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Cloud solutions for AI deployment

Major requirements：

• High throughput performance

• Short tail latency

Recommendations Video analysis
Language Translation Voice-activated 

assistant
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Why still need Edge solutions?

Communication Privacy Latency

Demanding AI applications cause great challenges for Edge solutions.
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We summarize three major challenges



Edge AI Challenge #1 Huge compute demands 
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https://openai.com/blog/ai-and-compute/
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Edge AI Challenge #2 Massive memory footprint 

7[Bianco, IEEE Access 2018]



➢ HD inputs for real-life applications

1) Larger memory space required for input feature maps

2) Longer inference latency 

➢ Harder for edge-devices

1) Small on-chip memory

2) Limited external memory 
access bandwidth

Edge AI Challenge #2 Massive memory footprint 
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➢ Video/audio streaming I/O

1) Need to deliver high throughput

•  24FPS, 30FPS …
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Edge AI Challenge #3 Real-time requirement
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➢ Video/audio streaming I/O

2) Need to work for real-time

•  E.g., millisecond-scale response for self-driving cars, UAVs

•  Can’t wait for assembling frames into a batch

1) Need to deliver high throughput

•  24FPS, 30FPS …

Edge AI Challenge #3 Real-time requirement
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A Common flow to design DNNs for embedded systems

12

Various key metrics: Accuracy; Latency; Throughput; 
Energy/Power; Hardware cost, etc.

It is a top-down flow: form reference DNNs to optimized DNNs



[From the winning entries of DAC-SDC’18 and ’19]

GPU-Track Reference
Software 

Optimizations
Hardware 

Optimizations

’19 2nd  Thinker
ShuffleNet + 

RetinaNet
①②③ ⑤

’19 3rd   DeepZS Tiny YOLO - ⑤

’18 1st    ICT-CAS Tiny YOLO ①②③④ -

’18 2nd  DeepZ Tiny YOLO - ⑤

’18 3rd   SDU-Legend YOLOv2 ①②③ ⑤

① Input resizing② Pruning ③Quantization ④ TensorRT

⑤ Multithreading
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Object detection design for embedded GPUs

➢ Target NVIDIA TX2 GPU ~665 GFLOPS @1300MHz



[From the winning entries of DAC-SDC’18 and ’19]

FPGA-Track Reference
Software 

Optimizations
Hardware 

Optimizations

’19 2nd  XJTU Tripler ShuffleNetV2 ②③ ⑤⑥⑧

’19 3rd   SystemsETHZ SqueezeNet ①②③ ⑦

’18 1st    TGIIF SSD ①②③ ⑤⑥

’18 2nd  SystemsETHZ SqueezeNet ①②③ ⑦

’18 3rd   iSmart2 MobileNet ①②③ ⑤⑦

① Input resizing② Pruning ③Quantization

⑤ CPU-FPGA task partition  ⑥ double-pumped DSP ⑦ pipeline ⑧ clock gating
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Object detection design for embedded FPGAs

➢ Target Ultra96 FPGA ~144 GFLOPS @200MHz



Drawbacks of the top-down flow
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1) Hard to balance the sensitivities of DNN designs on software 
and hardware metrics

2) Difficult to select appropriate reference DNNs at the beginning 

SW metrics:
Accuracy; 
Generalization; 
Robustness;

HW metrics:
Throughput / latency;
Resource utilization;
Energy / power;

• Choose by experience
• Performance on published datasets
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It needs something to cover both SW and HW perspectives

The proposed flow
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Perspectives
• SW : a set of sequential DNN layers (stack to build DNNs)
• HW: a set of IPs to be implemented on hardware

To overcome drawbacks, we propose a bottom-up DNN design flow:

• No reference DNNs; Start from scratch;

• Consider HW constraints; Reflect SW variations

determine

determine

HW part:
Embedded devices 
which run the DNN

SW part:
DNN Models

Bundle

Bundle
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➢ It is a three-stage flow

Select Bundles -> Explore network architectures -> Add features
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The proposed flow [overview]
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➢ Start building DNNs from choosing the HW-aware Bundles

Goal: Let Bundles capture HW features and accuracy potentials

• Enumerate Bundles

• Evaluate Bundles 
(Latency-Accuracy)

• Select those in the Pareto curve
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The proposed flow [stage 1]

• Prepare DNN components
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• Stack the selected Bundle 

• Explore two hyper parameters using PSO 
(channel expansion factor & pooling spot)

• Evaluate DNN candidates 
(Latency-Accuracy)

• Select candidates in the Pareto curve
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The proposed flow [stage 2]

➢ Start exploring DNN architecture to meet HW-SW metrics

Goal: Solve the multi-objective optimization problem
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The proposed flow [stage 2] (cont.)

➢ Adopt a group-based PSO (particle swarm optimization)
• Multi-objective optimization: Latency-Accuracy

• Group-based evolve:  Candidates with the same Bundle are in the same group

factor to balance accuracy and latency

Candidate accuracy

Candidate latency in hardware

Targeted latency

Fitness Score:
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The proposed flow [stage 2] (cont.)

