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I Cloud solutions for Al deployment

: : amazon
Major requirements: § webservices
* High throughput performance () IBMCloud

mal Microsoft
Wl Azure

* Short tail latency

£ Google Cloud

Let's divide the chapter into 3
segments. Each concentrates on
r.

Language Translation Voice-activated . A — .
assistant Recommendations Video analysis
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Why still need Edge solutions?

Communication Privacy Latency

)

ol AR )
*.'{J L 'él

Demanding Al applications cause great challenges for Edge solutions.

We summarize three major challenges



I Edge Al Challenge #1 Huge compute demands

PetaFLOP/s-days
exponential . ..
(exp ) Compute Demands During Training
le+4 pm===== 5
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Edge Al Challenge #1 Huge compute demands

PetaFLOP/s-days Inception-v4
(exponential) : 80 - .
Compute Demands During Tra Inception-v3 ResNet-152
le+4 [ ResNet-50 3 VGG-16 VGG-19
________________________ 1AL 757 ResNet-101
= ' ResNet-34
=
le+2 Neural Machine | e, 704 ResNet-18
Translation . - § ° GoogLeNet
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1e0 . ~ Xception .‘_'l. ° BN-NIN
e (o]
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vee :
e ResNets BN-AlexNet
=== -7 e
le-2 :AlexNell - “  GoogleNet = AlexNet
\_.’-JL__ paaid
Py P P
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le-4 7 Operations [G-Ops]
R * DON Compute Demands During Inference [Canziani, arXiv 2017]
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I Edge Al Challenge #2 Massive memory footprint

Maximum GPU memory utilization [MB]

1600
VGG-19_BN
VGG-16_BN @ VGG-19
VGG-13_BN ~ ©VGG-16
VGG-11_BNSYVGG-13
VGG-11
1400 -
© SENet-154
SE-ResNet-152
1200 -
SE-ResNet-101 NASNet-A-Large
, o O
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@ (@ SE-ResNet-50
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FB-ResNet-152
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[Bianco, IEEE Access 2018]
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I Edge Al Challenge #2 Massive memory footprint

» HD inputs for real-life applications

1) Larger memory space required for input feature maps

2) Longer inference latency
Size: MB @ 125.8 MB

110 Input image size:

» Harder for edge-devices o mHD-1080p = 896x896
80 448x448 m224x224
1) Small on-chip memory 28
. . 50
2) Limited external memory 4
access bandwidth 20 ' ’
10 '
0 s b R R R R E R Ke et
Q\ 4’\/ QQ'J Qb‘ Q(‘) Q‘O 4’\ QOO 40) Q\Q 4.\'\ 4\% \\\"")
00\& QOT\ coxk QQT\ 00% 00% i~ QOY\ ooioe Qoé Qoé Qoé

Input feature map sizes for VGG-16 CONV layers



I Edge Al Challenge #3 Real-time requirement

» Video/audio streaming I/O

1) Need to deliver high throughput
o 24FPS, 30FPS ...

—>

Normalized
throughput

RN Wbk OO
1 1

>
1 2 4 8 16 32 64 128 Batchsize




I Edge Al Challenge #3 Real-time requirement

» Video/audio streaming I/O

1) Need to deliver high throughput
o 24FPS, 30FPS ...

2) Need to work for real-time

e E.g., millisecond-scale response for self-driving cars, UAVs

e Can’t wait for assembling frames into a batch
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I A Common flow to desigh DNNs for embedded systems

Various key metrics:

Accuracy; Latency; Throughput;

Energy/Power; Hardware cost, etc.

Trained DNNs

SWe-related
Optimization

Y a

HW-related
Optimization

\

Implementation on
embedded devices

= More focus
on accuracy

= Excessively
complicated
for IoT

Step 1

J

* (Quantization
" Pruning
>- Layer fusion

= (Conv variation

Step 2

\.

