

Willump: A Statistically-Aware End-to-end Optimizer for ML Inference

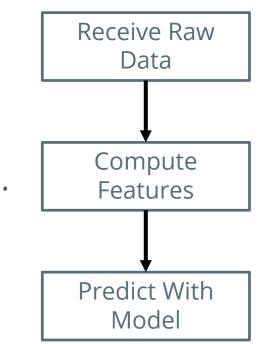
Peter Kraft, Daniel Kang, Deepak Narayanan, Shoumik Palkar, Peter Bailis, Matei Zaharia

Problem: ML Inference

- Often performance-critical.
- Recent focus on tools for ML prediction serving.

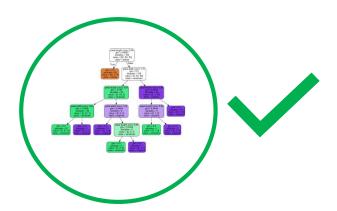
A Common Bottleneck: Feature Computation

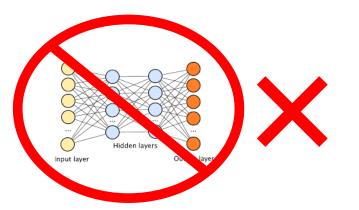
- Many applications bottlenecked by feature computation.
- Pipeline of transformations computes numerical *features* from data for model.



A Common Bottleneck: Feature Computation

- Feature computation is bottleneck when models are inexpensive—boosted trees, not DNNs.
- Common on tabular/structured data!

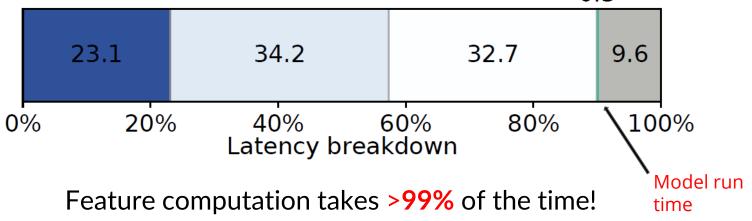




A Common Bottleneck: Feature Computation

Production Microsoft sentiment analysis pipeline

CharNgram WordNgram Concat LogReg Others 0.3



Current State-of-the-art

- Apply traditional serving optimizations, e.g. caching (Clipper), compiler optimizations (Pretzel).
- Neglect unique **statistical properties** of ML apps.

Amenability to approximation

Amenability to approximation

Easy input: Definitely not a dog.

Hard input: Maybe a dog?

Amenability to approximation

Easy input: Definitely not a dog.

Hard input: Maybe a dog?

Existing Systems: Use Expensive Model for Both

Amenability to approximation

Hard input: Maybe a dog?

10

Statistically-Aware Systems: Use cheap model on bucket, expensive model on cat.

• Model is often part of a bigger app (e.g. top-K query)

• Model is often part of a bigger app (e.g. top-K query)

Artist	Score	Rank
Beatles	9.7	1
Bruce Springsteen	9.5	2
Justin Bieber	5.6	999
Nickelback	4.1	1000

Problem: Return top 10 artists.

• Model is often part of a bigger app (e.g. top-K query)

Existing Systems

Artist	Score	Rank	
Beatles	9.7	1	Use
Bruce Springsteen	9.5	2	expensive
			model for
Justin Bieber	5.6	999	everything!
Nickelback	4.1	1000	e

• Model is often part of a bigger app (e.g. top-K query)

Statistically-aware Systems

Artist	Score	Rank	High-value:
Beatles	9.7	1	Rank precisely,
Bruce Springsteen	9.5	2	return.
			Low-value:
Justin Bieber	5.6	999	Approximate,
Nickelback	4.1	1000	discard.

Prior Work: Statistically-Aware Optimizations

- Statistically-aware optimizations exist in literature.
- Always application-specific and custom-built.
- Never automatic!

Source:

Cheng et al.

(DLRS' 16),

Kang et al.

