

SLIDE : In Defense of Smart Algorithms over Hardware Acceleration for Large-Scale Deep Learning Systems

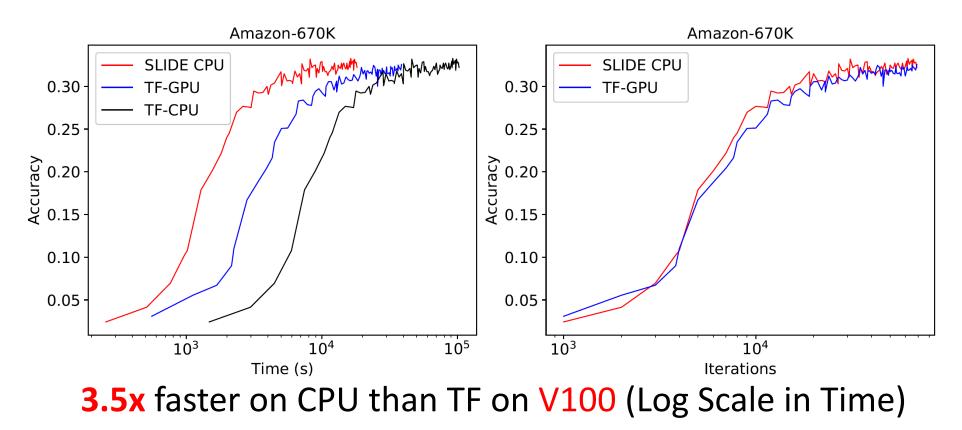
Beidi Chen

Collaborators: Tharun Medini^{*}, James Farwell[†], Sameh Gobriel[†], Charlie Tai [†], Anshumali Shrivastava^{*}

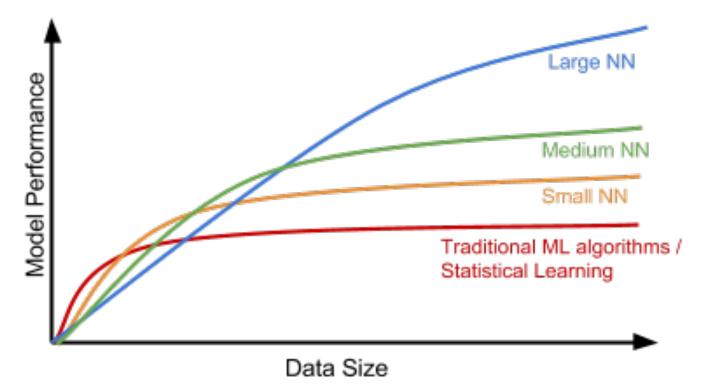
* Rice University, *Intel

MLSys 2020

Our SLIDE System (C++ from scratch) on a **44 core CPU beats TF on V100 (1 hours vs 3.5 hours).** 100+ million parameter networks. TF on same CPU is 16 hours with all HPC optimization (Intel MKL-DNN).



The Age of Large Networks

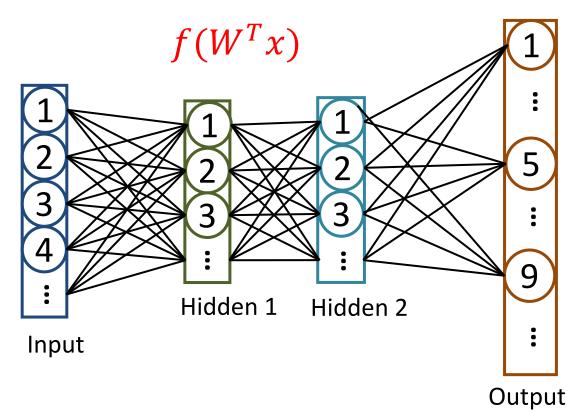


- More Data
- Large Models
- Tons of Engineering
- Backpropagation

(Aka Simple Gradient Descent)

Fully Connected NN

Giant Matrix Multiplication for **every** data point in **each** epoch (Forward + Backward)



Challenges

Do we really need all the computations? No!!

Good News: Only high activations are important

• Sampling few neurons in proportion of activations is enough (Adaptive Dropouts)

(Ba et al. Neurips 13, Makhzani et al. Neurips 15)

Relu filtered negative activations (50% sparsity by design)

• Softmax

Bad News: We need to compute all to identify (or sample) the high activation neurons.NO SAVINGS

The Fundamental Sampling Puzzle

Given N fixed sampling weights, $\{w_1, w_2, \dots, w_N\}$.

- Task: Sample x_i with probability w_i
 - Cost of 1 sample O(N).
 - Cost of K samples O(N).

Given N time-varying sampling weights (activations) $\{w_1^t, w_2^t, \dots, w_N^t\}$.

