
Willump: A Statistically-Aware
End-to-end Optimizer for ML Inference

Peter Kraft, Daniel Kang, Deepak Narayanan,
Shoumik Palkar, Peter Bailis, Matei Zaharia

1

Problem: ML Inference

● Often performance-critical.

● Recent focus on tools for ML prediction serving.

2

A Common Bottleneck: Feature Computation

3

● Many applications bottlenecked by

feature computation.

● Pipeline of transformations computes

numerical features from data for model.

Receive Raw
Data

Compute
Features

Predict With
Model

A Common Bottleneck: Feature Computation

4

● Feature computation is bottleneck when models are

inexpensive—boosted trees, not DNNs.

● Common on tabular/structured data!

A Common Bottleneck: Feature Computation

Source: Pretzel (OSDI ‘18)

Feature computation takes >99% of the time!

Production Microsoft sentiment analysis pipeline

Model run
time

5

Current State-of-the-art

● Apply traditional serving optimizations, e.g. caching

(Clipper), compiler optimizations (Pretzel).

● Neglect unique statistical properties of ML apps.

6

Statistical Properties of ML

Amenability to approximation

7

Statistical Properties of ML

Amenability to approximation

8

Easy input:
Definitely not
a dog.

Hard input:
Maybe a
dog?

Statistical Properties of ML

Amenability to approximation

Existing Systems: Use Expensive Model for Both

9

Easy input:
Definitely not
a dog.

Hard input:
Maybe a
dog?

Statistical Properties of ML

Amenability to approximation

Statistically-Aware Systems: Use cheap model on bucket,

expensive model on cat. 10

Easy input:
Definitely not
a dog.

Hard input:
Maybe a
dog?

Statistical Properties of ML

● Model is often part of a bigger app (e.g. top-K query)

11

Statistical Properties of ML

● Model is often part of a bigger app (e.g. top-K query)

12

Artist Score Rank

Beatles 9.7 1

Bruce Springsteen 9.5 2

… … …

Justin Bieber 5.6 999

Nickelback 4.1 1000

Problem:
Return top
10 artists.

Statistical Properties of ML

● Model is often part of a bigger app (e.g. top-K query)

13

Artist Score Rank

Beatles 9.7 1

Bruce Springsteen 9.5 2

… … …

Justin Bieber 5.6 999

Nickelback 4.1 1000

Use
expensive
model for
everything!

Existing Systems

Statistical Properties of ML

● Model is often part of a bigger app (e.g. top-K query)

14

Artist Score Rank

Beatles 9.7 1

Bruce Springsteen 9.5 2

… … …

Justin Bieber 5.6 999

Nickelback 4.1 1000

High-value:
Rank precisely,
return.

Low-value:
Approximate,
discard.

Statistically-aware Systems

Prior Work: Statistically-Aware Optimizations

● Statistically-aware optimizations exist in literature.

● Always application-specific and custom-built.

● Never automatic!

15

Source:
Cheng et al.
(DLRS’ 16),
Kang et al.
(VLDB ‘17)

ML Inference Dilemna

● ML inference systems:

○ Easy to use.

○ Slow.

● Statistically-aware systems:

○ Fast

○ Require a lot of work to implement.

16

Can an ML inference system be fast and easy to use?

17

Willump: Overview

● Statistically-aware optimizer for ML Inference.

● Targets feature computation!

● Automatic model-agnostic statistically-aware opts.

● 10x throughput+latency improvements.

18

Outline

19

● System Overview

● Optimization 1: End-to-end Cascades

● Optimization 2: Top-K Query Approximation

● Evaluation

Willump: Goals

● Automatically maximize performance of ML inference

applications whose performance bottleneck is feature

computation

20

def pipeline(x1, x2):
input = lib.transform(x1, x2)
preds = model.predict(input)
return preds

System Overview

Input Pipeline

def pipeline(x1, x2):
input = lib.transform(x1, x2)
preds = model.predict(input)
return preds

Willump Optimization

Infer Transformation
Graph

System Overview

Input Pipeline

23

def pipeline(x1, x2):
input = lib.transform(x1, x2)
preds = model.predict(input)
return preds