U

Parallel factors
adjustment
Resource
allocation

[/O optimizations

Step 3

7

It is a top-down flow: form reference DNNs to optimized DNNs
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I Object detection design for embedded GPUs

» Target NVIDIA TX2 GPU ~665 GFLOPS @1300MHz

@ Input resizing ) Pruning (3) Quantization (4) TensorRT
® Multithreading

SIS Reference Ops”c?r]:ivzvjtri(e)ns O;?r:wo:\z,\;?cirsns
, . ShuffleNet +
19 2" Thinker RetinaNet OB ®
’19 37 DeepZS Tiny YOLO - ®
’18 15t ICT-CAS Tiny YOLO LOBG® :
’18 2" DeepZ Tiny YOLO - ®
’18 314 SDU-Legend YOLOV2 OB )

[From the winning entries of DAC-SDC’18 and "19]

13



Object detection design for embedded FPGAs

» Target Ultra96 FPGA ~144 GFLOPS @200MHz

@) Input resizing ) Pruning (3) Quantization
(®) CPU-FPGA task partition 6 double-pumped DSP (@) pipeline ® clock gating

HACHlEIE, Reference OpSt(i)r]:inV:trizns O;?r:\(:\z,\;?cirsns
’19 2nd XJTU Tripler ShuffleNetV2 @B ®®®
’19 3" SystemsETHZ | SqueezeNet OB @
18 1t TGIIF SSD 0l0]O), ®®
’18 2" SystemsETHZ | SqueezeNet OB @
’18 3™ iSmart?2 MobileNet OB ®®

[From the winning entries of DAC-SDC’18 and "19]
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I Drawbacks of the top-down flow

1) Hard to balance the sensitivities of DNN designs on software
and hardware metrics

SW metrics: HW metrics:
Accuracy; < Throughput / latency;
Generalization; ’Resource utilization;
Robustness; Energy / power;

2) Difficult to select appropriate reference DNNs at the beginning

 Choose by experience
 Performance on published datasets

15
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The proposed flow

To overcome drawbacks, we propose a bottom-up DNN design flow:

* No reference DNNs; Start from scratch;
 Consider HW constraints; Reflect SW variations

It needs| Bundle to cover both SW and HW perspectives

/\ HW part:
SW part: determine

Embedded devices
which run the DNN

DNN Models QUIWIBP

Perspectives
« SW :aset of sequential DNN layers (stack to build DNNs)
« HW: aset of IPs to be implemented on hardware

e e e e P L EE LY Bundle @ |t------memmmmeeeeao




I The proposed flow [overview]

» ltis a three-stage flow
Select Bundles -> Explore network architectures -> Add features

[ - 8 ® . . -
[ [ Bundle evaluation on the targeted device Stack the selected Bundle i
and explore DNN in two / Conv3 p
Conv3 || Conv5 Ell)t(r_’iié dimensions using PSO . .
"H Activa- s Conv3 «
BN fion 3 n e Front-end iy
b e S = BN
Bundle / = =) y .‘. ° Pundle 3 Bundle i +
D . . = LK @ Bundle4 -,
| 3 0 o . s ¥ = RelLU Add advanced
{| Conv3 || Conv5 || BN | £ 407 J ) ® | @ Bundles Bundle i DNN features
1 H o b ndl
| . P <35 @ PS = ¥ — Dim1: Potential - FM Bypass
i DW- DW- || Activa- b2 *e .° ° Bundle i channel expansion — - Channel shuftle
| Conv3 || Conv5 || tion i Z 30 . . | inConv layers - HW-efficient
i DW- PW—1 i 251 o © :. ¢ 3 L Dim2: Potential activation func.
i Conv7 || Conv | Back-end pooling position
! | 10 20 30 40 — -
:.____________PNE_E?TR(_H}EIES..' Stage 1 Bundle Latency on FPGA (ms) [‘P Stage 2 [‘P Stage 3
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I The proposed flow [stage 1]

» Start building DNNs from choosing the HW-aware Bundles

Goal: Let Bundles capture HW features and accuracy potentials

[ | - Bundle evaluation on the targeted device * P re pa re D N N com po ne ntS
| —
Com || Cons Lo o * Enumerate Bundles
BN Afité:;a' iﬁ 10 C?}ﬁg e @ Bundle |
Bundle / 2 I S e e Evaluate Bundles
................................. S45{ 8o o bundles
[coms [ coms [ o | Bt ¥ 30 %0 0|2 R (Latency-Accuracy)
- % 351 o ° ™ ° .
Conv3 || Convs || tion || Ex| . * Select those in the Pareto curve
2 e_ %o
Conv? || Conv1 7 * .
, DNN Components | 10 20 30 40 L
e Stage 1 Bundle Latency on FPGA (ms)
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The proposed flow [stage 2]