(VLDB '17)

ML Inference Dilemna

- ML inference systems:
 - Easy to use.
 - \circ Slow.
- Statistically-aware systems:
 - Fast
 - Require a lot of work to implement.

Can an ML inference system be fast and easy to use?

Willump: Overview

- Statistically-aware optimizer for ML Inference.
- Targets feature computation!
- *Automatic* model-agnostic statistically-aware opts.
- 10x throughput+latency improvements.

Outline

- System Overview
- Optimization 1: End-to-end Cascades
- Optimization 2: Top-K Query Approximation
- Evaluation

Willump: Goals

• Automatically maximize performance of ML inference applications whose performance bottleneck is feature computation

Input Pipeline

def pipeline(x1, x2):
 input = lib.transform(x1, x2)
 preds = model.predict(input)
 return preds

Input Pipeline

def pipeline(x1, x2):
 input = lib.transform(x1, x2)
 preds = model.predict(input)
 return preds

Willump Optimization

Infer Transformation Graph

Input Pipeline

def pipeline(x1, x2):
 input = lib.transform(x1, x2)
 preds = model.predict(input)
 return preds

Willump Optimization

Infer Transformation Graph

Statistically-Aware Optimizations:

- 1. End-To-End Cascades
- 2. Top-K Query Approximation

Input Pipeline

def pipeline(x1, x2):
 input = lib.transform(x1, x2)
 preds = model.predict(input)
 return preds

Willump Optimization

Infer Transformation Graph

Statistically-Aware Optimizations:

- 1. End-To-End Cascades
- 2. Top-K Query Approximation

Compiler Optimizations (Weld—Palkar et al. VLDB '18)

Input Pipeline

def pipeline(x1, x2):
 input = lib.transform(x1, x2)
 preds = model.predict(input)
 return preds

Optimized Pipeline

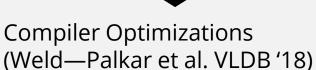
def willump_pipeline(x1, x2):
 preds = compiled_code(x1, x2)
 return preds

Willump Optimization

Infer Transformation Graph

Statistically-Aware Optimizations:

- 1. End-To-End Cascades
- 2. Top-K Query Approximation



Outline

- System Overview
- Optimization 1: End-to-end Cascades
- Optimization 2: Top-K Query Approximation
- Evaluation

Background: Model Cascades

- Classify "easy" inputs with cheap model.
- *Cascade* to expensive model for "hard" inputs.

Easy input: Definitely not a dog.

Hard input: Maybe a dog?

Background: Model Cascades

- Used for image classification, object detection.
- Existing systems application-specific and custom-built.

Source:

Viola-Jones

(CVPR' 01),

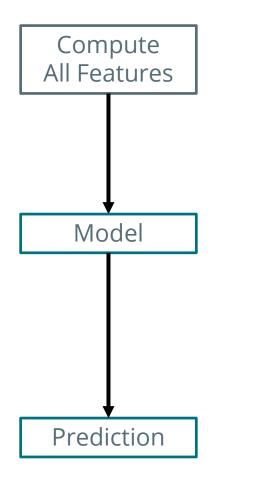
Kang et al.

(VLDB '17)