- Task: At time t, sample x_i with probability w_i^t
 - Cost of sampling O(N), at every time t.
 - Last Few years of work in Locality Sensitive Hashing: If $w_i^t = f(sim(\theta_t, x_i))$, for a specific set of f and sim, then O(1) every time after and initial preprocessing cost of O(N).

Textbook Hashing (Dictionary)

Hashing: Function h that maps a given data point ($x \in R^D$) to an integer key $h : R^D \mapsto \{0, 1, 2, ..., N\}$. h(x) serves as a discrete fingerprint.

Property (Ideal Hash Functions):

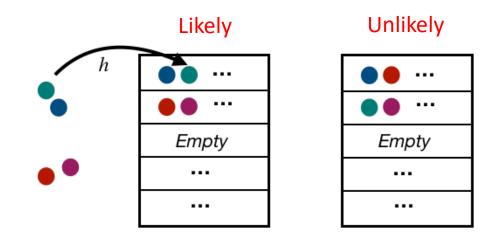
- If x = y, then h(x) = h(y)
- If $x \neq y$, then $h(x) \neq h(y)$

Probabilistic Fingerprinting (Hashing) (late 90s)

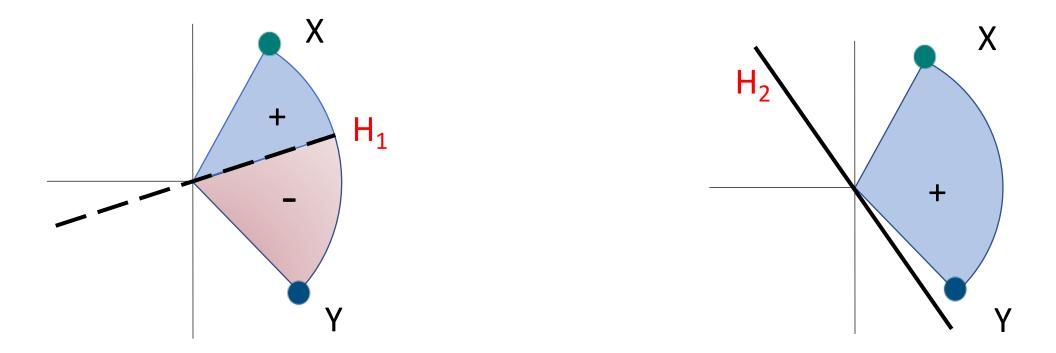
Hashing: Function (Randomized) h that maps a given data point ($x \in R^D$) to an integer key $h : R^D \mapsto \{0, 1, 2, ..., N\}$. h(x) serves as a discrete fingerprint.

Locality Sensitive Property:

- If x = y Sim(x, y) is high, then h(x) = h(y) Pr(h(x) = h(y)) is high
- If $x \neq y$ -Sim(x, y) is low, then $h(x) \neq h(y)$ Pr(h(x) = h(y)) is low



Example 1: Signed Random Projection (SRP)



$$Pr(h(x) = h(y)) = 1 - \frac{1}{\pi} \cos^{-1}(\theta)$$
 monotonic in θ

A classical result from Goemans-Williamson (95)

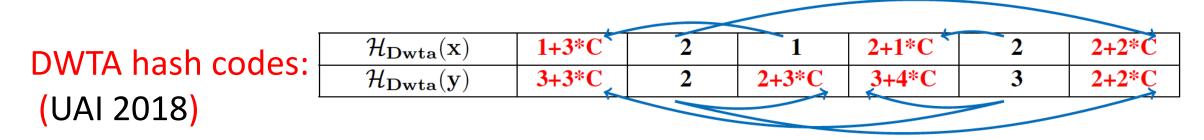
Example 2: (Densified) Winner Take All

Original Vectors:

x	0, 0, 5, 0, 0, 7, 6, 0, 0	K-3
У	0, 0, 1, 0, 0, 0, 0, 0, 0	K-5

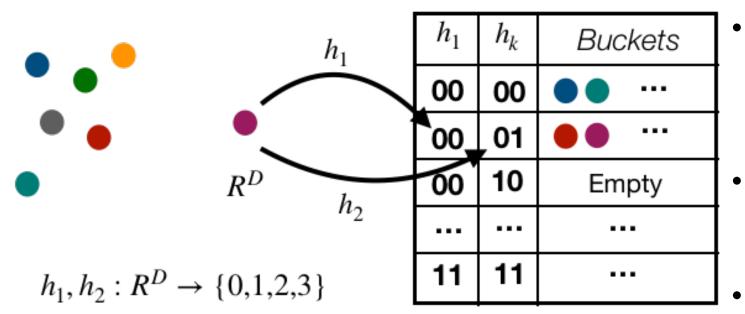
WTA hash codes: (ICCV 2011)

