
FLEET: Flexible Efficient Ensemble Training
for Heterogenous Deep Neural Networks

Hui Guan, Laxmikant Kishor Mokadam, Xipeng Shen,
Seung-Hwan Lim, Robert Patton

1

2

Build an image classifier?

Pre-processingStorage

Training

Decoding
Rotation
Cropping
…

Hyperparameters tuning:
• # layers
• # parameters in each layer
• Learning rate scheduling
• …

Deep Neural Network (DNN)

CPU GPU

3

Pre-processingTrain model 1

Ensemble Training
• concurrently train a set of DNNs on a cluster of nodes.

Training

Storage

…

Train model 2

Train model N

Pre-processing

Training

Pre-processing

Training

……

4

Pre-processingTrain model 1

…

Pre-processingStorageTrain model 2

Pre-processingTrain model N

Preprocessing is redundant across the pipelines.

Training

Training

Training

…

5

Pittman, Randall, et al. "Exploring flexible communications for streamlining DNN ensemble training pipelines." SC18:
International Conference for High Performance Computing, Networking, Storage and Analysis. IEEE, 2018.

Eliminate pipeline redundancies in preprocessing through data sharing
• Reduce CPU usage by 2-11X
• Achieve up to 10X speedups with 15% energy consumption

Pittman et al., 2018

6

Train model 1

…

Train model 2

Train model N

Training

Training

Training

…

Ensemble training with data sharing

Pre-processing

Storage

Pre-processing

…

CPU GPU

7

Train model 1

…

Train model 2

Train model N

With data sharing, the training goes even slower!

Training

Training

Training

…

Pre-processing

Storage

Pre-processing

…

CPU GPU

8

Heterogenous Ensemble

A set of DNNs with
different architectures
and configurations.

Varying training rate
Varying convergence speed

Training

Training

Training

…

Pre-processing

Pre-processing

…

CPU GPU

Training

Training

Training

…

Pre-processing

Pre-processing

…
9

CPU GPU

Varying training rate

Training rate:
compute throughput of
processing units used for
training the DNN. 40 images/sec

100 images/sec

100 images/sec

Heterogenous Ensemble

Pre-processing

Training

Training

Training

…

Pre-processing

…
10

CPU GPU

Varying training rate

If a DNN consumes data
slower, other DNNs will
have to wait for it before
evicting current set of
cached batches.

40 images/sec

100 images/sec

100 images/sec

Bottleneck

Heterogenous Ensemble

Pre-processing

Training

Training

Training

…

Pre-processing

…
11

CPU GPU

50 epochs

40 epochs

40 epochs

Varying convergence speed

Due to differences in
architectures and hyper-
parameters, some DNNs
converge slower than others.

Varying training rate
Heterogenous Ensemble

Pre-processing

Training

Training

Training

…

Pre-processing

…
12

CPU GPU

50 epochs

40 epochs

40 epochsResource
under-utilized

Varying convergence speed

A subset of DNNs have
already converged while the
shared preprocessing have
to keep working for the
remaining ones.

Varying training rate
Heterogenous Ensemble

13

A flexible ensemble training framework for
efficiently training

a heterogenous set of DNNs.

Our solution: FLEET

Varying convergence speed
Varying training rate

heterogenous ensemble

1.12 – 1.92X speedup

14

A flexible ensemble training framework for
efficiently training

a heterogenous set of DNNs.

Our solution: FLEET

Varying convergence speed
Varying training rate

heterogenous ensemble

Contributions:
1. Optimal resource allocation

1.12 – 1.92X speedup

15

A flexible ensemble training framework for
efficiently training

a heterogenous set of DNNs.

Our solution: FLEET

Varying convergence speed
Varying training rate

heterogenous ensemble
Data-parallel distributed training

Checkpointing

Contributions:
1. Optimal resource allocation
2. Greedy allocation algorithm

16

A flexible ensemble training framework for
efficiently training

a heterogenous set of DNNs.

Our solution: FLEET

Varying convergence speed
Varying training rate

heterogenous ensemble
Data-parallel distributed training

Checkpointing

Contributions:
1. Optimal resource allocation
2. Greedy allocation algorithm
3. A set of techniques to solve challenges in implementing FLEET

17

A flexible ensemble training framework for
efficiently training

a heterogenous set of DNNs.