Willump Optimization

Infer Transformation
Graph

Statistically-Aware Optimizations:
1. End-To-End Cascades
2. Top-K Query Approximation

System Overview

Input Pipeline

24

def pipeline(x1, x2):
input = lib.transform(x1, x2)
preds = model.predict(input)
return preds

Willump Optimization

Infer Transformation
Graph

Compiler Optimizations
(Weld—Palkar et al. VLDB ‘18)

System Overview

Input Pipeline

Statistically-Aware Optimizations:
1. End-To-End Cascades
2. Top-K Query Approximation

25

def pipeline(x1, x2):
input = lib.transform(x1, x2)
preds = model.predict(input)
return preds

Willump Optimization

Infer Transformation
Graph

Compiler Optimizations
(Weld—Palkar et al. VLDB ‘18)

def willump_pipeline(x1, x2):
preds = compiled_code(x1, x2)
return preds

Optimized Pipeline

System Overview

Input Pipeline

Statistically-Aware Optimizations:
1. End-To-End Cascades
2. Top-K Query Approximation

Outline

26

● System Overview

● Optimization 1: End-to-end Cascades

● Optimization 2: Top-K Query Approximation

● Evaluation

Background: Model Cascades

● Classify “easy” inputs with cheap model.

● Cascade to expensive model for “hard” inputs.

27

Easy input:
Definitely not
a dog.

Hard input:
Maybe a
dog?

Background: Model Cascades

● Used for image classification, object detection.

● Existing systems application-specific and custom-built.

28

Source:
Viola-Jones
(CVPR’ 01),
Kang et al.
(VLDB ‘17)

Our Optimization: End-to-end cascades

● Compute only some features for “easy” data inputs;

cascade to computing all for “hard” inputs.

● Automatic and model-agnostic, unlike prior work.

○ Estimates for runtime performance & accuracy of a feature set

○ Efficient search process for tuning parameters

29

End-to-end Cascades: Original Model

Compute
All Features

Model

Prediction

Cascades
Optimization

End-to-end Cascades: Approximate Model

Compute
All Features

Model

Prediction

Compute Selected Features

Approximate Model

Prediction

Cascades
Optimization

End-to-end Cascades: Confidence

Compute
All Features

Model

Prediction

Compute Selected Features

Approximate Model

Prediction

Confidence > Threshold

Yes

Cascades
Optimization

End-to-end Cascades: Final Pipeline

Compute
All Features

Model

Prediction

Compute Selected Features

Compute Remaining Features

Approximate Model

Prediction

Original Model

Confidence > Threshold

Yes No

End-to-end Cascades: Constructing Cascades

34

● Construct cascades during model training.

● Need model training set and an accuracy target.

End-to-end Cascades: Selecting Features

Compute Selected Features

Compute Remaining Features

Approximate Model

Prediction

Original Model

Confidence > Threshold

Yes No

Key question:
Select which
features?

End-to-end Cascades: Selecting Features

36

● Goal: Select features that minimize expected query time

given accuracy target.

End-to-end Cascades: Selecting Features

Compute Selected Features

Compute Remaining Features

Approximate Model

Prediction

Original Model

Confidence > Threshold

Yes No

Two possibilities for a query: Can approximate or not.

Can approximate
query.

Can’t approximate
query.

End-to-end Cascades: Selecting Features

Compute Selected Features (S)

Approximate Model

Prediction

Confidence > Threshold

YesP(Yes) = P(approx)

cost(𝑆)

min
𝑆

𝑃(approx)cost(𝑆) + 𝑃(~approx)cost(𝐹)

End-to-end Cascades: Selecting Features

Compute Selected Features (S)

Compute Remaining Features

Approximate Model

Prediction

Original Model

Confidence > Threshold

No P(No) = P(~approx)

min
𝑆

𝑃(approx)cost(𝑆) + 𝑃(~approx)cost(𝐹)

cost(𝐹)

End-to-end Cascades: Selecting Features

Compute Selected Features (S)

Compute Remaining Features

Approximate Model

Prediction

Original Model

Confidence > Threshold

Yes NoP(Yes) = P(approx) P(No) = P(~approx)

cost(𝑆)

min
𝑆

𝑃(approx)cost(𝑆) + 𝑃(~approx)cost(𝐹)

cost(𝐹)

End-to-end Cascades: Selecting Features

41

● Goal: Select feature set S that minimizes query time:

min
𝑆

𝑃(approx)cost(𝑆) + 𝑃(~approx)cost(𝐹)

End-to-end Cascades: Selecting Features

42

● Goal: Select feature set S that minimizes query time:

min
𝑆

𝑃(approx)cost(𝑆) + 𝑃(~approx)cost(𝐹)

● Approach:

○ Choose several potential values of cost(𝑺).

