What is the State of Neural Network Pruning?

Davis Blalock* Jose Javier Gonzalez* Jonathan Frankle John V. Guttag

*equal contribution

Meta-analysis of neural network pruning

We aggregated results across 81 pruning papers and pruned hundreds of networks in controlled conditions

• Some surprising findings...

ShrinkBench

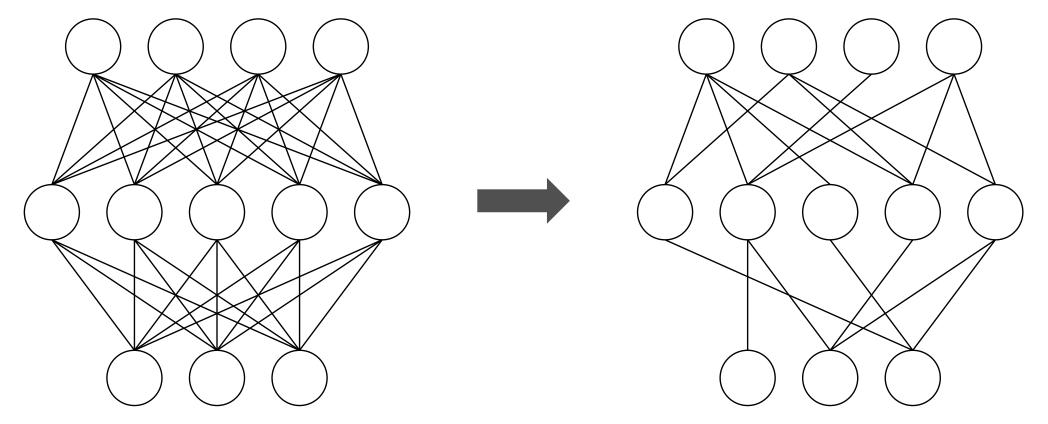
Open source library to facilitate development and standardized evaluation of neural network pruning methods

Part 0: Background

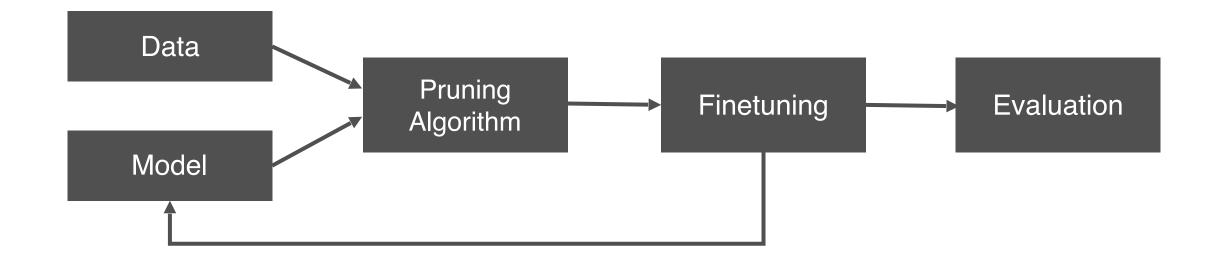
Blalock & Gonzalez

Neural Network Pruning

- Neural networks are often accurate but large
- **Pruning**: Systematically removing parameters from a network



Typical Pruning Pipeline



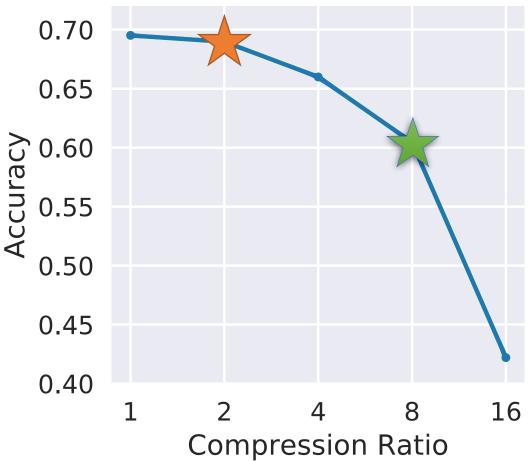
Many design choices:

- Scoring importance of parameters
- Schedule of pruning, training / finetuning

- Structure of induced sparsity
- **Finetuning** details optimizer, duration, hyperparameters

Evaluating Neural Network Pruning

- Goal: Increase efficiency of network as much as possible with minimal drop in quality
- Metrics
 - Quality = Accuracy
 - Efficiency = FLOPs, compression, latency...
- Must use comparable tradeoffs



