 GPUs 2200 images/sec

Manual trial-and-error resource allocation

Time-consuming: each trial restarts entire program

Cumbersome: difficult to estimate scaling behavior

Diverse hardware topologies, communication algorithm etc.

Need to reload libraries, rebuild model, prepare input pipeline etc.

Can take minutes of device idle time

3

Static allocation: vulnerable to stragglers

?

4

Today, users often under- or
over-allocate resources

?

Time-consuming Static allocationCumbersome

Resource Elasticity in Distributed Deep Learning

Leads to shorter job completion times and lower costs

Autoscaling to dynamically search for a resource efficient cluster

up to 45% reduction up to 85.1% reduction
in GPU time

5

Resource elasticity is not a new idea

Cluster
management

Cloud
services

Distributed
computing

Distributed
deep learning

6

Why is resource elasticity not adopted yet?

Hurdle #1: Lack of applicable scaling heuristics

Hurdle #2: Existing frameworks assume static allocation

Hurdle #3: How to scale the batch size?

7

Hurdle #1: Lack of applicable scaling heuristics

Existing heuristics are based on dynamic resource demands

E.g. kill a worker if it has been idle for X seconds

In deep learning workloads, however

Resource utilization is typically consistent across batches, which are short

Workers are rarely idle

E.g. request more containers if CPU utilization exceeds X%

8

Hurdle #2: Existing frameworks assume static allocation

Models are structured as static graphs

[Abadi et al., 2015]

Synchronization primitives assume fixed # devices

Communication operations are hard-coded into these graphs

PyTorch has “dynamic” graphs, but dynamic only in inputs

E.g. TensorFlow’s SyncReplicasOptimizer, MultiWorkerMirroredStrategy

9

Large batch sizes may compromise convergence behavior
[Keskar et al., 2016; Goyal et al., 2017; Hoffer et al., 2017]

Hurdle #3: How to scale the batch size?

1) Fix per device batch size, vary global batch size
Preserves per device efficiency

Per device: 32
Global: 128

Per device: 32
Global: 256

Sacrifices per device efficiency and overall performance

2) Fix global batch size, vary per device batch size
Preserves convergence behavior

Per device: 32
Global: 128

Per device: 16
Global: 128

10

Why is resource elasticity not adopted yet?

Hurdle #1: Lack of applicable scaling heuristics

Hurdle #2: Existing frameworks assume static allocation

Hurdle #3: How to scale the batch size?

11

Autoscaling System
Scaling heuristics, integration, straggler mitigation

Autoscaling engine for distributed deep learning

Add 2 workers
Replace worker 1

Worker 1: 434 images/sec
Worker 2: 608 images/sec
Worker 3: 592 images/sec

13

Hurdle #1: Lack of applicable scaling heuristics

Design custom scaling heuristics based on:

1) Throughput scaling efficiency

2) Utility vs cost

...

14

Autoscaling engine can run with custom, pluggable heuristics

Scaling heuristics: Throughput scaling efficiency

Intuition: measure extra per worker throughput relative to
existing per worker throughput

Num workers: 4
Throughput: 400 img/s

Num workers: 5
Throughput: 480 img/s

Throughput scaling efficiency (sk,d) = (480 - 400) / (400 / 4) = 0.8
15

Scaling heuristics: Throughput scaling efficiency

Throughput: 400 img/s → 480 img/s
Efficiency (sk,d): (480 - 400) / (400 / 4) = 0.8

sk,d = 1 perfect scaling

sk,d = 0 no improvement

sk,d < 0 negative scaling

Intuition: measure extra per worker throughput relative to
existing per worker throughput

Scaling condition #1:
16

Total compute time
×

Price per device per time unit

Scaling heuristics: Utility vs cost

Intuition: compare user-provided utility function to dollar cost of job

Job completion time

$
Cost =

Scaling condition #2:
17

Scaling in action

Find the latest point at which the scaling condition passes

Num workers

Th
ro

ug
hp

ut

Num workers
Th

ro
ug

hp
ut

18

e.g.

Hurdle #2: Existing frameworks assume static allocation

Give each worker the illusion of local training

e.g. Horovod allreduce

19

Workers independently apply black-box function
f that synchronizes gradients

grads = f(grads)Replace function when switching to new allocation grads = f
2
(grads)

gradients

Portable across different frameworks

Hurdle #3: How to scale the batch size?

User provides an upper batch size limit

Increase global batch size, fixing per device batch size, until limit

Per device: 32
Global: 128

Per device: 32
Global: 256

Per device: 22
Global: 256

Finding an optimal batch size for arbitrary workloads is an open problem
[Hoffer et al., 2018; Shallue et al., 2018; Smith et al., 2018]

20

Straggler mitigation comes almost for free

Once we detect a straggler, replace it using the same mechanisms

Refer to paper for details of straggler detection

21

Evaluation
Job completion time, GPU time, idle time

CPU cluster: 60 machines
16 Intel Xeon CPUs @ 2.6 GHz (960 total)

64GB memory

1 Gbps network

Experiment setup

GPU cluster: 8 machines
8 NVIDIA V100 GPUs (64 total)

64 Intel Xeon CPUs (2.2GHz)

250GB memory

16 Gbps network

23

Autoscaling reduces job completion time

ResNet-50 on CIFAR-10 ResNet-50 on ImageNet

Avg reduction: 8.23%; Max: 16.0% Avg reduction: 19.4%; Max: 45.0%

45%

24

Autoscaling reduces GPU time

ResNet-50 on CIFAR-10 ResNet-50 on ImageNet

Avg reduction: 58.6%; Max: 85.1% Avg increase: 7.39%; Max: 14.7%

85.1%

25

Autoscaling finds target configuration quickly

ResNet-50 on CIFAR-10 ResNet-50 on ImageNet

Avg: 61.0s; Max: 78.4s Avg: 264s; Max: 583s

26

Autoscaling finds target configuration quickly

Avg: 61.0s; Max: 78.4s Avg: 264s; Max: 583s

27

<6% of total time
<2% of total time
(train until convergence)

Autoscaling has short idle times

Average idle time during transition (seconds)

28

Resource Elasticity in Distributed Deep Learning

Leads to shorter job completion times and lower costs

Autoscaling to dynamically search for a resource efficient cluster

up to 45% reduction up to 85.1% reduction
in GPU time

29