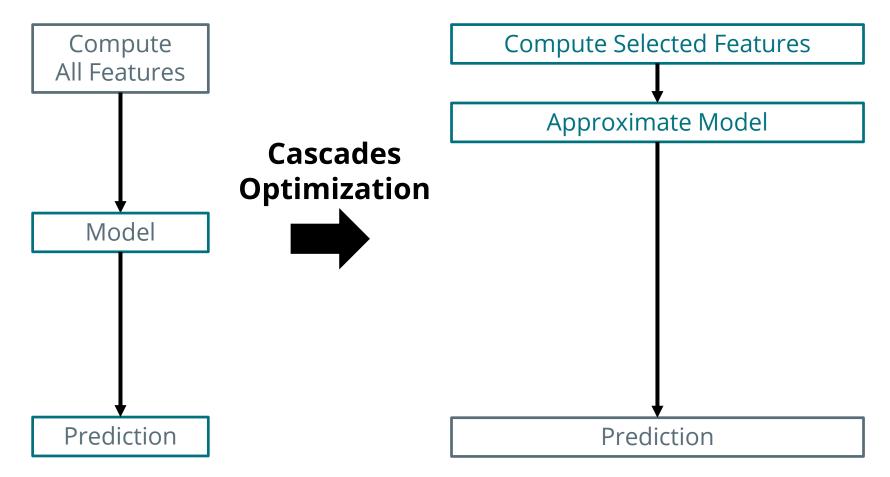
Our Optimization: End-to-end cascades

- Compute only some features for "easy" data inputs; cascade to computing all for "hard" inputs.
- Automatic and model-agnostic, unlike prior work.
 - Estimates for runtime performance & accuracy of a feature set
 - Efficient search process for tuning parameters