	Bin 1	Bin 2	Bin 3	Bin 4	Bin 5	Bin 6
Θ	2, 1, 8	5, 3, 9	6, 2, 4	8, 9, 1	1, 7, 3	2, 4, 5
${oldsymbol \Theta}({f x})$	0 , 0, 0 (E)	0, 5, 0	7, 0, 0	0 , 0, 0 (E)	0, <u>6</u> , 5	0 , 0, 0 (E)
${oldsymbol \Theta}({f y})$	0 , 0, 0 (E)	0 , 1 , 0	0 , 0, 0 (E)	0 , 0, 0 (E)	0, 0, 1	0 , 0, 0 (E)
$\mathcal{H}_{\mathbf{wta}}(\mathbf{x})$	1 (E)	2	1	1 (E)	2	1 (E)
$\mathcal{H}_{\mathbf{wta}}(\mathbf{y})$	1 (E)	2	1 (E)	1 (E)	3	1 (E)



Probabilistic Hash Tables

Given: $Pr_h[h(x) = h(y)] = f(sim(x, y)), f$ is monotonic.



Given query, if $h_1(q) = 11$ and $h_2(q) = 01$, then probe bucket with index **1101**. It is a good bucket !!

(Locality Sensitive)
$$h_i(q) = h_i(x)$$
 noisy indicator of high similarity.

• Doing better than random !!

LSH for Search (Known)

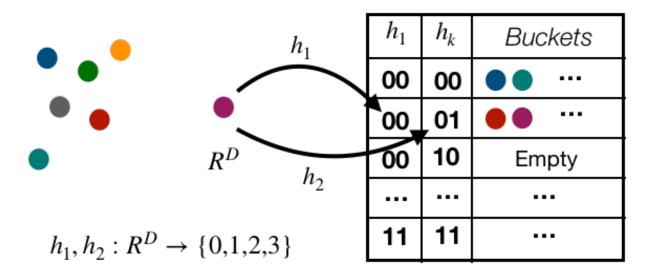
Theory

- Super-linear $O(N^{1+\rho})$ memory
- Sub-linear query time, $O(N^{\rho})$
- $\rho < 1$ but generally large (close to 1) and often hard to determine

Practical Issues

- Needs lot of hash tables and distance computations for good accuracy on near-neighbors
- Buckets can be quite heavy. Poor randomness, or unfavorable data distributions

New View: Data Structures for Efficient Sampling!



Is LSH really a search algorithm?

- Given the query θ_t , LSH samples x_i from the dataset, with probability $w_i^t = 1 (1 p(x_i, \theta_t)^K)^L$
- w_i^t is proportional to $p(x_i, \theta_t)^K$ and the some similarity of x_i, θ_t
- LSH is considered a black box for nearest-neighbor search. It is not!!

LSH as Samplers

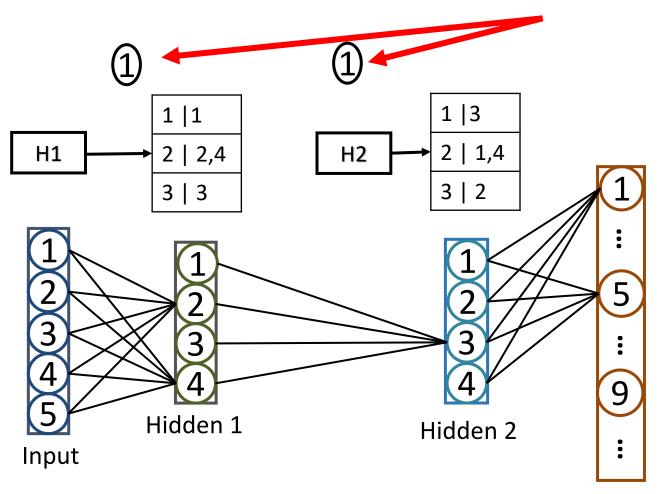
We can pre-process the dataset D, such that

- Given any query q, we can sample $x \in D$ with probability $Const \times [1 (1 p(q, x)^K)^L]$ in KL hash computation and L bucket probes.
- Even K = 1, L = 1 is adaptive. So O(1) time adaptive.
- Adaptive: x is sampled with higher probability than y
 - if and only if sim(q,x) > sim(q,y)

We can exactly compute the sampling probability.

