
SkyNet: a Hardware-Efficient Method for Object
Detection and Tracking on Embedded Systems

Xiaofan Zhang1, Haoming Lu1, Cong Hao1, Jiachen Li1, Bowen Cheng1,
Yuhong Li1 , Kyle Rupnow2, Jinjun Xiong3,1, Thomas Huang1, Honghui Shi3,1,

Wen-mei Hwu1, Deming Chen1,2

Conference on Machine Learning and Systems (MLSys) 2020

1 C3SR, UIUC 2 Inspirit IoT, Inc 3 IBM Research

Outline:

1) Background & Challenges

Edge AI is necessary but challenging

2) Motivations

Two major issues prevent better AI quality on embedded systems

3) The Proposed SkyNet Solution

A bottom-up approach for building hardware-efficient DNNs

4) Demonstrations on Object Detection and Tracking Tasks

Double champions in an international system design competition

Faster and better results than trackers with ResNet-50 backbone

5) Conclusions

2

Cloud solutions for AI deployment

Major requirements：

• High throughput performance

• Short tail latency

Recommendations Video analysis
Language Translation Voice-activated

assistant

3

Why still need Edge solutions?

Communication Privacy Latency

Demanding AI applications cause great challenges for Edge solutions.

4

We summarize three major challenges

Edge AI Challenge #1 Huge compute demands

5
https://openai.com/blog/ai-and-compute/

PetaFLOP/s-days
(exponential)

1e+4

1e+2

1e0

1e-2

1e-4

2012 2014 2016 2018

Compute Demands During Training

300,000X

https://openai.com/blog/ai-and-compute/

Edge AI Challenge #1 Huge compute demands

6
https://openai.com/blog/ai-and-compute/

PetaFLOP/s-days
(exponential)

1e+4

1e+2

1e0

1e-2

1e-4

2012 2014 2016 2018

Compute Demands During Training

300,000X

[Canziani, arXiv 2017]Compute Demands During Inference

https://openai.com/blog/ai-and-compute/

Edge AI Challenge #2 Massive memory footprint

7[Bianco, IEEE Access 2018]

➢ HD inputs for real-life applications

1) Larger memory space required for input feature maps

2) Longer inference latency

➢ Harder for edge-devices

1) Small on-chip memory

2) Limited external memory
access bandwidth

Edge AI Challenge #2 Massive memory footprint

8

➢ Video/audio streaming I/O

1) Need to deliver high throughput

• 24FPS, 30FPS …

Batch size

N
o
rm

al
iz

ed

th
ro

u
g
h
p
u
t

1 2 8 324 16 64 128

1

2

3

4

5

6

Edge AI Challenge #3 Real-time requirement

9

➢ Video/audio streaming I/O

2) Need to work for real-time

• E.g., millisecond-scale response for self-driving cars, UAVs

• Can’t wait for assembling frames into a batch

1) Need to deliver high throughput

• 24FPS, 30FPS …

Edge AI Challenge #3 Real-time requirement

10

Outline:

1) Background & Challenges

Edge AI is necessary but challenging

2) Motivations

Two major issues prevent better AI quality on embedded systems

3) The Proposed SkyNet Solution

A bottom-up approach for building hardware-efficient DNNs

4) Demonstrations on Object Detection and Tracking Tasks

Double champions in an international system design competition

Faster and better results than trackers with ResNet-50 backbone

5) Conclusions

11

A Common flow to design DNNs for embedded systems

12

Various key metrics: Accuracy; Latency; Throughput;
Energy/Power; Hardware cost, etc.

It is a top-down flow: form reference DNNs to optimized DNNs

[From the winning entries of DAC-SDC’18 and ’19]

GPU-Track Reference
Software

Optimizations
Hardware

Optimizations

’19 2nd Thinker
ShuffleNet +

RetinaNet
①②③ ⑤

’19 3rd DeepZS Tiny YOLO - ⑤

’18 1st ICT-CAS Tiny YOLO ①②③④ -

’18 2nd DeepZ Tiny YOLO - ⑤

’18 3rd SDU-Legend YOLOv2 ①②③ ⑤

① Input resizing② Pruning ③Quantization ④ TensorRT

⑤ Multithreading

13

Object detection design for embedded GPUs

➢ Target NVIDIA TX2 GPU ~665 GFLOPS @1300MHz

[From the winning entries of DAC-SDC’18 and ’19]