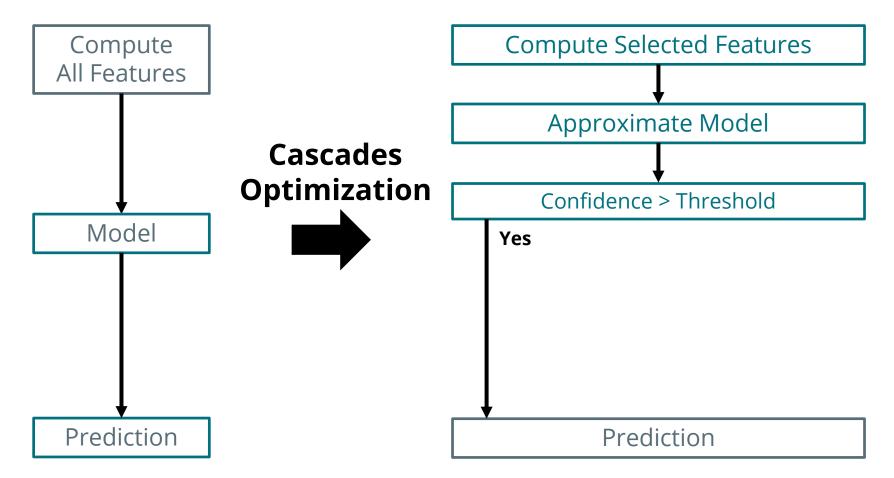
End-to-end Cascades: Original Model



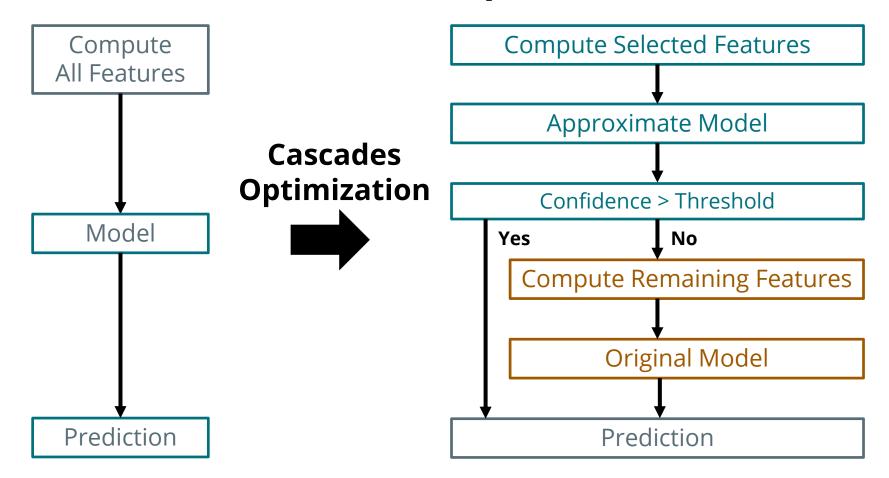
End-to-end Cascades: Approximate Model



End-to-end Cascades: Confidence



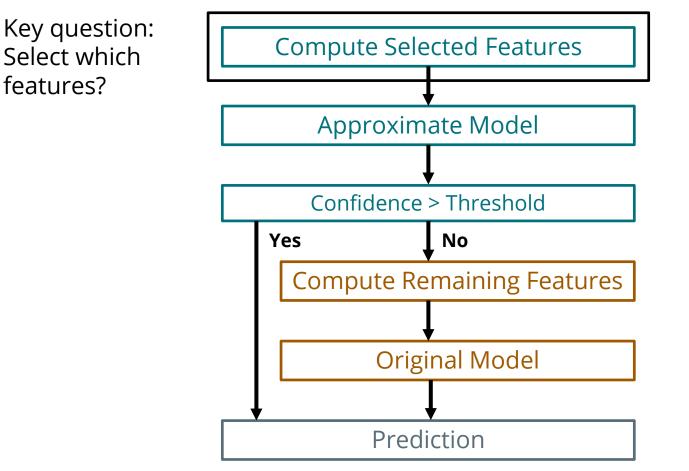
End-to-end Cascades: Final Pipeline



End-to-end Cascades: Constructing Cascades

- Construct cascades during model training.
- Need model training set and an accuracy target.

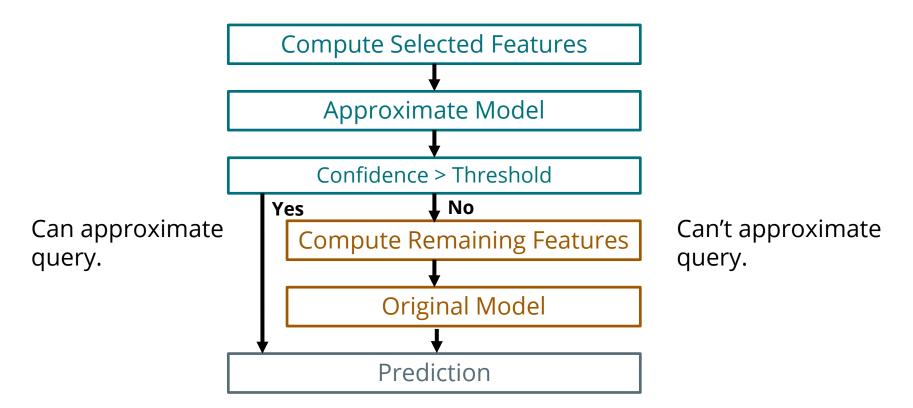
End-to-end Cascades: Selecting Features



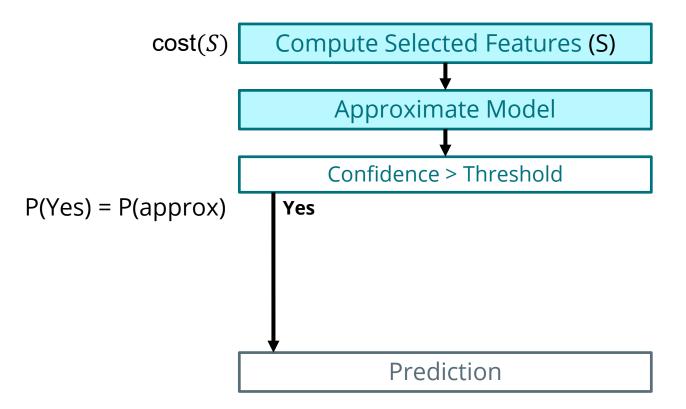
End-to-end Cascades: Selecting Features

• Goal: Select features that minimize expected query time given accuracy target.

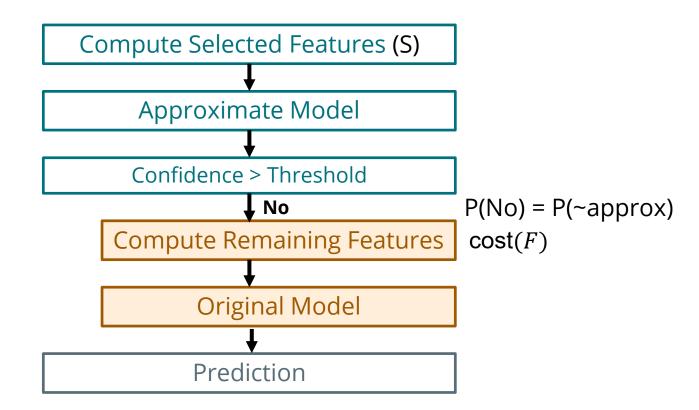
Two possibilities for a query: Can approximate or not.



