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Our SLIDE System (C++ from scratch) on a 44 core CPU 
beats TF on V100 (1 hours vs 3.5 hours). 100+ million 
parameter networks. TF on same CPU is 16 hours with all 
HPC optimization (Intel MKL-DNN).

3.5x faster on CPU than TF on V100 (Log Scale in Time)
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The Age of Large Networks

• More Data
• Large Models
• Tons of Engineering 
• Backpropagation 
(Aka Simple Gradient Descent)
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Giant Matrix Multiplication for every data point in each epoch 
(Forward + Backward)

Fully Connected NN
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Challenges
Do we really need all the computations?
No!! 
Good News: Only high activations are important 

• Sampling few neurons in proportion of activations is enough (Adaptive Dropouts)

(Ba et al. Neurips 13 , Makhzani et al. Neurips 15)

• Relu filtered negative activations (50% sparsity by design)

• Softmax

Bad News:  We need to compute all to identify (or sample) the high activation 
neurons. 
NO SAVINGS 5



The Fundamental Sampling Puzzle

Given N fixed sampling weights, 𝑤(,𝑤*, … ,𝑤, . 
• Task: Sample 𝑥- with probability 𝑤-

• Cost of 1 sample 𝑂(𝑁).
• Cost of K samples 𝑂(𝑁).

Given N time-varying sampling weights (activations) 𝑤(0, 𝑤*0, … , 𝑤,0 .
• Task: At time t, sample 𝑥- with probability 𝑤-0

• Cost of sampling O(N), at every time t. 
• Last Few years of work in Locality Sensitive Hashing: If 𝑤-0 = 𝑓(𝑠𝑖𝑚(𝜃0, 𝑥-)), for a 

specific set of f and sim,  then 𝑂(1) every time after and initial preprocessing cost of 
𝑂(𝑁).
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Textbook Hashing (Dictionary)
Hashing: Function h that maps a given data point (𝑥 ∈ 𝑅9) to an integer 
key ℎ ∶ 𝑅9 ↦ 0, 1, 2, … , 𝑁 . ℎ(𝑥) serves as a discrete fingerprint.

Property (Ideal Hash Functions):
• If x = 𝑦, then ℎ 𝑥 = ℎ(𝑦)
• If x ≠ 𝑦, then ℎ 𝑥 ≠ ℎ(𝑦)
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Probabilistic Fingerprinting (Hashing) (late 90s)
Hashing: Function (Randomized) h that maps a given data point (𝑥 ∈ 𝑅9) to 
an integer key ℎ ∶ 𝑅9 ↦ 0, 1, 2, … , 𝑁 . ℎ(𝑥) serves as a discrete fingerprint.

Locality Sensitive Property:
• If x = 𝑦 S𝑖𝑚(𝑥, 𝑦) is high, then ℎ 𝑥 = ℎ 𝑦 Pr(ℎ 𝑥 = ℎ 𝑦 ) is high
• If x ≠ 𝑦 S𝑖𝑚(𝑥, 𝑦) is low, then ℎ 𝑥 ≠ ℎ(𝑦) Pr(ℎ 𝑥 = ℎ 𝑦 ) is low

Likely Unlikely
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Example 1: Signed Random Projection (SRP)

monotonic in 𝜃
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A classical result from Goemans-Williamson (95)
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Example 2: (Densified) Winner Take All

Original Vectors:

WTA hash codes:
(ICCV 2011)

DWTA hash codes:
(UAI 2018)

K=3

Yagnik (ICCV11), Chen and Shrivastava (UAI 18) 10



Probabilistic Hash Tables

Given: 𝑓 is monotonic.
Prh

⇥
h(x) = h(y)

⇤
= f(sim(x, y)),

<latexit sha1_base64="T1X8MzxWNtEUHQEsV/R6e5uIKKQ=">AAACEnicbZDLSsNAFIYnXmu9VV26GSxCAqUkVdCFQsGNywr2AmkIk+mkGTq5MDORhtBncOOruHGhiFtX7nwbp20W2vrDwDf/OYeZ83sJo0Ka5re2srq2vrFZ2ipv7+zu7VcODjsiTjkmbRyzmPc8JAijEWlLKhnpJZyg0GOk641upvXuA+GCxtG9zBLihGgYUZ9iJJXlVowWd4O+R4d2oI8NeA0DPTOmd0exrwsa6uNaZhg16FaqZt2cCS6DVUAVFGq5la/+IMZpSCKJGRLCtsxEOjnikmJGJuV+KkiC8AgNia0wQiERTj5baQJPlTOAfszViSScub8nchQKkYWe6gyRDMRibWr+V7NT6V86OY2SVJIIzx/yUwZlDKf5wAHlBEuWKUCYU/VXiAPEEZYqxbIKwVpceRk6jbp1Vm/cnVebV0UcJXAMToAOLHABmuAWtEAbYPAInsEreNOetBftXfuYt65oxcwR+CPt8wdf55q3</latexit>

• Given query, if ℎ( 𝑞 = 11
and ℎ* 𝑞 = 01, then probe 
bucket with index 1101. It is a 
good bucket !!

• (Locality Sensitive)  ℎ- 𝑞 =
ℎ-(𝑥) noisy indicator of high 
similarity.