FPGA-Track Reference
Software

Optimizations
Hardware

Optimizations

’19 2nd XJTU Tripler ShuffleNetV2 ②③ ⑤⑥⑧

’19 3rd SystemsETHZ SqueezeNet ①②③ ⑦

’18 1st TGIIF SSD ①②③ ⑤⑥

’18 2nd SystemsETHZ SqueezeNet ①②③ ⑦

’18 3rd iSmart2 MobileNet ①②③ ⑤⑦

① Input resizing② Pruning ③Quantization

⑤ CPU-FPGA task partition ⑥ double-pumped DSP ⑦ pipeline ⑧ clock gating

14

Object detection design for embedded FPGAs

➢ Target Ultra96 FPGA ~144 GFLOPS @200MHz

Drawbacks of the top-down flow

15

1) Hard to balance the sensitivities of DNN designs on software
and hardware metrics

2) Difficult to select appropriate reference DNNs at the beginning

SW metrics:
Accuracy;
Generalization;
Robustness;

HW metrics:
Throughput / latency;
Resource utilization;
Energy / power;

• Choose by experience
• Performance on published datasets

Outline:

1) Background & Challenges

Edge AI is necessary but challenging

2) Motivations

Two major issues prevent better AI quality on embedded systems

3) The Proposed SkyNet Solution

A bottom-up approach for building hardware-efficient DNNs

4) Demonstrations on Object Detection and Tracking Tasks

Double champions in an international system design competition

Faster and better results than trackers with ResNet-50 backbone

5) Conclusions

16

17

It needs something to cover both SW and HW perspectives

The proposed flow

17

Perspectives
• SW : a set of sequential DNN layers (stack to build DNNs)
• HW: a set of IPs to be implemented on hardware

To overcome drawbacks, we propose a bottom-up DNN design flow:

• No reference DNNs; Start from scratch;

• Consider HW constraints; Reflect SW variations

determine

determine

HW part:
Embedded devices
which run the DNN

SW part:
DNN Models

Bundle

Bundle

18

➢ It is a three-stage flow

Select Bundles -> Explore network architectures -> Add features

18

The proposed flow [overview]

19

➢ Start building DNNs from choosing the HW-aware Bundles

Goal: Let Bundles capture HW features and accuracy potentials

• Enumerate Bundles

• Evaluate Bundles
(Latency-Accuracy)

• Select those in the Pareto curve

19

The proposed flow [stage 1]

• Prepare DNN components

20

• Stack the selected Bundle

• Explore two hyper parameters using PSO
(channel expansion factor & pooling spot)

• Evaluate DNN candidates
(Latency-Accuracy)

• Select candidates in the Pareto curve

20

The proposed flow [stage 2]

➢ Start exploring DNN architecture to meet HW-SW metrics

Goal: Solve the multi-objective optimization problem

2121

The proposed flow [stage 2] (cont.)

➢ Adopt a group-based PSO (particle swarm optimization)
• Multi-objective optimization: Latency-Accuracy

• Group-based evolve: Candidates with the same Bundle are in the same group

factor to balance accuracy and latency

Candidate accuracy

Candidate latency in hardware

Targeted latency

Fitness Score:

2222

The proposed flow [stage 2] (cont.)

Current design N(t) Local best Group best

Represented by a pair of high-dim vector

Curr. V
V to local best

V to group best iter. t

➢ Adopt a group-based PSO (particle swarm optimization)
• Multi-objective optimization: Latency-Accuracy

• Group-based evolve: Candidates with the same Bundle are in the same group

2323

The proposed flow [stage 2] (cont.)

N(t+1)

Current design N(t+1) Local best Group best

Represented by a pair of high-dim vector

iter. t+1

➢ Adopt a group-based PSO (particle swarm optimization)
• Multi-objective optimization: Latency-Accuracy

• Group-based evolve: Candidates with the same Bundle are in the same group

2424

The proposed flow [stage 2] (cont.)

Local best Group best

N(t+1)

Current design N(t+1)

iter. t+1

➢ Adopt a group-based PSO (particle swarm optimization)
• Multi-objective optimization: Latency-Accuracy

• Group-based evolve: Candidates with the same Bundle are in the same group

2525

The proposed flow [stage 2] (cont.)

Local best Group best

N(t+1)

N(t+2)

iter. t+2

Current design N(t+2)

➢ Adopt a group-based PSO (particle swarm optimization)
• Multi-objective optimization: Latency-Accuracy

• Group-based evolve: Candidates with the same Bundle are in the same group

2626

The proposed flow [stage 2] (cont.)