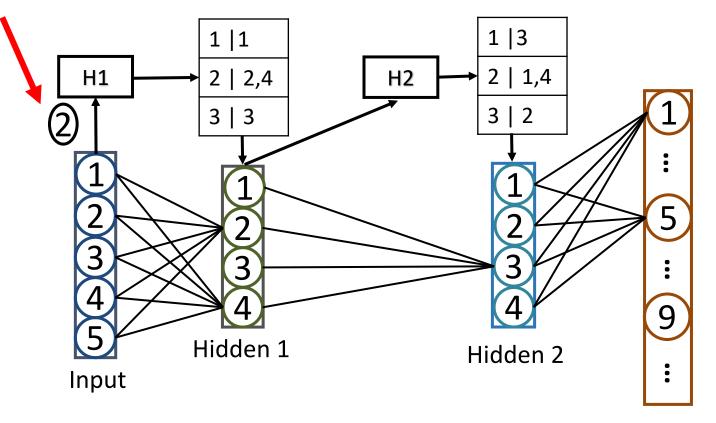
 Const = No of elements sampled/ No of elements in Buckets (Chen et al. NeurIPS 2019)

Sufficient for Importance Sampling Estimations. Sampling cost O(1).

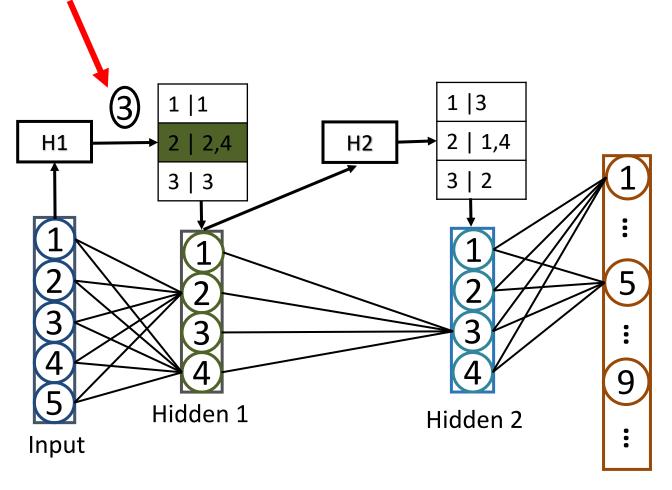


Step 1 – Build the hash tables by processing the weights of the hidden layers (initialization).

Subtlety: Neurons (vectors) in hash tables are not the data vectors. Reorganizing neurons.

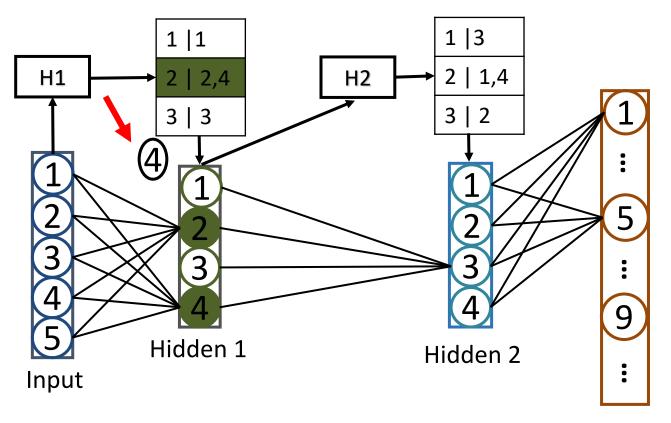


Step 2 – Hash the input to any given layer using its randomized hash function.



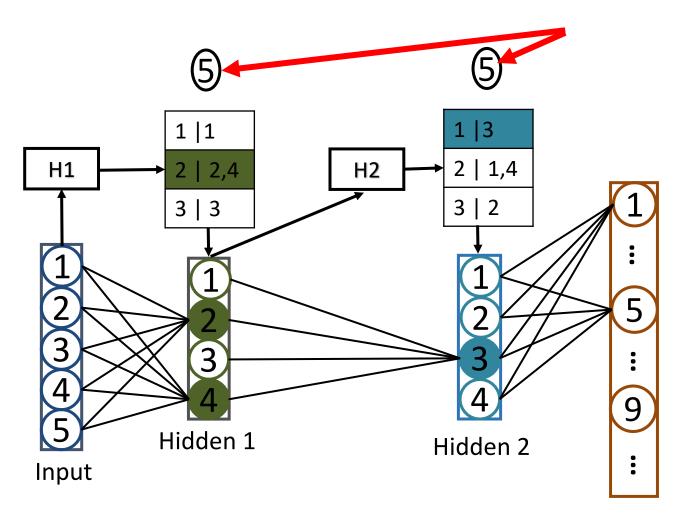
Step 3 – Query the hidden layer's hash table(s) for the active set using integer fingerprint.

Sample neurons in proportion to their activations.



Step 4 – Perform forward and back propagation only on the nodes in the active set.

Computation is in the same order of active neurons.