• Doing better than random !!
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LSH for Search (Known) 

Theory 
• Super-linear 𝑂(𝑁(FG) memory
• Sub-linear query time, O(𝑁G)
• 𝜌 < 1 but generally large (close to 1) and often hard to determine

Practical Issues
• Needs lot of hash tables and distance computations for good accuracy on 

near-neighbors
• Buckets can be quite heavy. Poor randomness, or unfavorable data 

distributions
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New View: Data Structures for Efficient Sampling!

Is LSH really a search algorithm?
• Given the query 𝜃0, LSH samples 𝑥- from the dataset, with probability 
𝑤-0 = 1 − 1 − p xL, 𝜃0 M N

• 𝑤-0 is proportional to p xL, 𝜃0 M and the some similarity of xL, 𝜃0
• LSH is considered a black box for nearest-neighbor search. It is not!!
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LSH as Samplers
We can pre-process the dataset D, such that 
• Given any query q, we can sample 𝑥 ∈ 𝐷 with probability 
𝐶𝑜𝑛𝑠𝑡× 1 − 1 − 𝑝 𝑞, 𝑥 V W in KL hash computation and L bucket probes. 
• Even K = 1, L =1 is adaptive. So O(1) time adaptive.
• Adaptive: x is sampled with higher probability than y 

• if and only if sim(q,x) > sim(q,y) 

We can exactly compute the sampling probability. 
• Const = No of elements sampled/ No of elements in Buckets  

(Chen et al. NeurIPS 2019)

Sufficient for Importance Sampling Estimations. Sampling cost O(1).
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SLIDE: Sub-LInear Deep learning Engine

Step 1 – Build the hash tables by 
processing the weights of the 
hidden layers (initialization).

Subtlety: Neurons (vectors) in 
hash tables are not the data 
vectors. Reorganizing neurons.  
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SLIDE: Sub-LInear Deep learning Engine

Step 2 – Hash the input to any 
given layer using its randomized 
hash function.
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SLIDE: Sub-LInear Deep learning Engine

Step 3 – Query the hidden layer's 
hash table(s) for the active set 
using integer fingerprint.
Sample neurons in proportion to 
their activations.1
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SLIDE: Sub-LInear Deep learning Engine

Step 4 – Perform forward and 
back propagation only on the 
nodes in the active set.
Computation is in the same order 
of active neurons.1
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SLIDE: Sub-LInear Deep learning Engine

Step 5 – Update hash tables by 
rehashing the updated node 
weights.
Computation is in the same order 
of active neurons.1
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We can go very sparse if Adaptive

• 2 Hidden Layers 
• 1000 Nodes Per Layer

• Reduce both training 
and inference cost by 
95%!

• Significantly more for 
larger networks. 

(The wider the better)
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Sparsity + Randomness à Asynchronous Updates

• 3 Hidden Layers 
• 1000 Nodes Per Layer21



Less Computations + Asynchronous Parallelism

• Each update is computationally very small (100x+ reduction in 
computation and energy)

• Updates are near-independent, very low chance of conflict. Hence, 
parallel SGD!
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SLIDE: Sub-LInear Deep learning Engine
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(Extreme sparsity and randomness in gradient updates)

Thanks to the theory of HOGWILD!
(Recht et al. Neurips 11)

Parallelism with OpenMP

Parallel across training samples in a batch 
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Flexible choices of Hash Functions

SLIDE supports four different LSH hash functions
• Simhash (cosine similarity)
• Winner-take-all Hashing (order)
• Densified Winner-take-all Hashing (for sparse data)∗
• Minhash (jaccard similarity)

Easily add more!
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• Vanilla sub-sampling:
- choose sub-samples uniformly

• Top K sub-sampling:
- rank samples and choose topk

• Hard Thresholding sub-sampling:
- choose sub-samples that occur > threshold times

Design Choices for Speed
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Micro-Architecture Optimization

Cache Optimization

Transparent Hugepages

Vector Processing

Software Pipelining and Prefetching
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Looks Good on Paper.  Does it change anything?

Baseline
State-of-the-art optimized Implementations
• TF on Intel Xeon E5-2699A v4 @ 2.40GHz CPU (FMA,AVX, AVX2, SSE4.2)
• TF on NVIDIA Tesla V100 (32GB)

VS.
SLIDE on Intel Xeon E5-2699A v4 @ 2.40GHz CPU (FMA,AVX, AVX2, 
SSE4.2)
• TF on NVIDIA Tesla V100 (32GB)
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Datasets
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Performance
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Performance compared to sampled softmax
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Performance @ Different Batchsizes
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Asynchronous Parallelism gets best scalability
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Inefficiency Diagnosis
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Impact of HugePages
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Conclusion: From Matrix Multiplication to (few) Hash Lookups

• Standard
• Operation
• Matrix Multiply

• Pros
• Hardware Support

• Cons
• Expensive O(N^3)
• Can only scale with hardware.
• Energy

• SLIDE
• Operations
• Compute Random Hashes of Data
• Hash lookups, Sample and Update. 

(Decades of work in Databases)
• Very Few Multiplication (100x+ reduction)

• Pros
• Energy (IoT), Latency
• Asynchronous Parallel Gradient updates 
• Simple Hash Tables 
• Larger Network à More Savings

• Cons
• Random Memory Access (but parallel SGD)
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Future Work

• Distributed SLIDE

• SLIDE on more complex architectures like CNN/RNN
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Thanks!!!
Welcome to stop by Poster #7
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