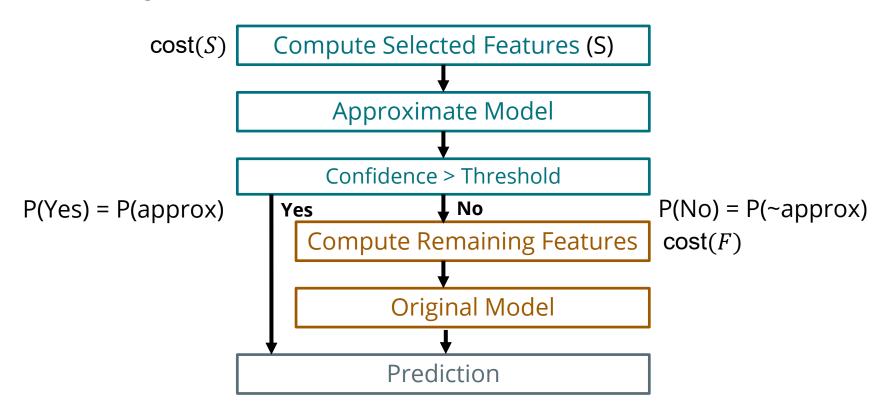
 $\min_{S} P(\operatorname{approx})\operatorname{cost}(S) + P(\sim \operatorname{approx})\operatorname{cost}(F)$



 $\min_{S} P(\operatorname{approx})\operatorname{cost}(S) + P(\sim \operatorname{approx})\operatorname{cost}(F)$



 $\min_{S} P(\operatorname{approx})\operatorname{cost}(S) + P(\sim \operatorname{approx})\operatorname{cost}(F)$



 Goal: Select feature set S that minimizes query time: min P(approx)cost(S) + P(~approx)cost(F)

- Goal: Select feature set *S* that minimizes query time: $\min_{S} P(\text{approx}) \text{cost}(S) + P(\sim \text{approx}) \text{cost}(F)$
- Approach:
 - **Choose several potential values of cost**(*S*).
 - Find best feature set with each cost(S).
 - Train model & find cascade threshold for each set.
 - Pick best overall.

- Goal: Select feature set *S* that minimizes query time: $\min_{S} P(\text{approx}) \text{cost}(S) + P(\sim \text{approx}) \text{cost}(F)$
- Approach:
 - Choose several potential values of cost(*S*).
 - Find best feature set with each cost(S).
 - Train model & find cascade threshold for each set.
 - Pick best overall.

- Goal: Select feature set *S* that minimizes query time: $\min_{S} P(\text{approx}) \text{cost}(S) + P(\sim \text{approx}) \text{cost}(F)$
- Approach:
 - Choose several potential values of cost(*S*).
 - Find best feature set with each cost(S).
 - Train model & find cascade threshold for each set.
 - Pick best overall.

- Goal: Select feature set *S* that minimizes query time: $\min_{S} P(\operatorname{approx})\operatorname{cost}(S) + P(\sim \operatorname{approx})\operatorname{cost}(F)$
- Approach:
 - Choose several potential values of cost(*S*).
 - Find best feature set with each cost(S).
 - Train model & find cascade threshold for each set.
 - Pick best overall.

- Goal: Select feature set *S* that minimizes query time: $\min_{S} P(\text{approx}) \text{cost}(S) + P(\sim \text{approx}) \text{cost}(F)$
- Approach:
 - **Choose several potential values of cost**(*S*).
 - Find best feature set with each cost(S).
 - Train model & find cascade threshold for each set.
 - Pick best overall.

