
Willump: A Statistically-Aware
End-to-end Optimizer for ML Inference

Peter Kraft, Daniel Kang, Deepak Narayanan, 
Shoumik Palkar, Peter Bailis, Matei Zaharia

1



Problem:  ML Inference

● Often performance-critical.

● Recent focus on tools for ML prediction serving.
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A Common Bottleneck:  Feature Computation
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● Many applications bottlenecked by 

feature computation.

● Pipeline of transformations computes 

numerical features from data for model.

Receive Raw 
Data

Compute 
Features

Predict With 
Model



A Common Bottleneck:  Feature Computation
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● Feature computation is bottleneck when models are 

inexpensive—boosted trees, not DNNs.

● Common on tabular/structured data!



A Common Bottleneck:  Feature Computation

Source:  Pretzel (OSDI ‘18)

Feature computation takes >99% of the time!

Production Microsoft sentiment analysis pipeline

Model run 
time
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Current State-of-the-art

● Apply traditional serving optimizations, e.g. caching 

(Clipper), compiler optimizations (Pretzel).

● Neglect unique statistical properties of ML apps.
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Statistical Properties of ML

Amenability to approximation
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Statistical Properties of ML

Amenability to approximation
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Easy input:  
Definitely not 
a dog.

Hard input:  
Maybe a 
dog?



Statistical Properties of ML

Amenability to approximation

Existing Systems:  Use Expensive Model for Both
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Easy input:  
Definitely not 
a dog.

Hard input:  
Maybe a 
dog?



Statistical Properties of ML

Amenability to approximation

Statistically-Aware Systems:  Use cheap model on bucket, 

expensive model on cat. 10

Easy input:  
Definitely not 
a dog.

Hard input:  
Maybe a 
dog?



Statistical Properties of ML

● Model is often part of a bigger app (e.g. top-K query)
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Statistical Properties of ML

● Model is often part of a bigger app (e.g. top-K query)
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Artist Score Rank

Beatles 9.7 1

Bruce Springsteen 9.5 2

… … …

Justin Bieber 5.6 999

Nickelback 4.1 1000

Problem: 
Return top 
10 artists.



Statistical Properties of ML

● Model is often part of a bigger app (e.g. top-K query)
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Artist Score Rank

Beatles 9.7 1

Bruce Springsteen 9.5 2

… … …

Justin Bieber 5.6 999

Nickelback 4.1 1000

Use 
expensive 
model for 
everything!

Existing Systems



Statistical Properties of ML

● Model is often part of a bigger app (e.g. top-K query)
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Artist Score Rank

Beatles 9.7 1

Bruce Springsteen 9.5 2

… … …

Justin Bieber 5.6 999

Nickelback 4.1 1000

High-value:  
Rank precisely, 
return.

Low-value:  
Approximate, 
discard.

Statistically-aware Systems



Prior Work:  Statistically-Aware Optimizations

● Statistically-aware optimizations exist in literature.

● Always application-specific and custom-built.

● Never automatic!
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Source:   
Cheng et al.
(DLRS’ 16),
Kang et al. 
(VLDB ‘17)



ML Inference Dilemna

● ML inference systems:

○ Easy to use.

○ Slow.

● Statistically-aware systems:

○ Fast

○ Require a lot of work to implement.
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Can an ML inference system be fast and easy to use?
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Willump:  Overview

● Statistically-aware optimizer for ML Inference.

● Targets feature computation!

● Automatic model-agnostic statistically-aware opts.

● 10x throughput+latency improvements.
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Outline
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● System Overview

● Optimization 1: End-to-end Cascades

● Optimization 2: Top-K Query Approximation

● Evaluation



Willump: Goals

● Automatically maximize performance of ML inference 

applications whose performance bottleneck is feature 

computation
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def pipeline(x1, x2):
input = lib.transform(x1, x2)   
preds = model.predict(input)
return preds

System Overview

Input Pipeline
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Willump Optimization

Infer Transformation 
Graph

System Overview
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def pipeline(x1, x2):
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Willump Optimization

Infer Transformation 
Graph
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1.  End-To-End Cascades
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def pipeline(x1, x2):
input = lib.transform(x1, x2)   
preds = model.predict(input)
return preds

Willump Optimization

Infer Transformation 
Graph

Compiler Optimizations
(Weld—Palkar et al. VLDB ‘18)

System Overview

Input Pipeline

Statistically-Aware Optimizations:
1.  End-To-End Cascades
2.  Top-K Query Approximation
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def pipeline(x1, x2):
input = lib.transform(x1, x2)   
preds = model.predict(input)
return preds

Willump Optimization

Infer Transformation 
Graph

Compiler Optimizations
(Weld—Palkar et al. VLDB ‘18)

def willump_pipeline(x1, x2):
preds = compiled_code(x1, x2)   
return preds

Optimized Pipeline

System Overview

Input Pipeline

Statistically-Aware Optimizations:
1.  End-To-End Cascades
2.  Top-K Query Approximation



Outline

26

● System Overview

● Optimization 1:  End-to-end Cascades

● Optimization 2: Top-K Query Approximation

● Evaluation



Background:  Model Cascades

● Classify “easy” inputs with cheap model.