○ Find best feature set with each cost(S).

○ Train model & find cascade threshold for each set.

○ Pick best overall.

End-to-end Cascades: Selecting Features

43

● Goal: Select feature set S that minimizes query time:

min
𝑆

𝑃(approx)cost(𝑆) + 𝑃(~approx)cost(𝐹)

● Approach:

○ Choose several potential values of cost(𝑆).

○ Find best feature set with each cost(S).

○ Train model & find cascade threshold for each set.

○ Pick best overall.

End-to-end Cascades: Selecting Features

44

● Goal: Select feature set S that minimizes query time:

min
𝑆

𝑃(approx)cost(𝑆) + 𝑃(~approx)cost(𝐹)

● Approach:

○ Choose several potential values of cost(𝑆).

○ Find best feature set with each cost(S).

○ Train model & find cascade threshold for each set.

○ Pick best overall.

End-to-end Cascades: Selecting Features

45

● Goal: Select feature set S that minimizes query time:

min
𝑆

𝑃(approx)cost(𝑆) + 𝑃(~approx)cost(𝐹)

● Approach:

○ Choose several potential values of cost(𝑆).

○ Find best feature set with each cost(S).

○ Train model & find cascade threshold for each set.

○ Pick best overall.

End-to-end Cascades: Selecting Features

46

● Goal: Select feature set S that minimizes query time:

min
𝑆

𝑃(approx)cost(𝑆) + 𝑃(~approx)cost(𝐹)

● Approach:

○ Choose several potential values of cost(𝑺).

○ Find best feature set with each cost(S).

○ Train model & find cascade threshold for each set.

○ Pick best overall.

End-to-end Cascades: Selecting Features

47

● Goal: Select feature set S that minimizes query time:

min
𝑆

𝑃(approx)cost(𝑆) + 𝑃(~approx)cost(𝐹)

● Approach:

○ Choose several potential values of cost(𝑆).

○ Find best feature set with each cost(S).

○ Train model & find cascade threshold for each set.

○ Pick best overall.

End-to-end Cascades: Selecting Features

48

● Subgoal: Find S minimizing query time if 𝑐𝑜𝑠𝑡 𝑆 = 𝑐𝑚𝑎𝑥.

min
𝑆

𝑃(approx)cost(𝑆) + 𝑃(~approx)cost(𝐹)

End-to-end Cascades: Selecting Features

49

● Subgoal: Find S minimizing query time if 𝑐𝑜𝑠𝑡 𝑆 = 𝑐𝑚𝑎𝑥.

min
𝑆

𝑃(approx)cost(𝑆) + 𝑃(~approx)cost(𝐹)

● Solution:

○ Find S maximizing approximate model accuracy.

End-to-end Cascades: Selecting Features

50

● Subgoal: Find S minimizing query time if 𝑐𝑜𝑠𝑡 𝑆 = 𝑐𝑚𝑎𝑥.

min
𝑆

𝑃(approx)cost(𝑆) + 𝑃(~approx)cost(𝐹)

● Solution:

○ Find S maximizing approximate model accuracy.

○ Problem: Computing accuracy expensive.

End-to-end Cascades: Selecting Features

51

● Subgoal: Find S minimizing query time if 𝑐𝑜𝑠𝑡 𝑆 = 𝑐𝑚𝑎𝑥.

min
𝑆

𝑃(approx)cost(𝑆) + 𝑃(~approx)cost(𝐹)

● Solution:

○ Find S maximizing approximate model accuracy.

○ Problem: Computing accuracy expensive.

○ Solution: Estimate accuracy via permutation

importance -> knapsack problem.