» Start exploring DNN architecture to meet HW-SW metrics

Goal: Solve the multi-objective optimization problem

Stzzlck the selected Bundlei | ° Stack the Selected Bundle
and explore DNN in two Convd |e
dimensions using PSO T
Fromend 1/ Comv3 I * Explore two hyper parameters using PSO
T 4 . .
Bundle i £s (channel expansion factor & pooling spot)
. . a-— RelLU
Bundle i .
3 | Dini: poenta  Evaluate DNN candidates
Bun dl i C annel expansion -—
m— | inConlayers (Latency-Accuracy)
= : - — Dim2: Potential
ack-en pooling position
? Stage 2 - e Select candidates in the Pareto curve
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I The proposed flow [stage 2] (cont.)

» Adopt a group-based PSO (particle swarm optimization)
 Multi-objective optimization: Latency-Accuracy
 Group-based evolve: Candidates with the same Bundle are in the same group

Front-end

.

Stack the selected Bundle i
and explore DNN in two  /
dimensions using PSO

Bundle 7

-

Bundle i

¥

Bundle 7

li.

Back-end

Stage 2

Conv3
3

Conv3
4
BN
+
RelLU

Dim1: Potential
channel expansion —
in Conv layers

L Dim?2: Potential

pooling position

I

Fitness Score:

F zt; —| Acct

‘- (Est(n})|—|Tar)

Candidate accuracy
Candidate latency in hardware

Targeted latency

O/ factor to balance accuracy and latency
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I The proposed flow [stage 2] (cont.)

» Adopt a group-based PSO (particle swarm optimization)
 Multi-objective optimization: Latency-Accuracy
 Group-based evolve: Candidates with the same Bundle are in the same group

Stack the selected Bundle i
and explore DNN in two Conv3 a0 RO
dimensions using PSO . . —O —O
Conv3 |« .
Frontend |/ B Current design N(t) Local best Group best
2 s BN
Bundle i i s . . . )
T — RelU Represented by a pair of high-dim vector (fv1l, fv2)
Bundle /
T < Dim1: Potential O
. channel expansion —
Bundlc ¢ in Conv layers
e <+
+ — Dim?2: Potential V to local best
Back-end pooling position Curr Vv .
] [




I The proposed flow [stage 2] (cont.)

» Adopt a group-based PSO (particle swarm optimization)

Multi-objective optimization: Latency-Accuracy
Group-based evolve: Candidates with the same Bundle are in the same group

Stack the selected Bundle i

VAN
WA
XKL

AN

A,

AN
LA/
Rt
PR
NS

Current design N(t+1) Local best

Group best

Represented by a pair of high-dim vector (fv1l, fv2)

apd explore DNN in two ) Conv3
dimensions using PSO  / A
Conv3
Front-end -
& 2 BN
Bundle i 3
T g ReLU
Bundle i
T < Dim1: Potential
. channel expansion —
Bundle / in Conv layers
R <+
+ — Dim?2: Potential

Back-end

? Stage 2

pooling position

———
o
'] N(t+1)
¢

o)

iter. t+1
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I The proposed flow [stage 2] (cont.)

» Adopt a group-based PSO (particle swarm optimization)

Multi-objective optimization: Latency-Accuracy
Group-based evolve: Candidates with the same Bundle are in the same group

Stack the selected Bundle i

and explore DNN in two Conv3
dimensions using PSO T
Conv3
Front-end ES
= BN
Bundle i 3
. . e 8 ReLU
Bundle i
T < Dim1: Potential
Bundle i (_:hannel expansion —
in Conv layers
LI ] <
+ — Dim2: Potential
Back-end pooling position

? Stage 2

- ~
FERY.\V/ N
AA_S
N7
(RN
NN

Current design N(t+1) Local best

Group best
> O
(0
N(t+1)\\
()
© iter. t+1
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I The proposed flow [stage 2] (cont.)

