

FLEET: Flexible Efficient Ensemble Training for Heterogenous Deep Neural Networks

Hui Guan, Laxmikant Kishor Mokadam, Xipeng Shen, Seung-Hwan Lim, Robert Patton

Build an image classifier? Deep Neural Network (DNN)

...

Ensemble Training

• concurrently train a set of DNNs on a cluster of nodes.

Pittman et al., 2018

Eliminate pipeline redundancies in preprocessing through *data sharing*

- Reduce CPU usage by 2-11X
- Achieve up to 10X speedups with 15% energy consumption

Pittman, Randall, et al. "Exploring flexible communications for streamlining DNN ensemble training pipelines." *SC18: International Conference for High Performance Computing, Networking, Storage and Analysis*. IEEE, 2018.

7

Heterogenous Ensemble

A set of DNNs with different architectures and configurations.

Varying training rate Varying convergence speed

Heterogenous Ensemble

Varying training rate

Training rate: compute throughput of processing units used for training the DNN.

Heterogenous Ensemble

Varying training rate

If a DNN consumes data slower, other DNNs will have to wait for it before evicting current set of cached batches.

Heterogenous Ensemble

Varying training rate Varying convergence speed

Due to differences in architectures and hyperparameters, some DNNs converge slower than others.

heterogenous ensemble

Varying training rate Varying convergence speed

Our solution: FLEET

A *flexible* ensemble training framework for *efficiently* training <u>a heterogenous set of DNNs</u>.

1.12 – 1.92X speedup

heterogenous ensemble

Varying training rate Varying convergence speed

Contributions:

1. Optimal resource allocation

Our solution: FLEET

A *flexible* ensemble training framework for *efficiently* training <u>a heterogenous set of DNNs</u>.

1.12 – 1.92X speedup

heterogenous ensemble

Varying training rate ← Varying convergence speed ←

Contributions:

- 1. Optimal resource allocation
- 2. Greedy allocation algorithm

Our solution: FLEET

A *flexible* ensemble training framework for *efficiently* training <u>a heterogenous set of DNNs</u>.

Data-parallel distributed training

Checkpointing

heterogenous ensemble

Varying training rate ← Varying convergence speed ←

<u>a heterogenous set of DNNs</u>. Data-parallel distributed training

A *flexible* ensemble training framework for

efficiently training

Checkpointing

Our solution: FLEET

Contributions:

- 1. Optimal resource allocation
- 2. Greedy allocation algorithm
- 3. A set of techniques to solve challenges in implementing FLEET

heterogenous ensemble

Varying training rate ← Varying convergence speed ←

Contributions:

- 1. Optimal resource allocation
- 2. Greedy allocation algorithm
- 3. A set of techniques to solve challenges in implementing FLEET

Focus of This Talk

A *flexible* ensemble training framework for *efficiently* training <u>a heterogenous set of DNNs</u>.

Data-parallel distributed training

Checkpointing

Resource Allocation Problem

GPU Allocation

GPU Allocation: 1 GPU to 1 DNN

With data sharing, the slowest DNN determines the training rate of the ensemble training pipeline.

GPU Allocation: Different GPUs to Different DNNs

Another way to allocate GPUs: only DNN 1 and DNN 4 are trained together with data sharing.

GPU Allocation: Different GPUs to Different DNNs

GPU Allocation: Different GPUs to Different DNNs

We need to create a list of flotillas to train all DNNs to converge.

Optimal Resource Allocation

Given a set of DNN to train and a cluster of nodes, find: (1) the list of flotillas and (2) GPU assignments within each flotilla such that the end-to-end ensemble training time is minimized.

NP-hard

Greedy Allocation Algorithm

Dynamically determine the list of flotillas:(1) whether a DNN is converged or not,(2) the training rate of each DNN.

Once a flotilla is created, derive an optimal GPU assignment

Greedy Allocation Algorithm

Greedy Allocation Algorithm: profiling

Training rates (images/sec) of DNNs on GPUs.

# GPU	1	2	3	4
DNN 1	100	190	270	350
DNN 2	80	150	220	280
DNN 3	80	150	200	240
DNN 4	40	75	105	120

Greedy Allocation Algorithm

Step 1: Flotilla Creation

Step 2: GPU Assignment

Step 3: Model training

Step 1: Flotilla Creation

#1: DNNs in the same flotilla should be able to reach a similar training rate if a proper number of GPUs is assigned to each DNN.

Reduce GPU waiting time

#2: Pack into one flotilla as many DNNs as possible.

Avoid inefficiency due to sublinear scaling Allow more DNNs to share preprocessing

Step 1: Flotilla Creation

GPUs available: $4 - 1 \rightarrow 3 - 3 \rightarrow 0$

# GPU	1	2	3	4
DNN 1	100	190	270	350
DNN 2	80	150	220	280
DNN 3	80	150	200	240
DNN 4	40	75	105	120

Step 2: GPU Assignment

#1: When assigning multiple GPUs to a DNN, try to use GPUs in the same node.

#2: Try to assign DNNs that need a smaller number of GPUs to the same node.

Reduce the variation in communication latency

Node 1

Node 2

Step 1: Flotilla Creation Step 2: GPU Assignment

Data-parallel distributed training

Varying training rate

Step 3: Model Training

Once converged, mark as complete and release GPUs.

	# GPU	1	2	3	4
У	DNN 1	100	190	270	350
	DNN 2	80	150	220	280
	DNN 3	80	150	200	240
	DNN 4	40	75	100	120

Stop training the flotilla once less than 80% of GPUs remain active for training.

Step 3: Model Training

	# GPU	1	2	3	4
	DNN 1	100	190	270	350
	DNN 2	80	150	220	280
	DNN 3	80	150	200	240
l	DNN 4	40	75	100	120

Consider only un-converged DNNs when create the next flotilla.

Experiment Settings

- Heterogenous ensemble
 - 100 DNNs derived from DenseNets and ResNets
 - Training rate on a single GPU: 21~176 images/sec.
- Summit-Dev@ORNL
 - 2 IBM POWER8 CPUs with 256GB DRAM
 - 4 NVIDIA Tesla P100 GPUs
- Dataset
 - Caltech256: 30K training images (240 minutes limit)

Counterparts for Comparisons

- Baseline
 - Train each DNN on one GPU *independently*
 - Randomly picks one yet-to-be-trained DNN whenever a GPU is free
- Homogeneous Training (Pittman et al., 2018)
 - Train each DNN on one GPU with *data sharing*
 - When #GPUs < #DNNs, randomly picks a subset of DNNs to train after the previous subset is done
- FLEET-G (*global* paradigm)
- FLEET-L (*local* paradigm)
 - Train remaining DNNs once some GPUs are released
 - Pick the DNNs to train by the greedy algorithm in FLEET-G

End-to-End Speedups

End-to-End Speedups

FLEET-G: the best overall performance, 1.12-1.92X speedups over the baseline.

FLEET-L: notable but smaller speedups for less favorable allocation decisions.

The overhead of scheduling and checkpointing is at most 0.1% and 6.3% of the end-to-end training time in all the settings.

(20,100) (40,100) (60,100) (80,100) (100,100) (120,100) (140,100) (160,100)

Conclusions and Future Work

- Systematically explore the strategies for flexible ensemble training for a heterogenous set of DNNs.
 - Optimal resource allocation > creedy allocation algorithm
 - Software implementation
 - Data-parallel distributed thining, dynamic GPU-DNN mappings, checkpointing, data sharing
- Future work: apply FLEET to real hyperparameter tuning and neural architecture search workloads.