Focus of This Talk

Varying convergence speed
Varying training rate

heterogenous ensemble
Data-parallel distributed training

Checkpointing

Contributions:
1. Optimal resource allocation
2. Greedy allocation algorithm
3. A set of techniques to solve challenges in implementing FLEET

18

Pre-processing

CPU GPU

Pre-processing

Training

Training

Training

…

Resource Allocation Problem

DNN 2

DNN 1

DNN N

Optimal CPU allocation:
Set #processes for preprocessing
to be the one that just meet the
computing requirements of
training DNNs

What is an
optimal
GPU
allocation?

19

GPU Allocation

DNN 1

DNN 2

DNN 3

DNN 4

GPU

GPU

GPU

GPU

Node 1

Node 2

20

DNN 1

DNN 2

DNN 3

DNN 4

GPU

GPU

GPU

GPU

Node 1

Node 2

100 images/sec

80 images/sec

80 images/sec

40 images/sec

With data sharing, the slowest DNN determines the training rate of
the ensemble training pipeline.

Training rate of the pipeline

Training rate

GPU Allocation: 1 GPU to 1 DNN

21

DNN 1

DNN 4GPU

GPU

GPU

GPU

Node 1

Node 2

100 images/sec

DNN 4

DNN 4

105 images/sec

Training rate

Another way to allocate GPUs: only DNN 1 and DNN 4 are trained
together with data sharing.

Training rate of the pipeline

Reduce waiting time
Increase utilization

GPU Allocation: Different GPUs to Different DNNs

22

DNN 1

DNN 4GPU

GPU

GPU

GPU

Node 1

Node 2

100 images/sec

DNN 4

DNN 4

105 images/sec

Training rate

A set of DNNs to be trained together with
data sharing (e.g., DNN1 and DNN4).

Flotilla

GPU Allocation: Different GPUs to Different DNNs

23

DNN 1

DNN 4GPU

GPU

GPU

GPU

Node 1

Node 2
DNN 4

DNN 4

Training rate

We need to create a list of flotillas to train all DNNs to converge.

DNN 2

DNN 3

DNN 3

DNN 2

Flotilla 1 Flotilla 2

… …

GPU Allocation: Different GPUs to Different DNNs

24

Given a set of DNN to train and a cluster of nodes, find:
(1) the list of flotillas and

(2) GPU assignments within each flotilla
such that the end-to-end ensemble training time is minimized.

NP-hard

Optimal Resource Allocation

25

Greedy Allocation Algorithm

Dynamically determine the list of flotillas:
(1) whether a DNN is converged or not,

(2) the training rate of each DNN.

Once a flotilla is created,
derive an optimal GPU assignment

26

Create a new flotilla

Assign GPUs for DNNs in
the flotilla

Train DNNs in the flotilla
with data sharing

Profile training rates
of each DNN on m GPUs

Converged DNNs

DNN ensemble Greedy Allocation Algorithm

27

Create a new flotilla

Assign GPUs for DNNs in
the flotilla

Train DNNs in the flotilla
with data sharing

Profile training rates
of each DNN on m GPUs

GPU 1 2 3 4
DNN 1 100 190 270 350
DNN 2 80 150 220 280
DNN 3 80 150 200 240
DNN 4 40 75 105 120

Converged DNNs

DNN ensemble Greedy Allocation Algorithm:
profiling

Training rates (images/sec) of DNNs on GPUs.

28

Create a new flotilla

Assign GPUs for DNNs in
the flotilla

Train DNNs in the flotilla
with data sharing

Profile training rates
of each DNN on m GPUs

Converged DNNs

DNN ensemble Greedy Allocation Algorithm

Step 1: Flotilla Creation

Step 2: GPU Assignment

Step 3: Model training

29

Create a new flotilla

Assign GPUs for DNNs in
the flotilla

Train DNNs in the flotilla
with data sharing

Profile training rates
of each DNN on m GPUs

Converged DNNs

DNN ensemble

#1: DNNs in the same flotilla should be able to
reach a similar training rate if a proper number of
GPUs is assigned to each DNN.

#2: Pack into one flotilla as many DNNs as possible.

Step 1: Flotilla Creation

Reduce GPU waiting time

Avoid inefficiency due to sublinear scaling
Allow more DNNs to share preprocessing

30

Create a new flotilla

Assign GPUs for DNNs in
the flotilla

Train DNNs in the flotilla
with data sharing

Profile training rates
of each DNN on m GPUs

Converged DNNs

DNN ensemble

GPU 1 2 3 4
DNN 1 100 190 270 350
DNN 2 80 150 220 280
DNN 3 80 150 200 240
DNN 4 40 75 105 120

DNN 1

#GPU=1

DNN 4

#GPU=3

GPUs available: 4-1 à 3 – 3 à 0

Step 1: Flotilla Creation

31

Create a new flotilla

Assign GPUs for DNNs in
the flotilla

Train DNNs in the flotilla
with data sharing

Profile training rates
of each DNN on m GPUs

Converged DNNs

DNN ensemble

#1: When assigning multiple GPUs to a DNN,
try to use GPUs in the same node.