» Adopt a group-based PSO (particle swarm optimization)
 Multi-objective optimization: Latency-Accuracy
 Group-based evolve: Candidates with the same Bundle are in the same group

Stack the selected Bundle i
and explore DNN in two  / Conv3
dimensions using PSO . = D
Conv3 | .
Frontend | T Current design N(t+2)  Local best Group best
+ s BN
Bundle i 3
f 8 el RelLU
Bundle / o @ (t+2)
T < Dim1: Potential
e | | shewe cmion — J
+ — Dim?2: Potential
Back-end pooling position
? Stage 2 u o) ©
age - .
iter. t+2
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I The proposed flow [stage 2] (cont.)

» Adopt a group-based PSO (particle swarm optimization)
Multi-objective optimization: Latency-Accuracy
Group-based evolve: Candidates with the same Bundle are in the same group

Stack the selected Bundle i

and explore DNN in two Conv3
dimensions using PSO T
Conv3
Front-end ES
= BN
Bundle i 3
. . e 8 ReLU
Bundle i
T < Dim1: Potential
Bundle i (_:hannel expansion —
in Conv layers
LI ] <
+ — Dim2: Potential
Back-end pooling position

? Stage 2

Current design N(t+3)

PRV \V/ i
LV A
g
AN

N NINS

—~
-~ .
TN
ANA S
Ny
AR
X \:,

Local best Group best

o ol \
o o)
N(t+1) N(t+3)
O
© iter. t+3
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I The proposed flow [stage 2] (cont.)

» Adopt a group-based PSO (particle swarm optimization)
 Multi-objective optimization: Latency-Accuracy
 Group-based evolve: Candidates with the same Bundle are in the same group

Stack the selected Bundle i
and explore DNN in two Conv3 «
dimensions using PSO T =0 0O
Conv3 | .
Frontend |/ T Current design N(t+3)  Local best Group best
2 s BN
Bundle i 3
. R - RelLU ;
. Candida
Bundle i did 1
T < Dim1: Potential Candidate
Bundle i (_:hannel expansion —
in Conv layers
.. +—
+ L~  Dim?2: Potential
Back-end pooling position
? Stage 2 . ©
age - i .
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The proposed flow [stage 3]

» Add more features if HW constraints allow

Goal: better fit in the customized scenario

lected Bundle i . .
DNNintwo A coa | * For small object detection, we
using PSO  / I S
./ Conv3 add feature map bypass
en ¥
BN 9, o
le i I i
. T dd advanced * Feature map reordering
le i T DNN features
«— Dim1: Potential - FM Bypass Lo
" channel expansion — || - Channel shuffle * For better HW efficiency, we use RelLU6
- in Conv layers - HW-efficient
L Dim?2- Potential activation func.
end pooling position 1
Stage 2 LP Stage 3
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I The proposed flow [HW deployment]

> We start from a well-defined accelerator architecture

Two-level memory hierarchy to fully utilize given memory resources
IP-based scalable process engines to fully utilize computation resources

PS  Inputimage - —» Pre-process

_______________________________________ DRAM
PL Off-chip data transfer —
v v Input
BRAM On-chip On-chip Data
Weight Buffers Data Buffers
Ik K DNN
On-chip data transfer | Weights |
Logig __ L o
i CONV 3x3 CONV Ix1 Pooling ~|! [ Off-chip |
: IP instance IP instance [P instance || | (Data Buffer
___________________ Bundle
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I The proposed flow [HW deployment]

> We start from a well-defined accelerator architecture

Limit the DNN design space

Enable fast performance evaluation

Input

v

Bundle i-s,

v

Bundle i-s,

v

Bundle i-s;

...l

Output

DNN

CONYV 3x3

v

[ DW-CONV 3x3

v

CONV Ix1

v

Activation

\ Bundle

PS  Input image - —» Pre-process

_______________________________________ " DRAM
PL Off-chip data transfer —
1+ Input
BRAM On-chip On-chip Data
Weight Buffers Data Buffers
\ 3 1 DNN
\ On-chip data transfer Weights
T — ) —
[ CONV 3x3 CONV IxI Pooling | [ Off-chip |
: IP instance IP instance [P instance ||| | | Data Buffer
oo Bundle
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I Demo #1: an object detection task for drones

» System Design Contest for low power object detection in the
IEEE/ACM Design Automation Conference (DAC-SDC)

LAS VEGAS, NV «JUNE 2 - 6,2019 « DAC.COM

NSV,
‘ Get Ready To Participate! bﬂ -7 )/\W/
COMPLIMENTARY REGISTRATION /i \\ '\T/