● Cascade to expensive model for “hard” inputs.
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Easy input:  
Definitely not 
a dog.

Hard input:  
Maybe a 
dog?



Background:  Model Cascades

● Used for image classification, object detection.

● Existing systems application-specific and custom-built.
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Source: 
Viola-Jones
(CVPR’ 01),
Kang et al. 
(VLDB ‘17)



Our Optimization:  End-to-end cascades

● Compute only some features for “easy” data inputs; 

cascade to computing all for “hard” inputs.

● Automatic and model-agnostic, unlike prior work.

○ Estimates for runtime performance & accuracy of a feature set

○ Efficient search process for tuning parameters
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End-to-end Cascades:  Original Model

Compute
All Features

Model

Prediction



Cascades
Optimization

End-to-end Cascades:  Approximate Model

Compute
All Features

Model

Prediction

Compute Selected Features

Approximate Model

Prediction



Cascades
Optimization

End-to-end Cascades:  Confidence

Compute
All Features

Model

Prediction

Compute Selected Features

Approximate Model

Prediction

Confidence > Threshold

Yes



Cascades
Optimization

End-to-end Cascades:  Final Pipeline

Compute
All Features

Model

Prediction

Compute Selected Features

Compute Remaining Features

Approximate Model

Prediction

Original Model

Confidence > Threshold

Yes No



End-to-end Cascades:  Constructing Cascades
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● Construct cascades during model training.

● Need model training set and an accuracy target.



End-to-end Cascades:  Selecting Features

Compute Selected Features

Compute Remaining Features

Approximate Model

Prediction

Original Model

Confidence > Threshold

Yes No

Key question:  
Select which 
features?



End-to-end Cascades:  Selecting Features
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● Goal: Select features that minimize expected query time 

given accuracy target.



End-to-end Cascades:  Selecting Features

Compute Selected Features

Compute Remaining Features

Approximate Model

Prediction

Original Model

Confidence > Threshold

Yes No

Two possibilities for a query:  Can approximate or not.

Can approximate 
query.

Can’t approximate 
query.



End-to-end Cascades:  Selecting Features

Compute Selected Features (S)

Approximate Model

Prediction

Confidence > Threshold

YesP(Yes) = P(approx)

cost(𝑆)

min
𝑆

𝑃(approx)cost(𝑆) + 𝑃(~approx)cost(𝐹)



End-to-end Cascades:  Selecting Features

Compute Selected Features (S)

Compute Remaining Features

Approximate Model

Prediction

Original Model

Confidence > Threshold

No P(No) = P(~approx)

min
𝑆

𝑃(approx)cost(𝑆) + 𝑃(~approx)cost(𝐹)

cost(𝐹)



End-to-end Cascades:  Selecting Features

Compute Selected Features (S)

Compute Remaining Features

Approximate Model

Prediction

Original Model

Confidence > Threshold

Yes NoP(Yes) = P(approx) P(No) = P(~approx)

cost(𝑆)

min
𝑆

𝑃(approx)cost(𝑆) + 𝑃(~approx)cost(𝐹)

cost(𝐹)



End-to-end Cascades:  Selecting Features
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● Goal: Select feature set S that minimizes query time:

min
𝑆

𝑃(approx)cost(𝑆) + 𝑃(~approx)cost(𝐹)



End-to-end Cascades:  Selecting Features
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● Goal: Select feature set S that minimizes query time:

min
𝑆

𝑃(approx)cost(𝑆) + 𝑃(~approx)cost(𝐹)

● Approach:

○ Choose several potential values of cost(𝑺).

○ Find best feature set with each cost(S).

○ Train model & find cascade threshold for each set.

○ Pick best overall.
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● Goal: Select feature set S that minimizes query time:

min
𝑆

𝑃(approx)cost(𝑆) + 𝑃(~approx)cost(𝐹)

● Approach:

○ Choose several potential values of cost(𝑆).

○ Find best feature set with each cost(S).

○ Train model & find cascade threshold for each set.

○ Pick best overall.



End-to-end Cascades:  Selecting Features
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● Subgoal:  Find S minimizing query time if 𝑐𝑜𝑠𝑡 𝑆 = 𝑐𝑚𝑎𝑥.

min
𝑆

𝑃(approx)cost(𝑆) + 𝑃(~approx)cost(𝐹)



End-to-end Cascades:  Selecting Features
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● Subgoal:  Find S minimizing query time if 𝑐𝑜𝑠𝑡 𝑆 = 𝑐𝑚𝑎𝑥.

min
𝑆

𝑃(approx)cost(𝑆) + 𝑃(~approx)cost(𝐹)

● Solution:

○ Find S maximizing approximate model accuracy.