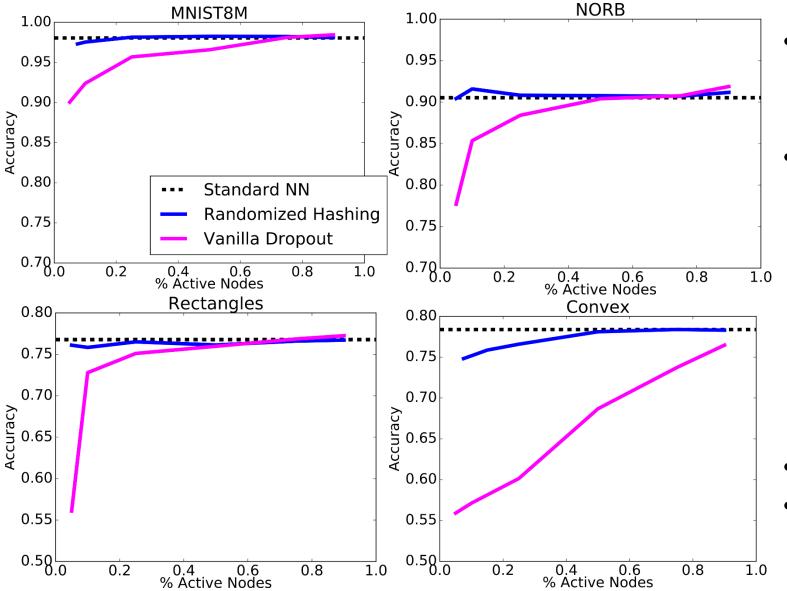


RICE

Step 5 – Update hash tables by rehashing the updated node weights.

Computation is in the same order of active neurons.

We can go very sparse if Adaptive

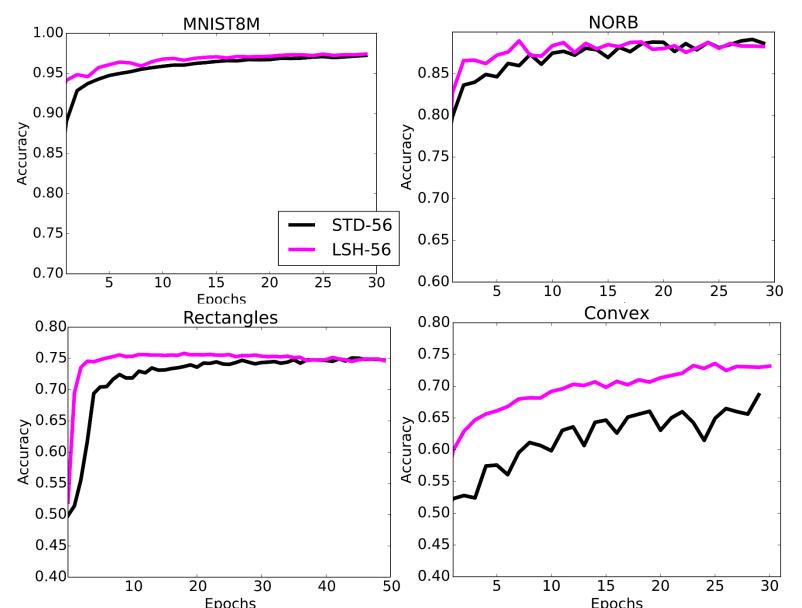


- Reduce both training and inference cost by 95%!
- Significantly more for larger networks.

(The wider the better)

- 2 Hidden Layers
- 1000 Nodes Per Layer

Sparsity + Randomness -> Asynchronous Updates



- 3 Hidden Layers
- 1000 Nodes Per Layer

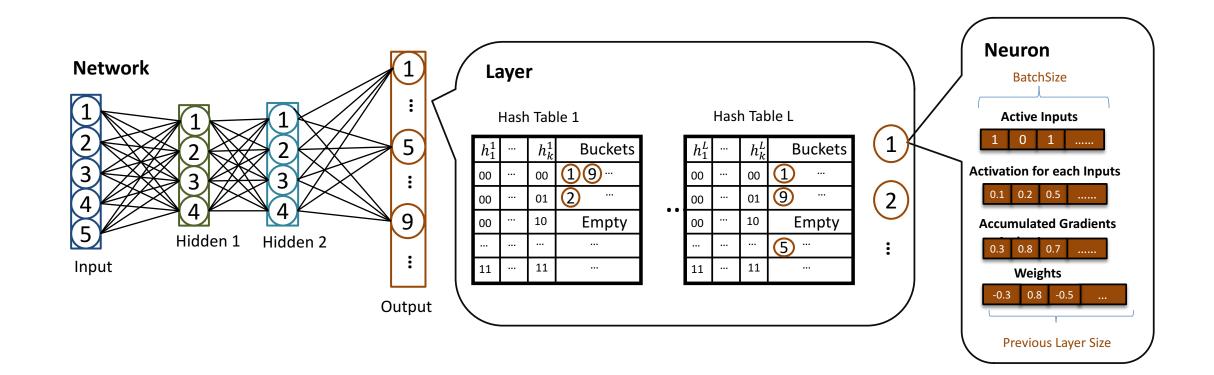
Less Computations + Asynchronous Parallelism