Current design N(t) Local best Group best

Represented by a pair of high-dim vector

Curr. V
V to local best

V to group best iter. t

➢ Adopt a group-based PSO (particle swarm optimization)
• Multi-objective optimization: Latency-Accuracy

• Group-based evolve:  Candidates with the same Bundle are in the same group
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The proposed flow [stage 2] (cont.)

N(t+1)

Current design N(t+1) Local best Group best

Represented by a pair of high-dim vector

iter. t+1

➢ Adopt a group-based PSO (particle swarm optimization)
• Multi-objective optimization: Latency-Accuracy

• Group-based evolve:  Candidates with the same Bundle are in the same group
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The proposed flow [stage 2] (cont.)

Local best Group best

N(t+1)

Current design N(t+1)

iter. t+1

➢ Adopt a group-based PSO (particle swarm optimization)
• Multi-objective optimization: Latency-Accuracy

• Group-based evolve:  Candidates with the same Bundle are in the same group
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The proposed flow [stage 2] (cont.)

Local best Group best

N(t+1)

N(t+2)

iter. t+2

Current design N(t+2)

➢ Adopt a group-based PSO (particle swarm optimization)
• Multi-objective optimization: Latency-Accuracy

• Group-based evolve:  Candidates with the same Bundle are in the same group
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The proposed flow [stage 2] (cont.)

Local best Group best

N(t+1)

N(t+2)

N(t+3)

iter. t+3

Current design N(t+3)

➢ Adopt a group-based PSO (particle swarm optimization)
• Multi-objective optimization: Latency-Accuracy

• Group-based evolve:  Candidates with the same Bundle are in the same group
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The proposed flow [stage 2] (cont.)

Local best Group best

iter. t+3

Candidate 1

Candidate 2

Candidate 3

Current design N(t+3)

➢ Adopt a group-based PSO (particle swarm optimization)
• Multi-objective optimization: Latency-Accuracy

• Group-based evolve:  Candidates with the same Bundle are in the same group
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• For small object detection, we 
add feature map bypass

• For better HW efficiency, we use ReLU6

28

The proposed flow [stage 3]

➢ Add more features if HW constraints allow

Goal: better fit in the customized scenario

• Feature map reordering
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Two-level memory hierarchy to fully utilize given memory resources 

IP-based scalable process engines to fully utilize computation resources 

29

The proposed flow [HW deployment]

➢ We start from a well-defined accelerator architecture
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Two-level memory hierarchy to fully utilize given memory resources 

IP-based scalable process engines to fully utilize computation resources 
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The proposed flow [HW deployment]

Bundle

DNN

➢ We start from a well-defined accelerator architecture

Limit the DNN design space 

Enable fast performance evaluation 
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➢ DAC-SDC targets single object detection for real-life UAV applications

Images contain 95 categories of targeted objects (most of them are small)

Demo #1: an object detection task for drones
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➢ System Design Contest for low power object detection in the 
IEEE/ACM Design Automation Conference (DAC-SDC) 

TX2 GPU Ultra96 FPGA

➢ Comprehensive evaluation: accuracy, throughput, and energy consumption



Demo #1: DAC-SDC dataset
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➢ The distribution of target relative 
size compared to input image

31% targets < 1% of the input size

91% targets < 9% of the input size
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• 13 CONV with 0.4 million parameters

• For Embedded FPGA: Quantization, 
Batch, Tiling, Task partitioning

• For Embedded GPU: Task partitioning

34

Demo #1: the proposed DNN architecture
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➢ Evaluated by 50k images in the official test set

Demo #1: Results from DAC-SDC [GPU]

2.3X faster

Designs using TX2 GPU
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➢ Evaluated by 50k images in the official test set

Demo #1: Results from DAC-SDC [FPGA]

10.1% more accurate

’19 Designs using Ultra96 FPGA

’18 Designs using Pynq-Z1 FPGA



➢ We extend SkyNet to real-time tracking problems

Demo #2: generic object tracking in the wild
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➢ We use a large-scale high-diversity benchmark called Got-10K

• Large-scale: 10K video segments with 1.5 million labeled bounding boxes

• Generic: 560+ classes and 80+ motion patterns (better coverage than others)

[From Got-10K]
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Demo #2: Results from Got-10K

➢ Evaluated using two state-of-the-art trackers with single 1080Ti 

SiamRPN++ with different backbones

SiamMask with different backbones

Similar AO, 1.6X faster 
vs. ResNet-50 

Slightly better AO, 1.7X faster 
vs. ResNet-50 
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Conclusions
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➢ SkyNet has been demonstrated by object detection and tracking  tasks

• Won the double champions in DAC-SDC

• Achieved faster and better results than trackers using ResNet-50

➢ We presented SkyNet & a hardware-efficient DNN design method

• a bottom-up DNN design flow for embedded systems

• an effective way to capture realistic HW constraints

• a solution to satisfy demanding HW and SW metrics
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➢ Please come to Poster #11

➢ Scan for paper, slides, poster, code, & demo
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