End-to-end Cascades:  Selecting Features
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● Subgoal:  Find S minimizing query time if 𝑐𝑜𝑠𝑡 𝑆 = 𝑐𝑚𝑎𝑥.

min
𝑆

𝑃(approx)cost(𝑆) + 𝑃(~approx)cost(𝐹)

● Solution:

○ Find S maximizing approximate model accuracy.

○ Problem: Computing accuracy expensive.



End-to-end Cascades:  Selecting Features
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● Subgoal:  Find S minimizing query time if 𝑐𝑜𝑠𝑡 𝑆 = 𝑐𝑚𝑎𝑥.

min
𝑆

𝑃(approx)cost(𝑆) + 𝑃(~approx)cost(𝐹)

● Solution:

○ Find S maximizing approximate model accuracy.

○ Problem: Computing accuracy expensive.

○ Solution: Estimate accuracy via permutation 

importance -> knapsack problem.



End-to-end Cascades:  Selecting Features
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● Goal: Select feature set S that minimizes query time:

min
𝑆

𝑃(approx)cost(𝑆) + 𝑃(~approx)cost(𝐹)

● Approach:

○ Choose several potential values of cost(𝑆).

○ Find best feature set with each cost(S).
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End-to-end Cascades:  Selecting Features
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● Subgoal:  Train model & find cascade threshold for S.

min
𝑆

𝑃(approx)cost(𝑆) + 𝑃(~approx)cost(𝐹)

● Solution:

○ Compute empirically on held-out data.



End-to-end Cascades:  Selecting Features
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● Subgoal:  Train model & find cascade threshold for S.

min
𝑆

𝑃(approx)cost(𝑆) + 𝑃(~approx)cost(𝐹)

● Solution:

○ Compute empirically on held-out data.

○ Train approximate model from S.



End-to-end Cascades:  Selecting Features
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● Subgoal:  Train model & find cascade threshold for S.

min
𝑆

𝑃(approx)cost(𝑆) + 𝑃(~approx)cost(𝐹)

● Solution:

○ Compute empirically on held-out data.

○ Train approximate model from S.

○ Predict held-out set, determine cascade threshold 

empirically using accuracy target.



End-to-end Cascades:  Selecting Features
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● Goal: Select feature set S that minimizes query time:

min
𝑆

𝑃(approx)cost(𝑆) + 𝑃(~approx)cost(𝐹)

● Approach:

○ Choose several potential values of cost(𝑆).

○ Find best feature set with each cost(S).

○ Train model & find cascade threshold for each set.

○ Pick best overall.



End-to-end Cascades:  Results
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● Speedups of up to 5x without statistically significant 

accuracy loss.

● Full evaluation at end of talk!



Outline
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● System Overview

● Optimization 1:  End-to-end Cascades

● Optimization 2:  Top-K Query Approximation

● Evaluation



Top-K Approximation:  Query Overview

● Top-K problem:  Rank K highest-scoring items of a 

dataset.

● Top-K example:  Find 10 artists a user would like most 

(recommender system).
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Top-K Approximation:  Asymmetry
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● High-value items must be predicted, ranked precisely.

● Low-value items need only be identified as low value.

Artist Score Rank

Beatles 9.7 1

Bruce Springsteen 9.5 2

… … …

Justin Bieber 5.6 999

Nickelback 4.1 1000

High-value:  
Rank precisely, 
return.

Low-value:  
Approximate, 
discard.



Top-K Approximation:  How it Works

● Use approximate model to identify and discard low-

value items.

● Rank high-value items with powerful model.
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Top-K Approximation: Prior Work

● Existing systems have similar ideas.

● However, we automatically generate approximate 

models for any ML application—prior systems don’t.

● Similar challenges as in cascades.
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Source: 
Cheng et al. 
(DLRS ‘16)



Top-K Approximation:  Automatic Tuning

● Automatically selects features, tunes parameters to 

maximize performance given accuracy target.

● Works similarly to cascades.

● See paper for details!
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Top-K Approximation:  Results
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● Speedups of up to 10x for top-K queries.

● Full eval at end of talk!



Outline
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● System Overview

● Optimization 1:  End-to-end Cascades

● Optimization 2:  Top-K Query Approximation

● Evaluation



Willump Evaluation: Benchmarks

● Benchmarks curated from top-performing entries to 

data science competitions (e.g. Kaggle, WSDM, CIKM).

● Three benchmarks in presentation (more in paper):  

○ Music (music recommendation– queries remotely stored 

precomputed features) 

○ Purchase (predict next purchase, tabular AutoML features)

○ Toxic (toxic comment detection – computes string features)
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End-to-End Cascades Evaluation: Throughput
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15x

1.6x1x1x
2.4x

3.2x
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End-to-End Cascades Evaluation: Latency



Top-K Query Approximation Evaluation
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4.0x
1x

2.7x
1x

3.2x

30x



● We introduce Willump, a statistically-aware end-to-end 

optimizer for ML inference. 

● Statistical nature of ML enables new optimizations:  

Willump applies them automatically for 10x speedups.

github.com/stanford-futuredata/Willump

Summary
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