• Each update is computationally very small (100x+ reduction in computation and energy)

• Updates are near-independent, very low chance of conflict. Hence, parallel SGD!

RICE

SLIDE: Sub-Linear Deep learning Engine



Parallelism with OpenMP

Node

Activation for each Inputs

Accumulated Gradients

Parallel across training samples in a batch

(Extreme sparsity and randomness in gradient updates)

Thanks to the theory of **HOGWILD**!

(Recht et al. Neurips 11)

Flexible choices of Hash Functions

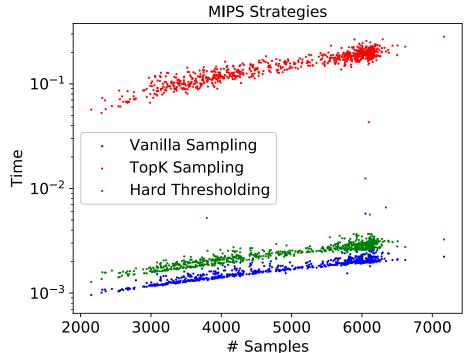
SLIDE supports four different LSH hash functions

- Simhash (cosine similarity)
- Winner-take-all Hashing (order)
- Densified Winner-take-all Hashing (for sparse data)*
- Minhash (jaccard similarity)

Easily add more!

Design Choices for Speed

- Vanilla sub-sampling:
 choose sub-samples uniformly
- Top K sub-sampling:
 rank samples and choose topk
- Hard Thresholding sub-sampling:
 - choose sub-samples that occur > threshold times



Micro-Architecture Optimization

Cache Optimization

Transparent Hugepages

Vector Processing

Software Pipelining and Prefetching

Looks Good on Paper. Does it change anything?

Baseline

State-of-the-art optimized Implementations

- TF on Intel Xeon E5-2699A v4 @ 2.40GHz CPU (FMA,AVX, AVX2, SSE4.2)
- TF on NVIDIA Tesla V100 (32GB)

VS.

SLIDE on Intel Xeon E5-2699A v4 @ 2.40GHz CPU (FMA,AVX, AVX2, SSE4.2)

• TF on NVIDIA Tesla V100 (32GB)

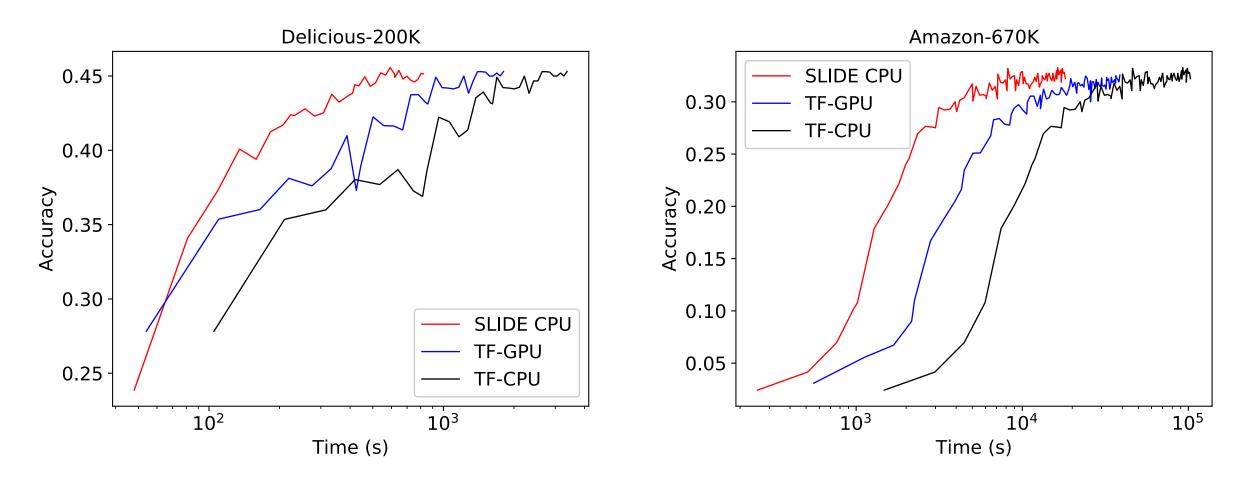
Datasets

	Delicious-200K	Amazon-670K
Feature Dim	782,585	135,909
Feature Sparsity	0.038 %	0.055 %
Label Dim	205,443	670,091
Training Size	196,606	490,449
Testing Size	100,095	153,025