Part 1: Meta-Analysis

Blalock & Gonzalez

Overview of Meta-Analysis

- We aggregated results across
 81 pruning papers
- Mostly published in top venues
- Corpus closed under experimental comparison

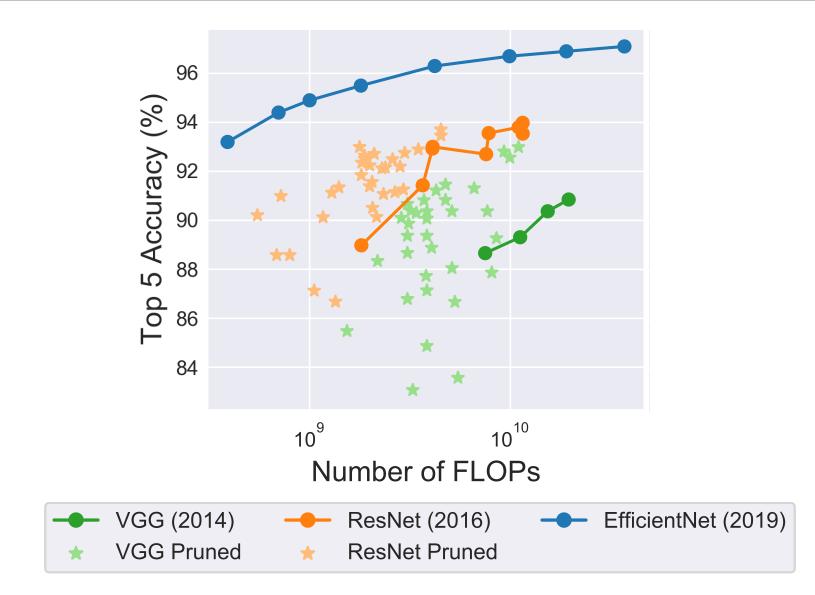
Venue	# of Papers
arXiv only	22
NeurIPS	16
ICLR	11
CVPR	9
ICML	4
ECCV	4
BMVC	3
IEEE Access	2
Other	10

Robust Findings

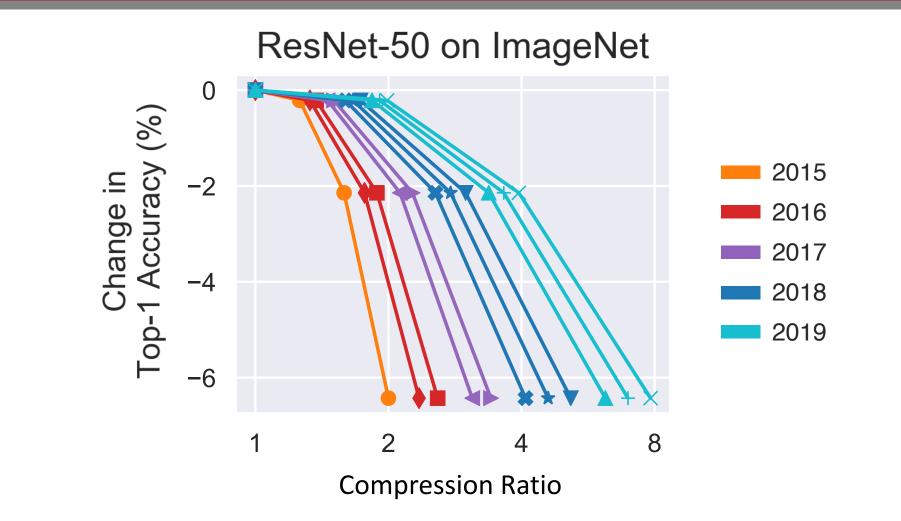
Pruning works

- Almost any heuristic improves efficiency with little performance drop
- Many methods better than random pruning
- Don't prune all layers **uniformly**
- Sparse models better for fixed # of parameters