- Goal: Select feature set *S* that minimizes query time: $\min_{S} P(\text{approx}) \text{cost}(S) + P(\sim \text{approx}) \text{cost}(F)$
- Approach:
 - Choose several potential values of cost(*S*).
 - Find best feature set with each cost(S).
 - Train model & find cascade threshold for each set.
 - Pick best overall.

• Subgoal: Find S minimizing query time if $cost(S) = c_{max}$. $\min_{S} P(approx)cost(S) + P(\sim approx)cost(F)$

- Subgoal: Find S minimizing query time if cost(S) = c_{max}.
 min P(approx)cost(S) + P(~approx)cost(F)
 Solution:
- Solution:
 - Find *S* maximizing approximate model accuracy.

- Subgoal: Find S minimizing query time if cost(S) = c_{max}. min P(approx)cost(S) + P(~approx)cost(F)
 Solution:
- Solution:
 - Find *S* maximizing approximate model accuracy.
 - Problem: Computing accuracy expensive.

- Subgoal: Find S minimizing query time if cost(S) = c_{max}. min P(approx)cost(S) + P(~approx)cost(F)
 Solution:
 - Find *S* maximizing approximate model accuracy.
 - Problem: Computing accuracy expensive.
 - Solution: Estimate accuracy via permutation importance -> knapsack problem.

- Goal: Select feature set *S* that minimizes query time: $\min_{S} P(\text{approx}) \text{cost}(S) + P(\sim \text{approx}) \text{cost}(F)$
- Approach:
 - Choose several potential values of cost(*S*).
 - Find best feature set with each cost(S).
 - Train model & find cascade threshold for each set.
 - Pick best overall.

- Subgoal: Train model & find cascade threshold for S.
 min P(approx)cost(S) + P(~approx)cost(F)
- Solution:
 - Compute empirically on held-out data.

- Subgoal: Train model & find cascade threshold for S.
 min P(approx)cost(S) + P(~approx)cost(F)
 Solution:
- Solution:
 - Compute empirically on held-out data.
 - Train approximate model from S.

- Subgoal: Train model & find cascade threshold for *S*.
 min P(approx)cost(S) + P(~approx)cost(F)
 Solution:
- Solution:
 - Compute empirically on held-out data.
 - Train approximate model from S.
 - Predict held-out set, determine cascade threshold empirically using accuracy target.

- Goal: Select feature set *S* that minimizes query time: $\min_{S} P(\text{approx}) \text{cost}(S) + P(\sim \text{approx}) \text{cost}(F)$
- Approach:
 - Choose several potential values of cost(*S*).
 - Find best feature set with each cost(S).
 - Train model & find cascade threshold for each set.
 - Pick best overall.

End-to-end Cascades: Results

- Speedups of up to 5x without statistically significant accuracy loss.
- Full evaluation at end of talk!

Outline

- System Overview
- Optimization 1: End-to-end Cascades
- Optimization 2: Top-K Query Approximation
- Evaluation

Top-K Approximation: Query Overview

- Top-K problem: Rank K highest-scoring items of a dataset.
- Top-K example: Find 10 artists a user would like most (recommender system).

Top-K Approximation: Asymmetry

- High-value items must be predicted, ranked precisely.
- Low-value items need only be identified as low value.

Artist	Score	Rank	High-value:
Beatles	9.7	1	Rank precisely, return.
Bruce Springsteen	9.5	2	
			Low-value: Approximate, discard.
Justin Bieber	5.6	999	
Nickelback	4.1	1000	

Top-K Approximation: How it Works

- Use approximate model to identify and discard low-value items.
- Rank high-value items with powerful model.

Top-K Approximation: Prior Work

- Existing systems have similar ideas.
- However, we automatically generate approximate models for any ML application—prior systems don't.
- Similar challenges as in cascades.

Source: Cheng et al. (DLRS '16)

Top-K Approximation: Automatic Tuning

- Automatically selects features, tunes parameters to maximize performance given accuracy target.
- Works similarly to cascades.
- See paper for details!