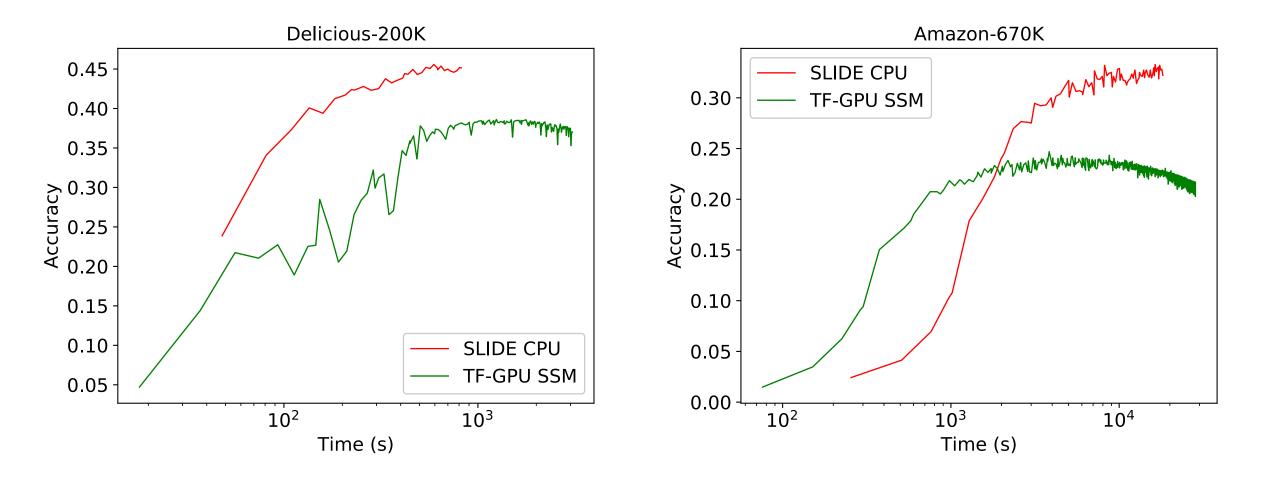
Network Architectures (Fully Connected)

- Delicious-200K 782, 585 \Rightarrow 128 \Rightarrow 205, 443 (126 million parameters)
- Amazon-670K 135,909 \Rightarrow 128 \Rightarrow 670,091 (103 million parameters)