End-to-end Cascades: Selecting Features

52

● Goal: Select feature set S that minimizes query time:

min
𝑆

𝑃(approx)cost(𝑆) + 𝑃(~approx)cost(𝐹)

● Approach:

○ Choose several potential values of cost(𝑆).

○ Find best feature set with each cost(S).

○ Train model & find cascade threshold for each set.

○ Pick best overall.

End-to-end Cascades: Selecting Features

53

● Subgoal: Train model & find cascade threshold for S.

min
𝑆

𝑃(approx)cost(𝑆) + 𝑃(~approx)cost(𝐹)

● Solution:

○ Compute empirically on held-out data.

End-to-end Cascades: Selecting Features

54

● Subgoal: Train model & find cascade threshold for S.

min
𝑆

𝑃(approx)cost(𝑆) + 𝑃(~approx)cost(𝐹)

● Solution:

○ Compute empirically on held-out data.

○ Train approximate model from S.

End-to-end Cascades: Selecting Features

55

● Subgoal: Train model & find cascade threshold for S.

min
𝑆

𝑃(approx)cost(𝑆) + 𝑃(~approx)cost(𝐹)

● Solution:

○ Compute empirically on held-out data.

○ Train approximate model from S.

○ Predict held-out set, determine cascade threshold

empirically using accuracy target.

End-to-end Cascades: Selecting Features

56

● Goal: Select feature set S that minimizes query time:

min
𝑆

𝑃(approx)cost(𝑆) + 𝑃(~approx)cost(𝐹)

● Approach:

○ Choose several potential values of cost(𝑆).

○ Find best feature set with each cost(S).

○ Train model & find cascade threshold for each set.

○ Pick best overall.

End-to-end Cascades: Results

57

● Speedups of up to 5x without statistically significant

accuracy loss.

● Full evaluation at end of talk!

Outline

58

● System Overview

● Optimization 1: End-to-end Cascades

● Optimization 2: Top-K Query Approximation

● Evaluation

Top-K Approximation: Query Overview

● Top-K problem: Rank K highest-scoring items of a

dataset.

● Top-K example: Find 10 artists a user would like most

(recommender system).

59

Top-K Approximation: Asymmetry

60

● High-value items must be predicted, ranked precisely.

● Low-value items need only be identified as low value.

Artist Score Rank

Beatles 9.7 1

Bruce Springsteen 9.5 2

… … …

Justin Bieber 5.6 999

Nickelback 4.1 1000

High-value:
Rank precisely,
return.

Low-value:
Approximate,
discard.

Top-K Approximation: How it Works

● Use approximate model to identify and discard low-

value items.

● Rank high-value items with powerful model.

61

Top-K Approximation: Prior Work

● Existing systems have similar ideas.

● However, we automatically generate approximate

models for any ML application—prior systems don’t.

● Similar challenges as in cascades.

62

Source:
Cheng et al.
(DLRS ‘16)

Top-K Approximation: Automatic Tuning

● Automatically selects features, tunes parameters to

maximize performance given accuracy target.

● Works similarly to cascades.

● See paper for details!

63

Top-K Approximation: Results

64

● Speedups of up to 10x for top-K queries.

● Full eval at end of talk!

Outline

65

● System Overview

● Optimization 1: End-to-end Cascades

● Optimization 2: Top-K Query Approximation

● Evaluation

Willump Evaluation: Benchmarks

● Benchmarks curated from top-performing entries to

data science competitions (e.g. Kaggle, WSDM, CIKM).

● Three benchmarks in presentation (more in paper):

○ Music (music recommendation– queries remotely stored

precomputed features)

○ Purchase (predict next purchase, tabular AutoML features)

○ Toxic (toxic comment detection – computes string features)

66

End-to-End Cascades Evaluation: Throughput

67

15x

1.6x1x1x
2.4x

3.2x

68

End-to-End Cascades Evaluation: Latency

Top-K Query Approximation Evaluation

69

4.0x
1x

2.7x
1x

3.2x

30x

● We introduce Willump, a statistically-aware end-to-end

optimizer for ML inference.

● Statistical nature of ML enables new optimizations:

Willump applies them automatically for 10x speedups.

github.com/stanford-futuredata/Willump

Summary

70