Better Pruning vs Better Architecture

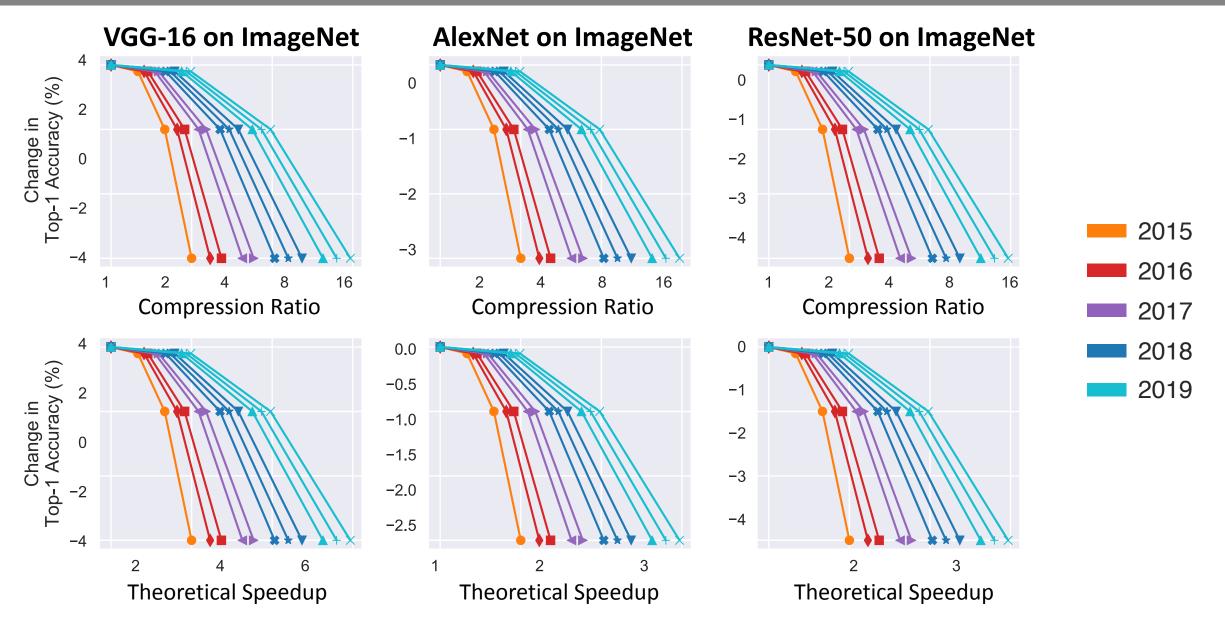


Ideal Results Over Time

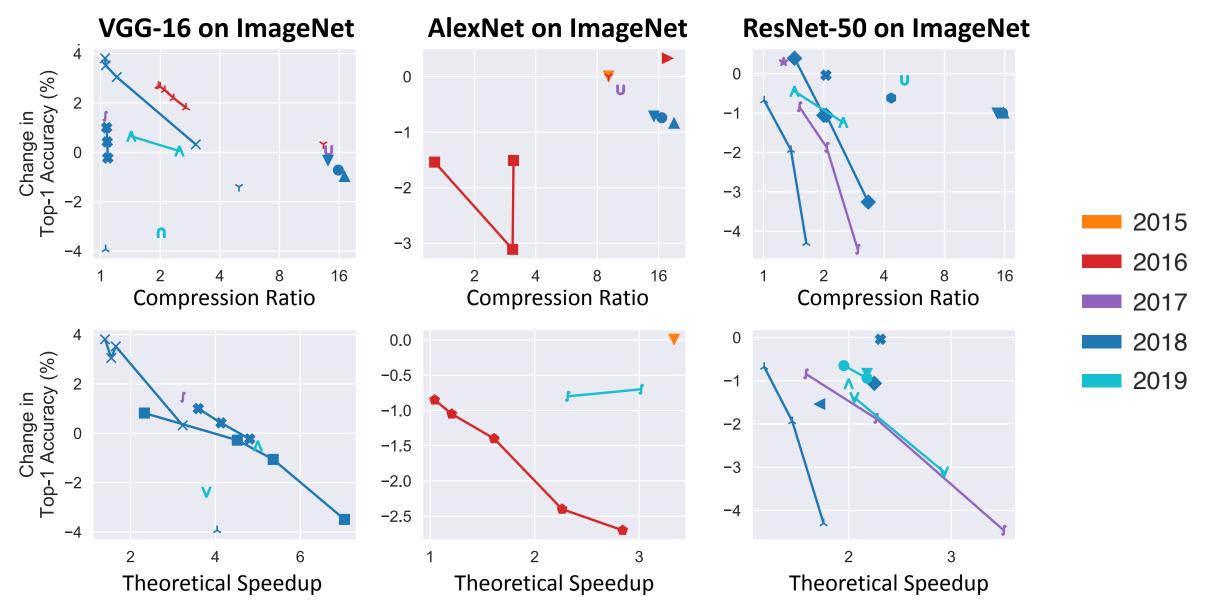


(Dataset, Architecture, X metric, Y metric, Hyperparameters) \rightarrow Curve

Ideal Results Over Time



Actual Results Over Time



Quantifying the Problem

- Among 81 papers:
 - 49 datasets
 - 132 architectures
 - 195 (dataset, architecture) pairs
- Vicious cycle: extreme burden to compare to existing methods