#2: Try to assign DNNs that need a smaller
number of GPUs to the same node.

Step 2: GPU Assignment

Reduce the variation in communication latency

GPUGPU

Node 1 Node 2

GPUGPU

DNN 1 DNN 4 DNN 4 DNN 4

32

Create a new flotilla

Assign GPUs for DNNs in
the flotilla

Train DNNs in the flotilla
with data sharing

Profile training rates
of each DNN on m GPUs

Converged DNNs

DNN ensemble Step 1: Flotilla Creation
Step 2: GPU Assignment

Varying training rate

Data-parallel distributed training

33

Create a new flotilla

Assign GPUs for DNNs in
the flotilla

Train DNNs in the flotilla
with data sharing

Profile training rates
of each DNN on m GPUs

Converged DNNs

DNN ensemble Step 3: Model Training

Varying convergence speed

Checkpointing

34

Create a new flotilla

Assign GPUs for DNNs in
the flotilla

Train DNNs in the flotilla
with data sharing

Profile training rates
of each DNN on m GPUs

Converged DNNs

DNN ensemble

GPU 1 2 3 4
DNN 1 100 190 270 350
DNN 2 80 150 220 280
DNN 3 80 150 200 240
DNN 4 40 75 100 120

Once converged, mark as complete and release GPUs.

Step 3: Model Training

Stop training the flotilla once less than 80%
of GPUs remain active for training.

35

Create a new flotilla

Assign GPUs for DNNs in
the flotilla

Train DNNs in the flotilla
with data sharing

Profile training rates
of each DNN on m GPUs

Converged DNNs

DNN ensemble

GPU 1 2 3 4
DNN 1 100 190 270 350
DNN 2 80 150 220 280
DNN 3 80 150 200 240
DNN 4 40 75 100 120

Consider only un-converged DNNs when
create the next flotilla.

Step 3: Model Training

36

Experiment Settings
• Heterogenous ensemble

• 100 DNNs derived from DenseNets and ResNets
• Training rate on a single GPU: 21~176 images/sec.

• Summit-Dev@ORNL
• 2 IBM POWER8 CPUs with 256GB DRAM
• 4 NVIDIA Tesla P100 GPUs

• Dataset
• Caltech256: 30K training images (240 minutes limit)

37

Counterparts for Comparisons

• Baseline
• Train each DNN on one GPU independently
• Randomly picks one yet-to-be-trained DNN whenever a GPU is free

• Homogeneous Training （Pittman et al., 2018）
• Train each DNN on one GPU with data sharing
• When #GPUs < #DNNs, randomly picks a subset of DNNs to train

after the previous subset is done
• FLEET-G (global paradigm)
• FLEET-L (local paradigm)

• Train remaining DNNs once some GPUs are released
• Pick the DNNs to train by the greedy algorithm in FLEET-G

38

End-to-End Speedups

 0

 0.5

 1

 1.5

 2

 2.5

(20,100) (40,100) (60,100) (80,100) (100,100) (120,100) (140,100) (160,100)

Sp
ee

du
p

(#GPUs, #DNNs)

Homogeneous[24]
FLEET-L

FLEET-GHomogeneous
FLEET-L

Homogeneous: slowdowns are due
to the waiting of other GPUs for
the slowest DNN to finish.

39

End-to-End Speedups

 0

 0.5

 1

 1.5

 2

 2.5

(20,100) (40,100) (60,100) (80,100) (100,100) (120,100) (140,100) (160,100)

Sp
ee

du
p

(#GPUs, #DNNs)

Homogeneous[24]
FLEET-L

FLEET-GHomogeneous
FLEET-L

FLEET-G: the best overall
performance, 1.12-1.92X
speedups over the baseline.

FLEET-L: notable but smaller
speedups for less favorable
allocation decisions.

The overhead of scheduling and checkpointing is at most 0.1% and 6.3%
of the end-to-end training time in all the settings.

40

Conclusions and Future Work

• Systematically explore the strategies for flexible ensemble training for
a heterogenous set of DNNs.
• Optimal resource allocation à Greedy allocation algorithm
• Software implementation

• Data-parallel distributed training, dynamic GPU-DNN
mappings, checkpointing, data sharing

• Future work: apply FLEET to real hyperparameter tuning and neural
architecture search workloads.

41