Top-K Approximation: Results

- Speedups of up to 10x for top-K queries.
- Full eval at end of talk!

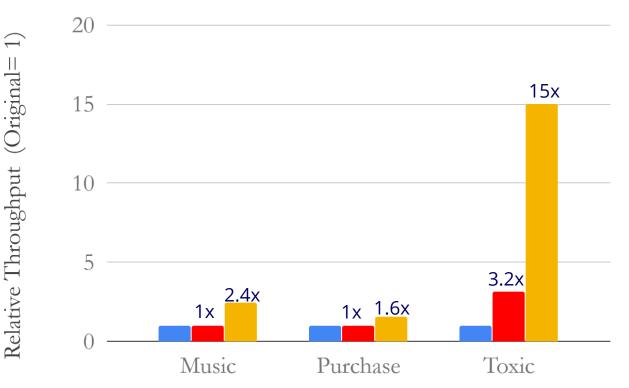
Outline

- System Overview
- Optimization 1: End-to-end Cascades
- Optimization 2: Top-K Query Approximation
- Evaluation

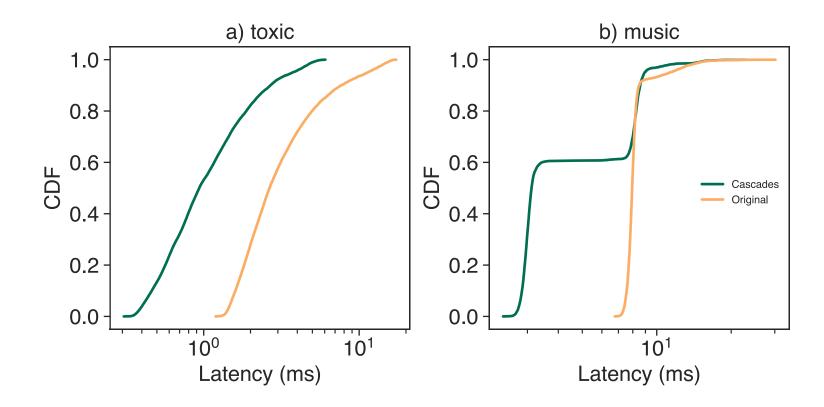
Willump Evaluation: Benchmarks

- Benchmarks curated from top-performing entries to data science competitions (e.g. Kaggle, WSDM, CIKM).
- Three benchmarks in presentation (more in paper):
 - Music (music recommendation– queries remotely stored precomputed features)
 - **Purchase** (predict next purchase, tabular AutoML features)
 - **Toxic** (toxic comment detection computes string features)

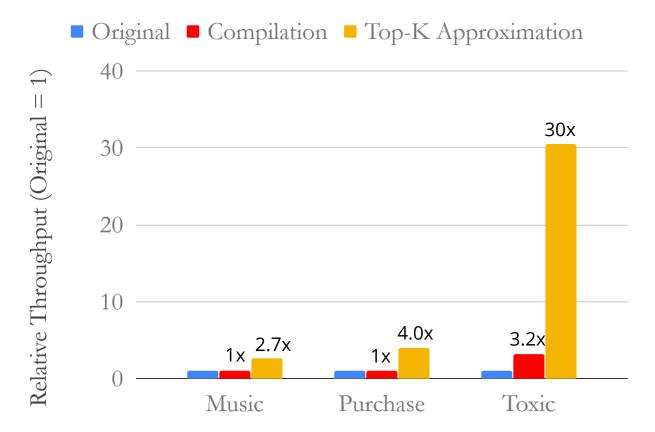
End-to-End Cascades Evaluation: Throughput



End-to-End Cascades Evaluation: Latency



Top-K Query Approximation Evaluation



69

- We introduce Willump, a statistically-aware end-to-end optimizer for ML inference.
 - Statistical nature of ML enables new optimizations: Willump applies them automatically for 10x speedups.

github.com/stanford-futuredata/Willump