Local best Group best

N(t+1)

N(t+2)

N(t+3)

iter. t+3

Current design N(t+3)

➢ Adopt a group-based PSO (particle swarm optimization)
• Multi-objective optimization: Latency-Accuracy

• Group-based evolve: Candidates with the same Bundle are in the same group

2727

The proposed flow [stage 2] (cont.)

Local best Group best

iter. t+3

Candidate 1

Candidate 2

Candidate 3

Current design N(t+3)

➢ Adopt a group-based PSO (particle swarm optimization)
• Multi-objective optimization: Latency-Accuracy

• Group-based evolve: Candidates with the same Bundle are in the same group

28

• For small object detection, we
add feature map bypass

• For better HW efficiency, we use ReLU6

28

The proposed flow [stage 3]

➢ Add more features if HW constraints allow

Goal: better fit in the customized scenario

• Feature map reordering

29

Two-level memory hierarchy to fully utilize given memory resources

IP-based scalable process engines to fully utilize computation resources

29

The proposed flow [HW deployment]

➢ We start from a well-defined accelerator architecture

30

Two-level memory hierarchy to fully utilize given memory resources

IP-based scalable process engines to fully utilize computation resources

30

The proposed flow [HW deployment]

Bundle

DNN

➢ We start from a well-defined accelerator architecture

Limit the DNN design space

Enable fast performance evaluation

Outline:

1) Background & Challenges

Edge AI is necessary but challenging

2) Motivations

Two major issues prevent better AI quality on embedded systems

3) The Proposed SkyNet Solution

A bottom-up approach for building hardware-efficient DNNs

4) Demonstrations on Object Detection and Tracking Tasks

Double champions in an international system design competition

Faster and better results than trackers with ResNet-50 backbone

5) Conclusions

31

➢ DAC-SDC targets single object detection for real-life UAV applications

Images contain 95 categories of targeted objects (most of them are small)

Demo #1: an object detection task for drones

32

➢ System Design Contest for low power object detection in the
IEEE/ACM Design Automation Conference (DAC-SDC)

TX2 GPU Ultra96 FPGA

➢ Comprehensive evaluation: accuracy, throughput, and energy consumption

Demo #1: DAC-SDC dataset

33

➢ The distribution of target relative
size compared to input image

31% targets < 1% of the input size

91% targets < 9% of the input size

34

• 13 CONV with 0.4 million parameters

• For Embedded FPGA: Quantization,
Batch, Tiling, Task partitioning

• For Embedded GPU: Task partitioning

34

Demo #1: the proposed DNN architecture

3535

➢ Evaluated by 50k images in the official test set

Demo #1: Results from DAC-SDC [GPU]

2.3X faster

Designs using TX2 GPU

3636

➢ Evaluated by 50k images in the official test set

Demo #1: Results from DAC-SDC [FPGA]

10.1% more accurate

’19 Designs using Ultra96 FPGA

’18 Designs using Pynq-Z1 FPGA

➢ We extend SkyNet to real-time tracking problems

Demo #2: generic object tracking in the wild

37

➢ We use a large-scale high-diversity benchmark called Got-10K

• Large-scale: 10K video segments with 1.5 million labeled bounding boxes

• Generic: 560+ classes and 80+ motion patterns (better coverage than others)

[From Got-10K]

3838

Demo #2: Results from Got-10K

➢ Evaluated using two state-of-the-art trackers with single 1080Ti

SiamRPN++ with different backbones

SiamMask with different backbones

Similar AO, 1.6X faster
vs. ResNet-50

Slightly better AO, 1.7X faster
vs. ResNet-50

Outline:

1) Background & Challenges

Edge AI is necessary but challenging

2) Motivations

Two major issues prevent better AI quality on embedded systems

3) The Proposed SkyNet Solution

A bottom-up approach for building hardware-efficient DNNs

4) Demonstrations on Object Detection and Tracking Tasks

Double champions in an international system design competition

Faster and better results than trackers with ResNet-50 backbone

5) Conclusions

39

Conclusions

40

➢ SkyNet has been demonstrated by object detection and tracking tasks

• Won the double champions in DAC-SDC

• Achieved faster and better results than trackers using ResNet-50

➢ We presented SkyNet & a hardware-efficient DNN design method

• a bottom-up DNN design flow for embedded systems

• an effective way to capture realistic HW constraints

• a solution to satisfy demanding HW and SW metrics

41

➢ Please come to Poster #11

➢ Scan for paper, slides, poster, code, & demo

Thank you

Conference on Machine Learning and Systems (MLSys) 2020