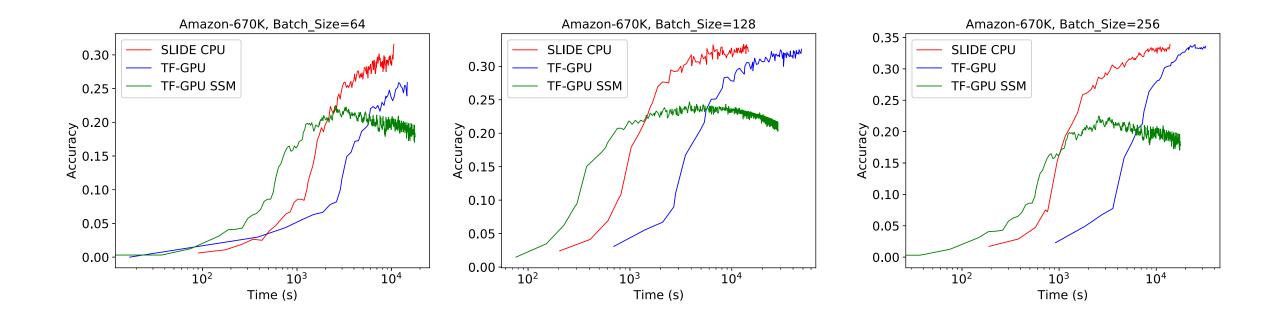
Performance



Performance compared to sampled softmax



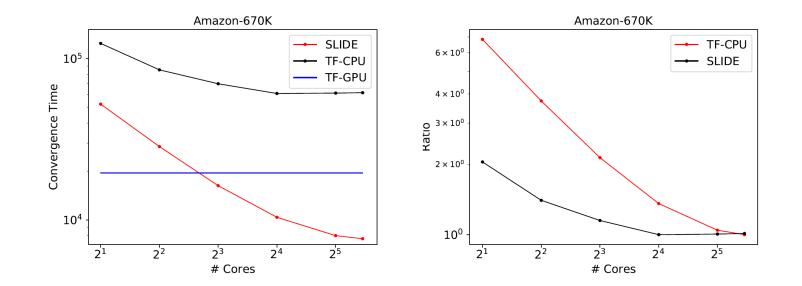
Performance @ Different Batchsizes



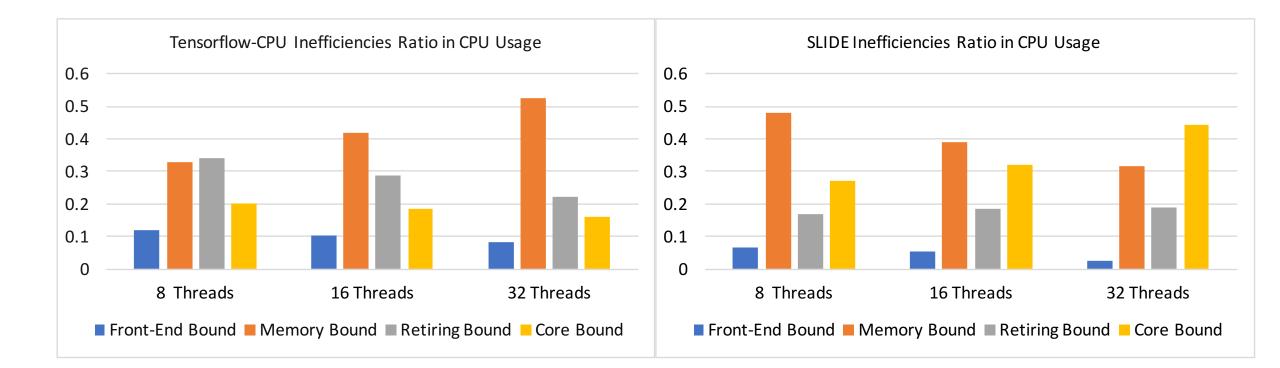
Asynchronous Parallelism gets best scalability

Table: Core Utilization

	8	16	32
Tensorflow-CPU	45%	35%	32%
SLIDE	82%	81%	85%



Inefficiency Diagnosis



Impact of HugePages

Metric	Without Hugepages	With Hugepages
dTLB load miss rate	5.12%	0.25%
iTLB load miss rate	56.12%	20.96%
PTW dTLB-miss	7.74%	0.72%
PTW iTLB-miss	0.02%	0.015%
RAM read dTLB-miss	3,062,039/s	749,485/s
RAM read iTLB-miss	12,060/s	11,580/s
PageFault	32,548/s	26,527/s

Conclusion: From Matrix Multiplication to (few) Hash Lookups

- Standard
 - Operation
 - Matrix Multiply
 - Pros
 - Hardware Support
 - Cons
 - Expensive O(N^3)
 - Can only scale with hardware.
 - Energy

• SLIDE

- Operations
 - Compute Random Hashes of Data
 - Hash lookups, Sample and Update. (Decades of work in Databases)
 - Very Few Multiplication (100x+ reduction)
- Pros
 - Energy (IoT), Latency
 - Asynchronous Parallel Gradient updates
 - Simple Hash Tables
 - Larger Network \rightarrow More Savings
- Cons
 - Random Memory Access (but parallel SGD)

Future Work

- Distributed SLIDE
- SLIDE on more complex architectures like CNN/RNN

References

[1] Beidi Chen, Tharun Medini, Anshumali Shrivastava "<u>SLIDE : In Defense of Smart Algorithms over</u> <u>Hardware Acceleration for Large-Scale Deep Learning Systems</u>". Proceedings of the 3rd MLSys Conference (2020).

[2] Ryan Spring, Anshumali Shrivastava. "<u>Scalable and sustainable deep learning via randomized hashing</u>". Proceedings of the 23rd ACM SIGKDD (2017).

[3] Makhzani, A. and Frey, B. J. "<u>Winner-take-all autoencoders</u>". In Advances in neural information processing systems (2015).

[4] Beid Chen, Anshumali Shrivastava. "<u>Densified Winner Take All (WTA) Hashing for Sparse</u> Datasets". In Uncertainty in artificial intelligence (2018).

[5] Beidi Chen, Yingchen Xu, and Anshumali Shrivastava. "LGD: Fast and Accurate Stochastic Gradient Estimation". In Neurips, Dec. 2019. Vancouver.

[6] Benjamin Recht, Christopher Re, Stephen Wright, and Feng Niu. "<u>Hogwild: A lock-free approach</u> to parallelizing stochastic gradient descent". In Advances in neural information processing systems (2011).

Thanks!!! Welcome to stop by Poster #7

PAPER LINK

CODE LINK