All (dataset, architecture) pairs used in at least 4 papers

Dataset	Architecture	# of Papers Using Pair
ImageNet	VGG-16	22
CIFAR-10	ResNet-56	14
ImageNet	ResNet-50	14
ImageNet	CaffeNet	11
ImageNet	AlexNet	9
CIFAR-10	CIFAR-VGG	8
ImageNet	ResNet-34	6
ImageNet	ResNet-18	6
CIFAR-10	ResNet-110	5
CIFAR-10	PreResNet-164	4
CIFAR-10	ResNet-32	4

Dearth of Reported Comparisons

• Presence of comparisons:

- Most papers compare to at most 1 other method
- 40% papers have never been compared to
- Pre-2010s methods almost completely ignored

• Reinventing the wheel:

- Magnitude-based pruning: Janowsky (1989)
- Gradient times magnitude: Mozer & Smolensky (1989)
- "Reviving" pruned weights: Tresp et al. (1997)

- Alice's network has 10 million parameters. She prunes 8 million of them. What compression ratio might she report in her paper?
 - A. 80%
 - B. 20%
 - C. 5x

D. No reported compression ratio

- Alice's network has 10 million parameters. She prunes 8 million of them. What compression ratio might she report in her paper?
 - **A. 80%**
 - **B. 20%**
 - **C.** 5x

D. No reported compression ratio

- According to the literature, how many FLOPs does it take to run inference using AlexNet on ImageNet?
 - A. 371 million
 - B. 500 million
 - C. 724 million
 - D. 1.5 billion

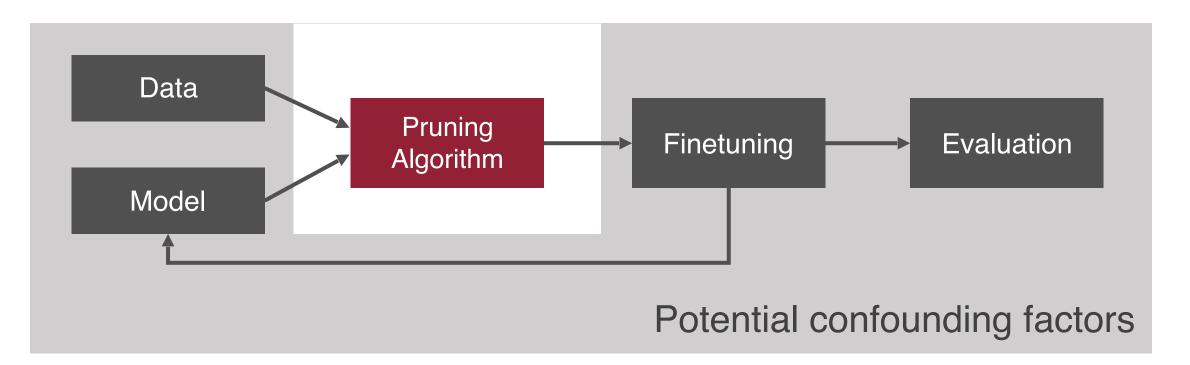
- According to the literature, how many FLOPs does it take to run inference using AlexNet on ImageNet?
 - A. 371 million
 - B. 500 million
 - C. 724 million
 - D. 1.5 billion

Part 2: ShrinkBench

Blalock & Gonzalez

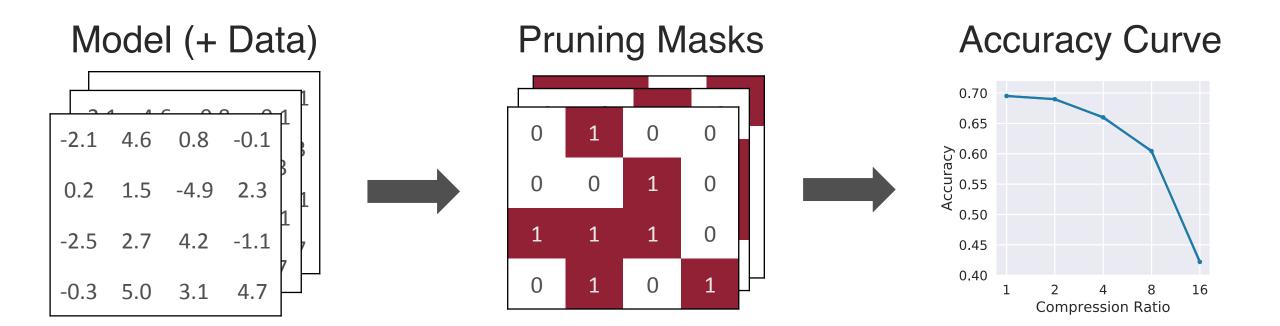
Why ShrinkBench?