TOWARDS GRAND CASH PRIZE! /
A@»\\(

\‘3"

TX2 GPU Ultra96 FPGA

» DAC-SDC targets single object detection for real-life UAV applications
Images contain 95 categories of targeted objects (most of them are small)

» Comprehensive evaluation: accuracy, throughput, and energy consumption

TS; = Rrou; X (1 + ES;)
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I Demo #1: DAC-SDC dataset

# of boxes i &

T : 6000 —~791% °

» The distribution of target relative — | 0.8 2
size compared to input image 4000 0.6 2

. 3000 L

31% targets < 1% of the input size 2000 &
0.2,

91% targets < 9% of the input size L0 I »

1% 2% 9% 16°/ 25%  36%
Area of output box / Area of input image

T
T k)

AL A #
e

et el
| I )
E‘iﬁ— e
TSI -

TR i e
o
{

3

i 7’."._;-_“_ o




I Demo #1: the proposed DNN architecture

___(_]_1._{1? __E:t\;?_G_ Ch. 192 Ch. 384 Ch. 512 Ch. 96
Input ] i E ] | output
3x160x320 : : i | | 20x40x10
H -
it L1 IR
Bundies [ BW.CONV 33 CONV I | MaxPooling  post e esture man CONV 1t
! Batch Norm Batch Norm;  2x2 after reordering
| RelU RelU i
13 CONV with 0.4 million parameters  cpU Image Image
Thread 1 | Pre-process Pre-process
. . ¥ ¥
* For Embedded FPGA: Quantization, Input Image Queue
- . . ¥ \
GPU/FPGA
Batch, Tiling, Task partitioning SkyNet SkyNet
e ¥ L
* For Embedded GPU: Task partitioning Last Layer Output Queue
CPU ¥ ¥
Thread 2 Bounding Box Bounding Box
Regression Regression
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I Demo #1: Results from DAC-SDC [GPU]
» Evaluated by 50k images in the official test set

0.75 ..Ij{ g

0.70 1t ~20 Designs using TX2 GPU
/A\‘) nd
0.65 -

2.3X faster

2 0.60

0.55

0.50 mGPU-19 A GPU-I8
FPGA-19 @®FPGA-18

0.45
5 15 25 35 45 55 65 FPS
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l Demo #1: Results from DAC-SDC [FPGA]
» Evaluated by 50k images in the official test set

0.75
rd
= i
0.70 15t j 2nd A 13t SkyNet-GPU
397 10.1%
0.65 - .12 more accurate
. s V
2 0.60 1
0.
0.55 37 ’18 Designs using Pynq-Z1 FPGA
0.50 o 'WGPU-19 A GPU-18
2 ©FPGA-19 ®FPGA-18
0.45

5 15 25 35 45 55 65 FPS
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I Demo #2: generic object tracking in the wild

» We extend SkyNet to real-time tracking problems
» We use a large-scale high-diversity benchmark called Got-10K
* Large-scale: 10K video segments with 1.5 million labeled bounding boxes
* Generic: 560+ classes and 80+ motion patterns (better coverage than others)

_'

person

surfing skiing

[From Got-10K]




I Demo #2: Results from Got-10K

» Evaluated using two state-of-the-art trackers with single 1080Ti

SiamRPN++ with different backbones

Backbone AO SRoso | SRo7s | FPS
AlexNet 0.354 0.385 0.101 52.36
ResNet-50 | 0.365 0411 0.115 25.90
SkyNet 0.364 0.391 0.116 41.22
SiamMask with different backbones

Backbone AO SRoso | SRo7s | FPS
ResNet-50 | 0.380 0.439 0.153 17.44
SkyNet | 0.390 | 0442 | 0.158 | 30.15

Similar AO, 1.6X faster
vs. ResNet-50

Slightly better AO, 1.7X faster
vs. ResNet-50
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Conclusions

» We presented SkyNet & a hardware-efficient DNN design method
 abottom-up DNN design flow for embedded systems
e an effective way to capture realistic HW constraints

e asolution to satisfy demanding HW and SW metrics

» SkyNet has been demonstrated by object detection and tracking tasks
* Won the double champions in DAC-SDC
* Achieved faster and better results than trackers using ResNet-50
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» Scan for paper, slides, poster, code, & demo

> Please come to Poster #11
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