- Want to hold everything but pruning algorithm constant
 - Improved rigor, development time



Masking API

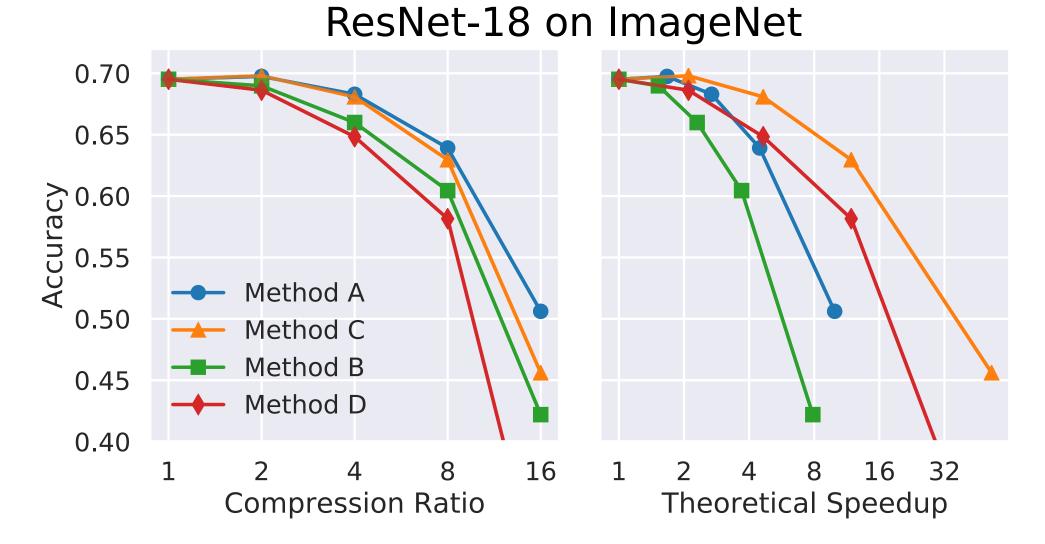
- Lets algorithm return arbitrary masks for weight tensors
- Standardizes all other aspects of training and evaluation



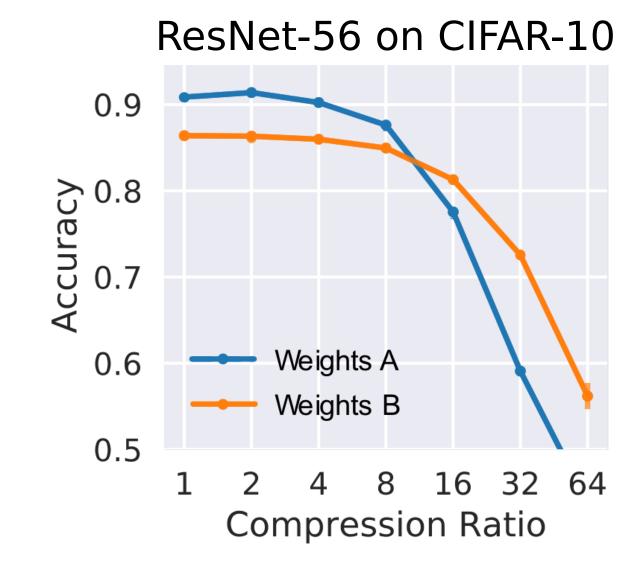
Crucial to Vary Amount of Pruning & Architecture



Compression and Speedup are not Interchangeable



Using Identical Initial Weights is essential



Conclusion

• Pruning works

- But not as well as improving architecture
- But we have no idea what methods work the best
 - Field suffers from extreme fragmentation in experimental setups
- We introduce a library/benchmark to address this
 - Faster progress in the future, interesting findings already

https://github.com/jjgo/shrinkbench

